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Abstract: Approximate computing can considerably improve energy efficiency by mitigating the accu-
racy requirements of calculations in error resilient application programming, such as machine learning,
audio–video signal processing, data mining, and search engines. In this study, we propose an approx-
imate divider for dynamic energy-quality scaling, which involves a trade-off between accuracy and
latency. Previous approximate dividers for dynamic energy-quality scaling are well-configured, but
lack energy-quality scalability. The key is to create a more accurate dynamic approximate divider while
extending the limits of accuracy to maximize energy efficiency and meet various accuracy requirements.
The proposed divider, called the accuracy scalable approximate divider based on restoring division
(ASAD-RD), uses restoring division to significantly improve the error of the approximate divider and to
use less latency. For the 8-bit division, SAADI, the previous design, has an average accuracy of 90.78% to
98.77%; however, ASAD-RD can improve the accuracy between 95.2% and 99.23% and hardly requires
additional power consumption. Furthermore, for the same target accuracy, ASAD-RD requires fewer
cycle iterations than SAADI. Thus, ASAD-RD requires lower energy than SAADI and can operate as an
energy-efficient approximate divider.

Keywords: approximate computing; divider; energy efficiency; energy quality scalability; restor-
ing division

1. Introduction

Energy efficiency is a key component of a computer system. Approximate computing
is a type of design that can improve the energy efficiency of a system [1]. Traditionally, arith-
metic operations were considered to always produce accurate results and were designed
to pursue accurate computational results in computer design. However, accuracy may
not always be a priority when considering energy efficiency in arithmetic operations [2].
Some applications pursue perfectly accurate computations, while others may require only
adequate accuracy and seek more computational speed or power consumption [3]. Appli-
cations such as machine learning, video signal processing, searching, and data mining do
not require complete accuracy [4]. In such cases, pursuing perfectly accurate computation
can waste energy. Approximate computing is a new approach to improve the energy effi-
ciency of these applications [5]. Approximate computing using an adder [6], multiplier [7],
or divider [8] can improve energy efficiency by saving power or latency while meeting the
results of appropriate accuracy.

So far, many approximate computing designs have been presented, and these designs
have been proven to benefit from performance improvement and power savings by causing
minor errors. Furthermore, many approximate divider designs have been proposed [9–12].
However, previously proposed approximation dividers do not meet the applications’ var-
ious accuracy requirements and are limited in that they provide only a single level of
accuracy. In addition, the accuracy requirement for arithmetic operations is not constant
because the impact of approximation to the final quality at the application level is highly
input-dependent [13], and the application-level quality requirements may also change over
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time. Therefore, in order to meet the quality requirements of the application, an approxi-
mate divider is required that enables dynamic quality scaling. SAADI has the advantage of
being able to dynamically control the accuracy and latency, which helps to overcome the
shortcomings of the previous approximate dividers [14].

Herein, we propose an approximate divider design that enhances the dynamic energy
quality scalability with fewer errors. The accuracy scalable approximate divider based on
restoring division (ASAD-RD) is based on the previous approximate divider, SAADI [14],
which performs division by multiplying the dividend and the approximate reciprocal of the
divisor and then repeats the process of the approximation of the reciprocal of the divisor.
According to the iteration process, accuracy gradually increases, which enables SAADI to
obtain a trade-off between latency and accuracy. Applications can use SAADI to perform
high-accuracy division by increasing the time and power consumption or improving energy
efficiency while reducing accuracy. Energy-efficient arithmetic operations have long been a
challenge for researchers to derive better performance from limited resources in computer
systems. Compared with SAADI [14], ASAD-RD is based on a novel idea. It is a hybrid
method of SAADI and other division algorithms for improving the accuracy and reducing
the repetition process of the approximate division. In the process of approximate division,
a restoring division is performed at the beginning of SAADI to reduce the occurrence of
truncation errors in the multiplicative division. As a result, the proposed design can meet
more stringent accuracy requirements that cannot be reached by SAADI and can benefit
from power or performance.

The remainder of the paper is organized as follows: Section 2 presents related works
and explains the motivations of our study. The proposed approximate divider is introduced
in Section 3. It elaborates on the algorithm and architecture with error compensation.
Section 4 presents a complete analysis of accuracy and latency and a comparison with a
conventional scalable accuracy approximate divider (e.g., SAADI), followed by conclusions
in Section 5.

2. Related Works

Researchers have developed and proposed various approximate arithmetic units to im-
prove the energy efficiency of arithmetic operations. Among them, approximate dividers have
been studied relatively more recently than other arithmetic units, such as the adder [6] and
multiplier [7]. An approximate divider called AAXD [9] normalizes the operands to remove
leading zeros and uses only a few numbers of the most relevant bits. The truncated dividend is
then divided by the truncated divisor using a narrow width divider. The dividend and divisor
are then compared to prevent overflow. Accuracy is predetermined by the partition width of
AAXD, which cannot be adjusted dynamically. An approximate divider design presented
in [15] reduces power consumption and circuit complexity. It is designed with a simple struc-
ture consisting of three approximate subtractor cells that leads to performance improvement
and power reduction. However, the accuracy is also determined at the design level. Therefore,
the requirements of the application cannot be met dynamically. PLApp [10], TruncApp [11],
and SEERAD [12] are examples of multiplicative dividers, where the reciprocal of the divisor
is obtained first and then subsequently multiplied by the dividend. In PLApp, the reciprocal is
approximated using a fragmented linear function and rounding. In TruncApp, the reciprocal
is obtained by simple bit manipulations such as inversion, truncation, and concatenation.
In SEERAD, the reciprocal is approximated using a table indexed by the upper bits of the divi-
sor. For all three designs, the accuracy is determined at design time and cannot be configured
at runtime. SAADI [14] is an example of an approximation divider, which can dynamically
scale accuracy at runtime. It is also a multiplicative divider, but in the approximation process
of the reciprocal of the divisor, repeated operations are performed using the Taylor series.
Here, the accuracy is determined by the number of iterations, and the truncation errors are
accumulated during the iteration process. As a result, there is a limitation of accuracy that
cannot be solved no matter how many times a repeated operation is performed. For error
compensation of SAADI, Reference [16] reference could not be subject. proposed the idea
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that the approximate quotient is multiplied by a constant in a Look-up Table indexed by
the number of iterations. However, the error compensation after approximation may not be
achieved properly due to the truncation caused by the limit of divider width. Therefore, we
propose the idea of changing the input, not the error compensation of the output.

3. Proposed Approximate Divider

In this section, we introduce our divider design, ASAD-RD, and the algorithm of the
divider and hardware implementation. We analyze the error compensation and improve-
ment in accuracy.

3.1. Proposed Approximate Division

The proposed design, ASAD-RD, is a combination of a multiplicative division al-
gorithm that obtains the reciprocal of the divisor first and then multiplies the dividend
and uses the restoring division algorithm that provides accurate computational results.
We explain the basics of the restoring division algorithm [17,18] and the multiplicative
division algorithm [19].

First, we describe the basics of restoring division. In restoring division, register R
contains the remainder and register Q the quotient. An n bit dividend is loaded in Q,
and the divisor is loaded in register M. The value of the register is initially maintained
at zero; this is register R whose value is restored during the iteration. For example,
the dividend is 190, the divisor 11, and the bits 8. Subsequently, R is 0, M 11, and Q 190.

R = 0, Q = 10111110, M = 1011, n = 8, (1)

Subsequently, the content of the registers R and Q is shifted to the left as if they are a
single unit, such as RQ.

00000000 10111110→ 00000001 01111100 shift left RQ (2)

Subsequently, R = R − M, if A < 0, Q[0] = 0, and the value of R is restored.
Else Q[0] = 1.

R = R−M = 1− 11 < 0 → Q[0] = 0, R = 1 (restore R) (3)

The process of the first step is over. Once this process is iterated n times, where n is
the width of the divider, the restoring division is finished, and the register Q contains the
quotient 17, while R contains the remainder of three. The remainder R and divisor M are
the new inputs of multiplicative division as a dividend A and divisor B.

Next, we describe the basics of the multiplicative division. A and B can be represented
in a normalized form as:

A = 2ea × a and B = 2eb × b, (4)

where 0.5 ≤ a < 1 and 0.5 ≤ b < 1. During normalization, a and b are truncated to n bits.
Subsequently, the quotient Q of division A/B is:

Q =
A
B

= 2ea−eb × a
b
= 2ea−eb × a× R(b), (5)

where R(b) is the reciprocal of b, i.e., R(b) = 1/b. Instead of computing a/b directly, it can
be expressed as a multiplication of a and R(b). For energy-efficient division, the exact
reciprocal is not required. Therefore, an approximation reciprocal with acceptable accuracy
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is required. We address this by the approximation of the reciprocal based on the Taylor
series expansion. More specifically, the Taylor series expansion of 1/b is:

R(b) =
1

1 + x
=

∞

∑
i=0

(−x)i = 1− x + x2 − x3 + x4 − · · ·, (6)

where x = b− 1. It always converges because −0.5 ≤ x < 0 for normalized b such that
0.5 ≤ b < 1. The approximate reciprocal can be obtained by adding up the first few low-
order terms. If higher accuracy is required, more order terms can be added to gradually
improve accuracy. However, this also improves latency. This trade-off can be used for
applications depending on the required accuracy and latency restriction [14]. Let R̃t(b)
denote the t-th order approximation of R(b), such that:

R̃t(b) =
t

∑
i=0
|x|i = 1 + |x|+ |x|2 + |x|3 + |x|4 + · · ·+ |x|t, (7)

Finally, the t-th order approximate quotient Q̃t is then obtained as:

Q̃t = 2ea−eb × a
b
= 2ea−eb × a× Rt(b). (8)

Subsequently, we get two quotients, Q and Q̃t. The sum of Q and Q̃t is the final
quotient Q̃r

t of the proposed approximate divider.
Table 1 shows the result of 190/11 and the error of SAADI and ASAD-RD. In the

multiplicative division of each divider, the divisor B is 11, and b is 0.68750. Therefore,
the initial normalization and two’s complement conversion produce |x| = 0.31250. Since
the first iteration, the approximate reciprocal R̃1(b) is 1.31250. In the case of SAADI,
the dividend A is 190, and the quotient Q̃1 is 15.5000, which is the approximate quotient of
SAADI. By contrast, in the case of ASAD-RD, because restoring division was executed first,
dividend A becomes three. Therefore, the quotient Q̃1 of ASAD-RD is 0.1250.

Table 1. Comparison of the 190/11 division for each divider for 8 bits. ASAD-RD, accuracy scalable
approximate divider based on restoring division.

Iteration Count |x|t Rt(b) SAADI [14] ASAD-RD

t = 1 0.31250 1.31250 15.5000 (10.26%) 17.1250 (0.86%)
t = 2 0.09766 1.40265 16.6250 (3.75%) 17.2500 (0.13%)
t = 3 0.02930 1.43750 17.0000 (1.58%) 17.2500 (0.13%)
t = 4 0.00782 1.44531 17.1250 (0.86%) 17.2500 (0.13%)
t = 5 0.00195 1.44531 17.1250 (0.86%) 17.2500 (0.13%)

After multiplicative division, adding the restoring division quotient Q to the output
of the multiplicative division quotient Q̃1 provides the result of 190/11 by ASAD-RD.
Therefore, the final quotient of ASAD-RD Q̃r

1 is 17 + 0.1250 = 17.1250. The exact quotient is
17.2727· · ·; thus, the error rate of ASAD-RD is 0.86%. By contrast, the error rate of SAADI
is 10.26%. In the second iteration, R̃2(b) and the final quotient of each divider are increased,
thus reducing the error rate of SAADI from 10.26% to 3.75% and the error rate of ASAD-RD
from 0.86% to 0.13%. However, in more than three iterations, there is no change in the error
rate of ASAD-RD because Q̃r

t has already converged. As t increases, |x|t decreases. If |x|t

is zero after being truncated from 2n to n bits, |x|t will have no effect on the value of Q̃r
t .

Then, Q̃r
t is converged. Thus, the maximum approximate quotient of 190/11 achieved by

ASAD-RD is 17.25000 with an error rate of 0.13%. In SAADI, the quotient is converged to
17.1250 with an error rate of 0.86% in four iterations.

Comparing the final quotient of SAADI and ASAD-RD shows that there are differ-
ences in the 190/11 division operation. Because restoring division is performed before
multiplicative division, the quotient gets a compensated initial value. Thus, the quotient of
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ASAD-RD has a lower error rate than SAADI for each cycle iteration. Restoring division
before the multiplicative division increases the maximum accuracy and reduces the number
of cycle iterations for maximum accuracy. More analysis regarding this is provided in
Section 4.

3.2. Hardware Architecture

Figure 1 shows the hardware architecture for the restoring division of ASAD-RD,
and Figure 2 shows the hardware architecture for the multiplicative division of ASAD-
RD. Figure 3 shows the hardware architecture of SAADI. Except for Q and one adder,
whose output is the final quotient Q̃r

t in the multiplicative division part of ASAD-RD,
the hardware architectures of ASAD-RD and SAADI are similar. The proposed design
consists of a restoring division part and a multiplicative part. In the restoring division part,
if the remainder R, whose initial value is zero, divisor M, and dividend Q are the inputs of
ASAD-RD, R and Q are combined as RQ and are shifted one bit left. Subsequently, most
n bits of RQ become R. The most significant bit (MSB) of the R−M operation result is
the selector of the two multiplexers. If the selector is one, the output of the multiplexers
is RQ, and if the selector is zero, (R − M)Q and one are the outputs. The architecture
consists of a recursive structure in which the output of each multiplexer is returned to its
input. This process is repeated for the number of bits of the input. When the restoring
division is performed through this process, R, Q, and B are obtained as outputs, and the
remainder R and quotient Q have different values from the initial values. However, B
receives the value of M, and it remains the initial value. After the restoring division, R and
B become the inputs of multiplicative division as a dividend A and divisor B, respectively;
in this process, the dividend A gets the value of R. Furthermore, Q is stored and then
combined with the results of the multiplicative division to provide the final quotient Q̃r

t .
This multiplicative division process is the same as the previous design of SAADI. However,
for the same operation, the input and output of the multiplicative division are different.
Consequently, the existence of the restoring division provides different outputs from the
previous design for the same division. Major hardware components for ASAD-RD include
one 2n-bit barrel shifter, two n-bit adders, and two 2n bit two to one multiplexers more
than those of SAADI. Therefore, ASAD-RD needs as much area as for these components
as SAADI, and it is expected that ASAD-RD will consume more power and energy for
the same division. The analysis of the power consumption and energy is provided in
Section 4.3.

Figure 1. Hardware architecture of the restoring division of the proposed ASAD-RD.
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Figure 2. Hardware architecture of the multiplicative division of the proposed ASAD-RD.

Figure 3. Hardware architecture of SAADI [14].

3.3. Error Compensation

In this section, we analyze the errors of SAADI and how the errors can be compensated
for in our divider design. The loss of accuracy in SAADI is caused by the following factors:

1. ε1: The input operands A and B are truncated to n bits during normalization
2. ε2 : The approximate reciprocal R̃t(b) is the sum of a limited number of |x|i terms
3. ε3: Each |x|i term is computed using an approximate multiplier that truncates 2n bits

to n bits
4. ε4: The approximate reciprocal R̃t(b) is truncated from n + 2 bits to n bits before

being multiplied by a, and the result is truncated to n bits.

The sign of ε1 is input-dependent. Truncating A contributes to negative factors of ε1
because the truncation results in a smaller dividend, while truncating B has the reverse
effect because a smaller divisor produces a larger quotient. The error due to a finite-order
approximation (ε2) is the runtime-adjustable error factor that we exploit for the trade-off of
accuracy and latency such that:

ε2 = R̃t(b)− R(b) = −
∞

∑
i=t+1

|x|i = −|x|t+1 − |x|t+2 − · · ·. (9)

Note that ε2 is always negative, and the magnitude decreases as t increases. Because of
the accuracy loss in the multiplier (ε3), |x|i eventually becomes zero within n cycles. Therefore,
the effective range of t for the accuracy-latency trade-off is 1 ≤ t ≤ n− 1, considering one
additional cycle at the end for a× R̃t(b). The error induced by the truncation in the multiplier
and the accumulator (ε3 and ε4) is always negative because it results in an under-approximated
reciprocal and thus an under-approximated quotient [14].

We attempted to compensate SAADI for its approximate error by adding restor-
ing division to the front of SAADI. This approach can reduce the size of the input of
SAADI. A smaller input reduces the truncation error that occurs during normalization,
which improves the accuracy by reducing the effect of ε1 on the approximate division re-
sults. Because restoring division is performed before the multiplicative division, the initial
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errors of division improve. Thus, the iterations of the approximation process for target
accuracy will be reduced. This reduces the number of |x|i terms. Subsequently, ε3 reduces.
In the maximum iteration of the approximation process for the maximum accuracy, as the
effect of error factors decreases, a more accurate division is possible beyond the accuracy
limit of SAADI. The next section is followed by a performance comparison analysis of the
approximate divider with the addition of the restoring division.

4. Comparison and Analysis

We used Intel Quartus Prime Lite tool ver. 18.1 [20] to implement SAADI and ASAD-
RD with Verilog hardware description language (HDL) and to evaluate the dividers from
the perspective of the trade-off of accuracy, latency, and power consumption. A comparison
of our design with that of SAADI is as follows:

• Average cycle iteration counts for maximum accuracy.
• Mean absolute error (MAE) of SAADI and ASAD-RD.
• Power consumption and energy efficiency.
• Required cycle iteration counts for target accuracy.

4.1. Previous Approximate Dividers

Table 2 shows the MAE and power consumption of the previous single cycle designs.
AAXD has an MAE of 0.18% at a maximum accuracy level of 16. PLApp also has an
MAE of 0.18% at the maximum accuracy level (8,8). On the other hand, TruncApp and
SEERAD provide accuracies of 4.3% and 2.42%, respectively, when the accuracy level is
four. Compared to TruncApp and SEERAD, AAXD and PLApp appear to have higher
accuracy limits. TruncApp and AAXD result in higher accuracy scalability than the others.
However, the energy consumption of AAXD at maximum accuracy is significantly higher
than that of other dividers. These dividers can provide dynamic accuracy scalability by
parameter changes. However, they do not have dynamic accuracy scalability at runtime
because the accuracy is determined at design-time. Therefore, the following sections mainly
deal with comparisons with SAADI, which has dynamic quality scalability at runtime.

Table 2. Comparison of previously proposed approximate dividers.

Parameters Dividers Cycle MAE (%) Power (mW) Energy (nJ)

6 AAXD 1 6.61 0.5 1.15
10 AAXD 1 1.52 1.02 4.29
16 AAXD 1 0.18 2.31 21.02

2, 4 PLApp 1 2.87 0.89 1.13
4, 5 PLApp 1 1.42 1.15 1.89
8, 8 PLApp 1 0.18 2.86 7.21

3 TruncApp 1 10.1 0.56 0.47
4 TruncApp 1 4.3 0.8 0.84

3 SEERAD 1 4.66 2.12 1.69
4 SEERAD 1 2.42 7.53 8.06

4.2. Accuracy and Latency

In this section, we analyze the errors of the previous design and detail how the errors
can be compensated to use the proposed design. Within the range, we first evaluate both
dividers for varying runtime parameters with 500,000 random combinations of dividends
and divisors. For a fair comparison, the same combinations are supplied to both dividers.
As described in Section 3.1, the design parameters of the dividers are n i.e., the number of bits
of operands, and t i.e., the cycle iteration count for reciprocal approximation.

Figure 4 shows the average iteration counts of SAADI and ASAD-RD required to
reach the maximum accuracy for n = [4, 8, 12, 16]. In both dividers, the maximum number
of the effective iteration counts for improved accuracy is n− 1. The average number of
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iteration counts to reach the maximum accuracy is less than n/2 for SAADI. For ASAD-
RD, it is approximately 0.5 lower than the value for SAADI. In other words, ASAD-RD
has the benefit of reducing the iteration count in the same n. Therefore, ASAD-RD can
offset the additional latency for maximum accuracy due to the extended hardware for
restoring division.

Figure 4. Average iteration count for maximum accuracy for a varying number of bits.

Figure 5 shows the variation of MAE of both dividers after varying n and the iteration
count using the log scale. As n is increased, not only the maximum accuracy, but also the
speed of improvement increases. For all terms with the same parameter, the proposed
design obtains a lower MAE than the previous design. Therefore, ASAD-RD can obtain
more accurate results for the same operation. The relation between reduced MAE and
energy efficiency is discussed in the following section.

Figure 5. MAE for varying numbers of bits and iteration counts in SAADI and ASAD-RD.

4.3. Power Consumption

Using the Quartus power analyzer tool [20], we measured the power consumption of
the designed models. We adopted the power consumption per cycle as the basic unit for
comparison with the previous design.

Table 3 shows the minimum and maximum MAE and power consumption of the first
cycle of each divider using n = [4, 8, 12, 16]. For every n, ASAD-RD exhibits an approxi-
mately 40% to 50% lower MAE than SAADI. Although ASAD-RD consumes 4.3% to 4.9%
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more power than SAADI under the same conditions, the additional power consumption is
due to the added division process compared with the previous design, in which division
occurs only once. Thus, the more the total power consumption due to the increase of
cycle iterations, the lower the percentage of additional power consumption in the total.
As an example, for the 8 bit division, when only one iteration cycle is performed, the ad-
ditional power consumption from the added process accounts for 4% of the total power
consumption. However, for four iteration cycles, the rate is only 1%.

Table 3. Comparison of MAE and power consumption for a varying number of bits.

Bits Divider Cycles MAE (%) Power (mW)

4

SAADI Min 1 19.24 0.90
Max 3 11.83

ASAD-RD Min 1 9.33 0.94
Max 3 6.74

8

SAADI Min 1 9.22 1.41
Max 7 1.23

ASAD-RD Min 1 4.78 1.47
Max 7 0.77

12

SAADI Min 1 8.36 2.06
Max 11 0.108

ASAD-RD Min 1 4.37 2.15
Max 11 0.066

16

SAADI Min 1 8.33 2.67
Max 15 0.008

ASAD-RD Min 1 4.39 2.80
Max 15 0.005

According to Section 4.2, the average number of iterations for maximum accuracy
is less than n/2. Then, the average number of iterations of ASAD-RD is approximately
0.5 lower than the previous design. As a result, with the same parameters, the maxi-
mum accuracy of ASAD-RD is not only higher than that of the previous design, but also
the number of iterations for maximum accuracy is lower. Lower iterations save power,
and the amount saved is greater than the additional power consumption due to additional
hardware. Therefore, ASAD-RD has advantages over SAADI in power or performance.

Table 4 shows how many iteration counts are required for each divider to reach the
target accuracy in n = [4, 8, 12, 16] and the required energy. To compare ASAD-RD with
the previous design from the viewpoint of energy, we expressed energy as the number of
cycles to reach the target accuracy and the power consumption per cycle. Target accuracy
that cannot be achieved due to the divider design limitation is left blank. For the same
target accuracy, ASAD-RD, in most cases, performs one to two fewer iterations than SAADI.
The proposed design and the previous design have the same cycle structure, and the
proposed design has fewer iteration counts. Consequently, ASAD-RD consumes less
energy than SAADI for the same target accuracy.

Compared to the previous designs in Table 2, dynamically scalable dividers are multi-
cycle, which consume relatively more power and energy than the single-cycle designs. How-
ever, the previous designs have low accuracy limits and a short range of accuracy scalability.
This may result in a lack of performance if the accuracy requirements become strict at runtime.
In this case, a multi-cycle divider, as proposed in this study, with large accuracy scalability
and a high accuracy limit, which can be expanded at run-time, can be useful.

SAADI has a larger range of dynamic scalable accuracy because of the higher gap
between the maximum MAE and minimum MAE. By contrast, ASAD-RD has a smaller
range of dynamic scalable accuracy, but can reach a higher target accuracy at the same
divider width. For instance, for the 8 bit divider, SAADI cannot reach a target accuracy of
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99%, but ASAD-RD can. Thus, the proposed design uses less energy at the same divider
width for target accuracy and achieves higher target accuracy with a smaller divider width.

Table 4. Comparison of required cycles and energy for target accuracy in SAADI and ASAD-RD for a varying number
of bits.

SAADI [14] ASAD-RD
Number of Bits (n) 4 8 12 16 4 8 12 16

Target accuracy: 88% Cycles 3 1 1 1 1 1 1 1
Energy (mW) 2.70 1.41 2.06 2.67 0.94 1.47 2.15 2.80

Target accuracy: 91% Cycles 2 2 2 3 1 1 1
Energy (mW) 2.42 4.12 5.34 2.74 1.47 2.15 2.80

Target accuracy: 95% Cycles 2 2 2 1 1 1
Energy (mW) 2.42 4.12 5.34 1.47 2.15 2.80

Target accuracy: 98% Cycles 4 3 3 3 2 2
Energy (mW) 5.64 6.18 8.01 4.29 4.21 5.47

Target accuracy: 99% Cycles 4 4 4 3 3
Energy (mW) 8.24 10.58 5.70 6.27 8.14

Target accuracy: 99.80% Cycles 6 6 5 5
Energy (mW) 12.36 16.02 10.39 13.48

Target accuracy: 99.99% Cycles 11 9
Energy (mW) 29.37 24.16

5. Conclusions

Today, energy efficiency is a very important factor in computing and signal processing.
This study presents an energy quality scalable approximate divider called ASAD-RD to
improve the energy efficiency of systems. The proposed design is based on SAADI and
the restoring division algorithm. It is an approximate divider that can control the accuracy
and latency by repeating the process of approximating the reciprocal of dividends and has
better performance than the previous design. It has been demonstrated that the number of
iterations can be set to create a trade-off between latency and accuracy; thus, the required
accuracy for the application can be met. For the 8 bit division, SAADI has an average
accuracy of 90.78% to 98.77%; however, ASAD-RD can improve the accuracy to 95.22%
to 99.23% and hardly requires additional power consumption. However, for 99% target
accuracy, SAADI requires an over 12 bit division. However, ASAD-RD can achieve 99%
target accuracy using just an 8 bit division. Additionally, for the same target accuracy,
ASAD-RD requires fewer cycle iterations than SAADI. Thus, ASAD-RD uses lower energy
than SAADI and can operate as an energy-efficient approximate divider.
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Abbreviations
MSB Most significant bit
MAE Mean absolute error
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