A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies
Abstract
:1. Introduction
2. Design of the Compact Component
2.1. The Complemantary Six-Branch Spiral Resonator
2.2. Multi-Band Rejection and 6-Bit Frequency Code
3. Experimental Results
4. Discussion
4.1. Resolution and Sensitivity
4.2. Applicability in the MS Circuit
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Technol. 1999, 47, 2075. [Google Scholar] [CrossRef] [Green Version]
- Schurig, D.; Mock, J.J.; Smith, D.R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 2006, 88, 041109. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ji, C.; Mock, J.J.; Chin, J.Y.; Cui, T.J.; Smith, D.R. Broadband ground-plane cloak. Science 2009, 323, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Cui, T.J.; Huang, D.; Zhao, B.; Smith, D.R. Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Phys. Rev. E 2007, 76, 026606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelby, R.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Mock, J.J.; Starr, A.F.; Schurig, D. Gradient index metamaterials. Phys. Rev. E 2005, 71, 036609. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.F.; Cui, T.J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 2010, 1, 124. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.F.; Cui, T.J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 2010, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Baena, J.D.; Bonache, J.; Martin, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.A.G. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microw. Theory Technol. 2005, 53, 1451. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Baena, J.D.; Bonache, J.; Beruete, M.; Marques, R.; Martin, F.; Sorolla, M. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 2004, 93, 197401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surface as a bridge linking propagating waves and surface waves. Nat. Mater. 2012, 11, 426. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials, and programmable metamaterials. Light 2014, 3, e218. [Google Scholar] [CrossRef]
- Cui, T.J.; Liu, S.; Li, L. Information entropy of coding metasurface. Light 2016, 5, e16172. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.Q.; Shao, R.W.; Dai, J.Y.; Cheng, Q.; Castaldi, G.; Galdi, V.; Cui, T.J. Breaking reciprocity with space-time-coding digital metasurfaces. Adv. Mater. 2019, 31, 1904069. [Google Scholar] [CrossRef]
- Dai, J.Y.; Tang, W.K.; Zhao, J.; Li, X.; Cheng, Q.; Ke, J.C.; Chen, M.Z.; Jin, S.; Cui, T.J. High-speed wireless communications through a simplified architecture based on time-domain digital coding metasurface. Adv. Mater. Tech. 2019, 4, 1900044. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 21–37. [Google Scholar]
- Pendry, J.B.; Martin-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847. [Google Scholar] [CrossRef]
- García-Vidal, F.J.; Martín-Moreno, L.; Pendry, J.B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A 2005, 7, S97–S101. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Dominguez, A.I.; Martin-Moreno, L.; Garcia-Vidal, F.J.; Andrews, S.R.; Maier, S.A. Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J. Sel. Top. Quant. Electron. 2008, 14, 1515. [Google Scholar] [CrossRef] [Green Version]
- Lockyear, M.J.; Hibbins, A.P.; Sambles, J.R. Microwave surface-plasmon-like modes on thin metamaterials. Phys. Rev. Lett. 2009, 102, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Capasso, F. Wavefront engineering for mid-infrared and terahertz quantum cascade lasers [Invited]. J. Opt. Soc. Am. B 2010, 27, B18–B35. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264. [Google Scholar] [CrossRef] [PubMed]
- Rusina, A.; Durach, M.; Stockman, M.I. Theory of spoof plasmons in real metals. Appl. Phys. A 2010, 100, 375. [Google Scholar] [CrossRef]
- Gric, T. Spoof plasmons in corrugated transparent conducting oxides. J. Electromag. Waves Appl. 2016, 30, 721. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T.J.; Martin-Canob, D.; Garcia-Vidal, F.J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA 2013, 110, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Cui, T.J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photon. Rev. 2014, 8, 137. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhang, Q.; Liu, J.F.; Tang, W.; Fan, Y.; Cui, T.J. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci. Rep. 2016, 6, 23396. [Google Scholar] [CrossRef]
- Zhang, H.C.; Cui, T.J.; Zhang, Q.; Fan, Y.; Fu, X. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2015, 2, 1333–1340. [Google Scholar] [CrossRef]
- Zhang, H.C.; Fan, Y.; Guo, J.; Fu, X.; Li, L.; Qian, C.; Cui, T.J. Secondharmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics 2016, 3, 139. [Google Scholar] [CrossRef]
- Wang, M.; Ma, H.F.; Tang, W.X.; Zhang, H.C.; Wang, Z.X.; Cui, T.J. Surface plasmon polaritons to reach reconfigurable plasmonic devices. Adv. Mater. Tech. 2019, 4, 1800603. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, H.; Feng, G.Y.; Apriyana, A.A.A.; Fu, X.J.; Cui, T.J. An energy-efficient and low-crosstalk sub-THz I/O by surface plasmonic polariton interconnect in CMOS. IEEE Trans. Microw. Theory Tech. 2017, 65, 2762–2774. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhang, L.P.; He, P.H.; Xu, J.; Qian, C.; Garcia-Vidal, F.J.; Cui, T.J. A plasmonic route for integrated wireless communication of sub-diffraction-limited signals. Light 2020, 9, 113. [Google Scholar] [CrossRef]
- Ma, H.F.; Shen, X.P.; Cheng, Q.; Jiang, W.X.; Cui, T.J. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 2014, 8, 146. [Google Scholar] [CrossRef]
- Kianinejad, A.; Chen, Z.N.; Qiu, C. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans. Microw. Theory Tech. 2015, 63, 1817. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 2nd ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2006; pp. 422–443. [Google Scholar]
- Gao, Z.; Wu, L.; Gao, F.; Luo, Y.; Zhang, B.L. Spoof plasmonics: From metamaterial concept to topological description. Adv. Mater. 2018, 30, 1706683. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, G.; Sun, L.; Lin, F. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl. Phys. Lett. 2015, 106, 021104. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, H.; Zhang, H.C.; Yang, C.; Cui, T.J. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci. Rep. 2015, 5, 14853. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Wang, B.; Cappelli, M.A. Plasma modification of spoof plasmon propagation along metamaterial-air interfaces. Appl. Phys. Lett. 2017, 111, 261105. [Google Scholar] [CrossRef]
- Joy, S.R.; Erementchouk, M.; Yu, H.; Mazumder, P. Spoof plasmon interconnects-communications beyond RC limit. IEEE Trans. Commun. 2019, 67, 599. [Google Scholar] [CrossRef]
- Zhang, X.R.; Tang, W.X.; Zhang, H.C.; Xu, J.; Bai, G.D.; Liu, J.F.; Cui, T.J. A spoof surface plasmon transmission line loaded with varactors and short-circuit stubs and its application in Wilkinson power dividers. Adv. Mater. Technol. 2018, 3, 1800046. [Google Scholar] [CrossRef]
- Wang, M.; Tang, M.; Zhang, H.C.; Zhang, L.P.; Cui, T.J.; Mao, J. Crosstalk noise suppression between single and differential transmission lines using spoof surface plasmon polaritons. IEEE Trans. Compon. Packg. Manuf. Technol. 2020, 10, 1367. [Google Scholar] [CrossRef]
- Baena, J.D.; Marques, R.; Medina, F.; Martel, M. Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 2004, 69, 14402. [Google Scholar] [CrossRef]
- Cui, T.J.; Tang, W.X.; Yang, X.M.; Mei, Z.L.; Jiang, W.X. Metamaterials-Beyond Crystals, Noncrystals, and Quasicrystals, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 29–42. [Google Scholar]
- Zhang, X.R.; Zhang, H.C.; Tang, W.X.; Liu, J.F.; Fang, Z.; Wu, J.W.; Cui, T.J. Loss analysis and engineering of spoof surface plasmons based on circuit topology. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3204. [Google Scholar] [CrossRef]
- Tang, W.X.; Zhang, H.C.; Liu, J.F.; Xu, J.; Cui, T.J. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line. Sci. Rep. 2017, 7, 41077. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value (mm) | Description |
---|---|---|
L | 30.23 | Size of the bending grounded SSPP TL (transmission line) |
W | 5 | Width of the microstrip line at the input/output |
p | 3 | Period length of the grounded SSPP TL |
d | 2.5 | Depth of the comb |
r | 5.7 | Radius of the spiral |
w | 0.3 | Width of the branch |
g | 0.3 | Width of the gap between neighboring branches |
Spiral Type | Center Frequency of Band Rejection (GHz) | Valley Value of S21 (dB) |
---|---|---|
1 branch | 4.06 | −22.17 |
2 branches | 4.06, 4.51 | −21.77, −17.15 |
3 branches | 3.60, 4.06, 4.51 | −12.33, −22.58, −19.66 |
4 branches | 3.58, 4.12, 4.48, 4.95 | −6.44, −20.58, −23.45, −15.08 |
5 branches | 3.58, 4.09, 4.47, 4.85, 5.52 | −6.44, −15.77, −27.88, −20.12, −10.46 |
6 branches | 3.60, 4.06, 4.50, 4.89, 5.42, 6.10 | −7.27, −17.27, −25.78, −22.03, −12.92, −5.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Hua, Y.; Cui, T.J. A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies. Electronics 2021, 10, 4. https://doi.org/10.3390/electronics10010004
Tang W, Hua Y, Cui TJ. A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies. Electronics. 2021; 10(1):4. https://doi.org/10.3390/electronics10010004
Chicago/Turabian StyleTang, Wenxuan, Yujie Hua, and Tie Jun Cui. 2021. "A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies" Electronics 10, no. 1: 4. https://doi.org/10.3390/electronics10010004
APA StyleTang, W., Hua, Y., & Cui, T. J. (2021). A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies. Electronics, 10(1), 4. https://doi.org/10.3390/electronics10010004