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Abstract: Plasmonic circuits, which support the propagation of spoof surface plasmon polaritons
(SSPPs) at microwave frequencies, have been developed in recent years as an expected candidate
for future highly integrated systems, mainly because of their extraordinary field confinements and
sub-wavelength resolution. On the other hand, artificial electromagnetic (EM) resonators are widely
adopted in metamaterial design for flexible resonance and band gaps. In this work, an electrically
small complementary spiral, which is made up of six helix branches sculptured in the ground,
is proposed to achieve independent resonances at six different frequency bands. Combined with
the grounded corrugated transmission line (TL), the proposed component can provide designable
multi-band rejection, and compose frequency coding circuits with a compact size (less than λ0/4).
The complementary spirals excited with the bending TL and the straight one are both investigated,
and independence band rejections and designed 6-bit coding sequences in the frequency spectrum are
demonstrated numerically and experimentally. Hence, it is concluded that such compact components
can be adopted to flexibly control the rejection of waves in multi-frequency bands, and benefits the
development of frequency-identification circuits and systems.

Keywords: band rejection; spoof surface plasmon polaritons; complementary resonator; compact
circuit; coding metamaterials

1. Introduction

Metamaterials have been developing dramatically since the end of the last century,
when Sir John Pendry et al. proposed the schemes of realizing negative permittivity (ε) and
permeability (µ) through arrays of resonant unit cells [1,2]. The electrically small unit cells,
such as the split ring resonators (SRRs), the electric-LC (ELC) resonators [3], and the
I-shaped structures [4], have been demonstrated as the composing “atoms” for the artificial
metamaterials. Such atoms respond to outer electromagnetic (EM) waves, and possess a real
part of permittivity (for electric resonance) or permeability (for magnetic resonance) that
follows the Lorentz model, and therefore can be flexibly designed to present the required
EM parameters from the point of view of effective medium theory [5]. Bulky metamaterials
have been realized using dielectric or metallic resonating unit cells assembled periodically,
and attractive applications such as invisible cloaking and gradient index lenses have
been delivered [6–10]. Furthermore, the complementary SRR (CSRR), which is a metallic
screen with the negative image of SRR, was developed as the dual counterpart of SRR [11].
Based on the Babinet principle, there is a duality for the complementary structure [12].
For example, when the SRR performs as a magnetic resonator, the CSRR performs as an
electric one. The complementary resonators are especially applicable in planar circuits,
as they can be sculptured in the ground without binging in extra space.
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In recent years, metasurfaces, the planar version of metamaterials, have received great
interest for their low profile, novel functionality, and easy integration [13,14]. In addition,
instead of using effective medium parameters to describe metamaterials, digitally coding
metamaterials have been developed to build a novel connection between the digital world
and the physical one [15,16]. The incident EM waves can be tailored digitally by estab-
lishing different coding sequences composed of “0” and “1”, which represent phase or
amplitude information in a unit or unit cells. Phase codes and amplitude codes have been
adopted in digital metasurfaces to perform new-concept EM information manipulations
and processing [17,18].

Most recently, a special type of two-dimensional (2D) metamaterials, the plasmonic
metamaterials, were created to support the propagation of spoof surface plasmon polari-
tons (SSPPs). The surface plasmon polaritons (SPPs) are highly localized surface waves
existing on the interface between two media with opposite permittivity [19]. They do
not exist in nature below the optical frequency. At terahertz and microwave frequen-
cies, however, decorations such as periodic hollows and corrugations are added on metal
surfaces to pave a way for “spoof” surface plasmon polaritons [20]. Similar to the SPPs,
the SSPPs possess remarkable properties such as extraordinary field confinements and
sub-wavelength resolution. The SSPPs have been realized and verified on structured metal
surfaces, corrugated semiconductors, corrugated transparent conducting oxides, et al.,
for different purpose [21–27]. For microwave circuits, a type of planar SSPP waveguide,
the SSPP transmission lines (TLs) printed on ultrathin dielectric substrates, were delivered
and investigated [28]. Thanks to the above-mentioned unique properties, the SSPP TLs
exhibit controllable dispersion characteristics, strong field restriction, depressed mutual
coupling, low cross talks, and low radiation loss [29–32], and hence have great potentials
in integrated circuits and highly compact systems [33–35].

In the circuit, the SSPP mode is supported in single-conductor TL, where mode con-
version from guided-wave mode (e.g., the quasi-transverse electromagnetic (TEM) mode in
the coplanar waveguide (CPW) or the microstrip (MS) line) is necessary [36,37]. In addition,
considering the environment in compact planar systems, e.g., in the packaged integrated
circuits and in the CMOS, metallic ground exists when needed. The grounded SSPP TL
includes the ground plane on the bottom of the dielectric together with the corrugated
strip on the top, and therefore is the same as the loaded microstrip line in microwaves [38].
We denote that since the periodic corrugation is subwavelength and the SSPP TL is derived
from corrugated surfaces by a metamaterial that hosts an effective plasma frequency, it can
also be analyzed from the point of view of metamaterials [39]. Due to the existence of the
ground plane, the EM field is severely restricted as that of the quasi-TEM mode; however,
a nonnegligible portion of the electric field is still maintained between neighboring corru-
gations, resulting in a longitudinal electric field in the propagation direction and energy
localization in the transverse plane [40,41]. In view of this, the grounded corrugated TLs
support the hybrid mode containing the quasi-TEM mode and the SSPP one, and can be
adopted in plasmonic circuits [40–43]. They are well compatible for integrated circuits,
and have potentials for bringing in compact components [44] and depressing crosstalks [45].

In this paper, we firstly propose a sub-wavelength scaled complementary resonator,
which is a metallic screen with the negative image of a central-symmetry spiral which
includes six helix branches. By embedding different gaps in different branches, we are
able to create six different resonances independently. After that, we design a compact
section of grounded SSPP TL and added the complementary resonator on the ground right
below the TL. We analyze and demonstrate that each branch can create a band rejection
independently, and the resonator in total can create six band rejections. The multi-band
rejection could also be considered as a kind of digital coding in the frequency domain.
In other words, the proposed complementary spiral can produce 6-bit frequency code for
the plasmonic circuits and systems whilst occupying a space sized less than λ0/4♦λ0/4.
In the end, coding components excited by the bending SSPP TL and the straight SSPP TL
are designed and fabricated, and multi-band rejections and different coding sequences
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are demonstrated in experiment. Discussions are performed and conclusions are drawn
according to the results.

2. Design of the Compact Component
2.1. The Complemantary Six-Branch Spiral Resonator

For an electric or magnetic resonator, induced EM fields are aroused by outer EM
waves at a specific frequency, and resonance happens accordingly. The sub-wavelength
scaled cut-wire and the I-shaped structure (in Figure 1a) are the firstly used electric res-
onators for metamaterials [4]. When the electric field of an incident wave is parallel to
the longitudinal wire, induced currents flow on the wire and electric resonance therefore
happens. On the other hand, the SRR (in Figure 1b) is the firstly proposed magnetic
resonator [2]. When the magnetic field of incident wave is normal to the surface of
the SRR, induced currents flow in the ring and magnetic resonance therefore happens.
When the resonance is strong enough, negative real part of permittivity or permeability
appears according to the Lorentz–Drude dispersion curve of materials [5]. In addition,
other kinds of resonators, such as the ELC resonator [3] (in Figure 1c) and the spiral
resonator (in Figure 1d) [46], have also been conceived and demonstrated.
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Figure 1. Several types of the electromagnetic (EM) resonators for metamaterials. (a) The I-shaped
resonator. (b) The split ring resonator. (c) The electric-LC resonator. (d) The spiral resonator.
The dashed arrowed lines indicate the resonating currents.

It is noted that the electric resonance and the magnetic one may happen in the same
resonator [47]. For example, a spiral serves as a magnetic resonator when the external
magnetic field is aligned along the axes of the “loop” of the induced currents, or an electric
one when the external electric field is aligned along a section of the induced currents.
However, the above-mentioned structures respond to the outer EM waves as single res-
onators. Although high-order resonances exist in the higher spectrum, their frequencies are
usually several times of that for the fundamental mode. When the fundamental resonance
is tuned through the geometric parameters, the higher ones change as well. In other words,
frequencies of different orders of resonance are usually related to each other, and one is not
able to independently tune a single resonance in the spectrum.
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In view of this, we present a central-symmetry spiral which includes six helix branches
(as is given in Figure 2a). The six branches can respond to the outer EM wave and res-
onate all together, as well as independently. Furthermore, if different branches are cut
at different lengths, the lengths of induced currents become different as well, and each
branch resonates at a unique frequency. In this way, one is able to create six different
and independently controlled resonances using a single sub-wavelength spiral. On the
other hand, the counterpart of the six-branch spiral, the complementary six-branch spiral
as shown in Figure 2b, also provides six independent resonances. It is actually a metallic
screen with the negative image of the spiral. According to the Babinet principle, there is
a duality for the complementary structure, and the electric and magnetic fields of the
resonators are interchanged [12].
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Figure 2. (a) The six-branch spiral resonator. (b) The complementary six-branch spiral resonator. (c) (Top view) The bending
spoof surface plasmon polaritons (SSPP) transmission line. (d) (Perspective top view) The bending SSPP transmission line
with the spiral resonator sculptured in the ground. Substrate is perspective in (d). The metal is illustrated in yellow, and the
substrate in grey.

The proposed six-branch spiral resonators can be excited through the coupling of
EM fields in transmission lines. In particular, the complementary spiral resonator is
extremely applicable in planar circuits because it can be sculptured in the ground without
bringing in extra space. In this work, we choose to use the grounded corrugated TL to
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excite the resonator. The reason why we did not use the microstrip line is given in the
section of Discussion. To demonstrate the merit of field localization of SSPPs, both straight
grounded corrugated TL and the bending one are designed, among which the bending one
is depicted in Figure 2c for detail. The yellow part represents the copper strip, and the grey
one presents the dielectric substrate of Rogers 5880 with permittivity of 2.2, loss tangent
of 0.0009, and thickness of 1.575 mm. The complementary spiral, whose diameter is
11.4 mm, is located right below the bending part (please refer to the perspective top view in
Figure 2d). Input and output are located in Section 1, where microstrip lines are connected
to the grounded corrugated TL through gradient transition, and vice versa [40]. Section 2
is the grounded SSPP TL composed of comb-shaped unit cells. The characteristics of the
bending TL are mainly determined by geometric dimensions, such as the periodic length
p and the depth of the comb d (as denoted in Figure 2), and the modified parameters are
listed in Table 1.

Table 1. Dimensions in Figure 2.

Parameter Value (mm) Description

L 30.23 Size of the bending grounded SSPP TL (transmission line)
W 5 Width of the microstrip line at the input/output
p 3 Period length of the grounded SSPP TL
d 2.5 Depth of the comb
r 5.7 Radius of the spiral
w 0.3 Width of the branch
g 0.3 Width of the gap between neighboring branches

The dispersion characteristics are investigated during the design of the grounded
SSPP TL. A comb-shaped unit cell in the free space (with the substrate and the ground)
is modeled in the commercial software of CST Microwave Studio with a pair of Floquet
periodic boundaries set in the propagation direction. The real part of the propagation
constant is calculated via an eigenfrequency solver. Dispersion curves of the grounded
SSPP TLs with different values of d are plotted in Figure 3a and compared with that of
the microstrip line. It is observed that as d increases from zero (which is the case for the
microstrip line), the dispersion curve gradually departs to the right side and the cut-off
frequency of the SSPPs decreases in the meantime. That is to say, the TEM wave in the
microstrip line is converted to the hybrid slow wave through the transition units with
gradient depths d. Thanks to the smooth transition, impedance matching and momentum
matching are realized to guarantee the efficiency. The imaginary part of the propagation
constant is also calculated for the TL, with d = 2.5 mm using the method based on circuit
topology [48], and the corresponding loss curve is plotted by the dashed black line in
Figure 3a. It is observed that the loss in the uniform corrugated TL (without bending
or transition sections) is pretty low below the cut-off frequency. In addition, it has also
been demonstrated that the grounded SSPP TL possesses low bending loss and radiation
loss [49]. Therefore, the bending SSPP TL without the complementary spiral in the ground,
which is 30.23 × 30.23 mm2 in total, possesses high transmission coefficient (S21) and low
reflection coefficient (S11) below 10 GHz, as is demonstrated in Figure 3b. We denote that
in this case the loss has mainly caused in the transitions and the bending section.
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2.2. Multi-Band Rejection and 6-Bit Frequency Code

When a metallic gap exists in the branch of the complementary spiral, the “gap” in
fact is a metallic block inserted in the hollowed-out branch. Induced currents in this branch
are blocked by it, and a corresponding resonance appears. For example, in the top left
picture in Figure 4, a gap (numbered #2) is added in one branch, and a resonance appears
at 4.06 GHz. Detailed distribution of the EM fields and currents at 4.06 GHz is depicted in
Figure 5. It is observed in Figure 5a that the EM energy is coupled from the corrugated
strip (located in the dashed blue line) to the spiral in the ground (located in the dashed
black line), and the electric field in the spiral is resonating. The magnitude of the electric
field in Figures 4 and 5b indicate that very limited energy is coupled to other branches.
Induced currents in the spiral are also depicted in Figure 5c, showing that the currents
terminate at the gap, and the resonance is excited accordingly.
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electric field. (c) (Top view) Distribution of currents in the resonator.
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When two gaps are added respectively in two different branches, as is illustrated in
the second column of Figure 4, two resonances appear at 4.06 and 4.51 GHz, corresponding
to the #2 and #3 gaps, respectively. It is observed that, for the 2-branch case, the magnitude
of the electric field at 4.06 GHz remains nearly unchanged when compared to that for
the 1-branch case, whilst at 4.51 GHz, a new resonance appears in the other branch.
Furthermore, when more gaps are added in different branches, more resonances are
detected at different frequencies. Figure 4 reveals that the resonance in one branch is not
influenced by other branches in terms of field distribution and resonance frequency. That is
to say, the complementary six-branch spiral can provide six independent resonances in
maximum. We denote that the gaps in Figure 4 are numbered from 1 to 6, where Gap
#1 is related to the resonance at the lowest frequency, and Gap #6 is related to that at the
highest frequency.

The six complementary spiral resonators listed in the first line of Figure 4 are adopted
on the bottom side of the bending SSPP TL and excited by the strong near field coupling.
Multi-band rejections are observed due to the existence of resonances. Figure 6 plots the
transmission coefficients for the six cases when gaps are added to one branch, two branches,
three branches, et al. The dashed black curve shows the simulated S21 for the case when
only one branch contains a gap (Gap #2), and a −22.17 dB band rejection is observed at
4.06 GHz. The blue curve with hollow circles contains two band rejections centered at
4.06 and 4.51 GHz, and the lowest transmission coefficients are −21.77 dB and −17.15 dB,
respectively. When there are three branches and more, the number of band rejections
increases accordingly. Center frequencies and valley values of the band rejections are listed
in Table 2 for details. It is remarkable that the center frequencies of band rejections are in
accordance with the resonance frequencies in Figure 4, proving that the band rejections are
indeed caused by the resonances in the branches. The rejections at 4.06, 4.50, and 4.89 GHz
have the valley value of S21 below −20 dB, whilst the other three rejections are also
significant enough to test. In addition, each branch is resonating in a specific frequency
that is determined by the position of its gap, and the resonance frequency for each branch
does not significantly shift when neighboring gaps appear or disappear. In other words,
the band rejections are independent of each other.
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Table 2. Band rejections with different types of complementary spiral. The spiral types are defined in Figure 4.

Spiral Type Center Frequency of Band Rejection (GHz) Valley Value of S21 (dB)

1 branch 4.06 −22.17
2 branches 4.06, 4.51 −21.77, −17.15
3 branches 3.60, 4.06, 4.51 −12.33, −22.58, −19.66
4 branches 3.58, 4.12, 4.48, 4.95 −6.44, −20.58, −23.45, −15.08
5 branches 3.58, 4.09, 4.47, 4.85, 5.52 −6.44, −15.77, −27.88, −20.12, −10.46
6 branches 3.60, 4.06, 4.50, 4.89, 5.42, 6.10 −7.27, −17.27, −25.78, −22.03, −12.92, −5.12

From the point of view of digital coding metamaterials, the multi-band rejection
can be adopted to realize a new type of frequency code, aside from the phase codes and
amplitude codes. Although the commonly defined frequency coding is the frequency-shift
keying (FSK), the band-pass property and band-rejection property in the frequency domain
can also be represented by “0”and “1” in binary, respectively. This kind of frequency
code has wide potentials in frequency-identification circuits and systems, such as the
radio frequency identification devices (RFIDs). The above designed complementary spiral
resonator is therefore applied to realize a compact 6-bit coding component, where each
branch is responsible for one bit. Band rejection at the lowest frequency (3.60 GHz in this
design) determines the highest bit of the coding sequence, whilst the one at the highest
frequency (6.10 GHz in this design) determines the lowest bit. In particular, “1” represents
the existence of the corresponding band rejection, and “0” represents the inexistence of the
corresponding band rejection. For example, for the 1-branch case, only the band rejection
at 4.06 GHz (which is the second lowest frequency) exists, and therefore its frequency code
is “010000”. Additionally, for the 3-branch case, there are three band rejections at 3.60, 4.06,
and 4.51 GHz, and the frequency code becomes “111000”. Some other examples of the
frequency code are presented in Figure 6 as well. Theoretically, a spiral with N branches
can create 2N frequency codes. On the other hand, when the transmission coefficient
of the SSPP circuit is tested, the type and geometry of the resonator in the ground can
be estimated.

3. Experimental Results

Prototypes of the above designed grounded SSPP TLs, including both the bending
and the straight ones, are fabricated, and the complementary spirals are sculptured on the
ground. Top views of the prototype are inserted in Figures 7 and 8, and the spirals are
located inside the dashed orange circles on the bottom side. Transmission coefficients are
measured using an Agilent vector network analyzer (VNA) and microwave cables and
SMA connectors are used to connect the input and output to the two ports of the VNA.
Four different complementary spirals with different coding sequences of 010101, 111111,
101001, and 101010 are adopted in the bending SSPP TL, and five different complementary
spirals with different coding sequences of 000000, 010000, 010100, 111100, and 111110 are
adopted in the straight SSPP TL in the measurement. We note here that, for example,
101001 is for the complementary spiral containing Gap #1, Gap #3, and Gap #6 that were
defined in the first line of Figure 4.

Band rejections are observed around 3.75, 4.13, 4.63, 5.07, 5.66, and 6.13 GHz in mea-
surement and presented in Figure 7. Compared with the center frequencies listed in Table 2,
the measured frequencies are a bit higher than the simulated ones. This blue shift may be
caused by the inaccuracy during fabrication and assembly. Nevertheless, the resonance in
each branch has been proven to be strong enough and independent of each other, and the
multi-band rejections are deep enough to be recognized and distinguished. Although the
center frequency of band rejection may vary slightly with different spirals, e.g., the center
frequency of the 4th band rejection is 5.07 GHz for the 010101 spiral but changes to 4.94 GHz
for the 111111 spiral, this band rejection is still recognizable. In view of this, the frequency
domain could be discretized and categorized into six rejection bands, as illustrated by the
grey blocks in Figure 7. When band rejection happens in a grey block, the corresponding
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bit is set to “1”, whilst when there is no band rejection in the grey block, the corresponding
bit is set to “0”. In this way, the four coding sequences have been correctly detected and
plotted in the frequency spectrum in Figure 7.
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The compact multi-band rejection and frequency coding component is also applicable
in the straight SSPP circuits, as is demonstrated in Figure 8. The circuit is 63 mm long
in total, including the microstrip lines at the input and output, the transition sections, and a
19.5 mm section of straight SSPP TL. Five coding sequences are designed and verified in
Figure 8. It is remarkable that the solid grey curve, which presents the 000000 code when
there is no gap in any spiral branch, is between −3 to −4 dB. The reduction of S21 is mainly
due to the influence of a dominant resonance at about 3.05 GHz (which is not plotted in
the figure). From the measured S21 curves, the five different coding sequences can be
recognized clearly and correctly.

4. Discussion
4.1. Resolution and Sensitivity

In the experiment, an example of the proposed 6-bit coding element has been verified.
Each resonance frequency is independently designable in accordance with the position of
the gap in each branch. In this design, the coordinate of the gap in one branch is defined
using the helix equation in the local coordinates whose origin is the center of the spiral as:

x = 1.8r cos(πr), y = 1.8r sin(πr), r =
θ

360◦ (in mm, 0 < θ < 1080
◦
). (1)

when θ increases from 0◦, the gap moves from the center of the spiral to the far end of the
branch, with the effective length of the branch and the resonating current in it increasing
from 0 accordingly. Figure 9a demonstrates that the resonance frequency of one branch
can be finely manipulated when θ in Equation (1) varies. Generally, the larger value of θ,
which indicates the longer resonating current, brings in the lower resonance frequency.
Another demonstration is carried out that if we fix five of the six gaps and slide the last one
(e.g., Gap #2), the resonance frequency on the flexible branch is also controlled smoothly
without influencing the resonances in other branches, as is shown in Figure 9b. Therefore,
we conclude that the six resonance frequencies can be finely and independently tuned.
In addition, it is also observed from Figure 9 that the higher-frequency resonance has the
lower quality factor. In other words, when a branch is cut off at the near end and the
induced current is short in length, the corresponding resonance is weak and the quality
factor is depressed.
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When the complementary spiral resonator departs from the TL, as is indicated in
Figure 10, the resonance frequencies remain nearly unchanged, but the quality factors of
the resonances decrease. It is due to the fact that the resonance of the spiral is excited by the
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EM fields in the TL, and most energy of the EM field is localized in a subwavelength scale
around the TL. In view of this, the proposed spiral resonator is sensitive to its position in
the circuit.
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In fact, the quality factor is vital to the maximum number of branches in one spiral
resonator, because a resonance with a low quality factor may not be recognized correctly in
the frequency domain. Increasing the length and width of branches, as well as decreasing
the thickness of the substrate, is helpful to enhance the resonance. Another limitation
to the maximum number of bit is the reliable widths of line and gap in the technique of
printed circuit board (PCB). As long as the fabrication precision is allowed, more and longer
branches can be included in one spiral to present more bits. However, when the branches
are located much too tightly, the EM field in one branch may excite the resonance in other
branches, and two or more branches will resonate together. Therefore, there may be a
tradeoff between the size of the spiral and the maximum number of bits. We predict that
higher bit density is achievable for this kind of coding component, and more investigation
is needed in the future work.

4.2. Applicability in the MS Circuit

The proposed complementary spiral resonator is also applicable in other types of
circuits provided it is effectively excited. For example, when the resonator is located right
below the straight MS line (please refer to the inset of Figure 11), the six resonances are
found again and the resonance frequencies are close to those given in Figure 10 when
the straight grounded SSPP TL is used. In view of this, we conclude that the resonant
performance of the complementary spiral resonator is independent with the SSPP structure.
However, propagating performance of the MS circuit decreases significantly when there
exists bending or protuberance because a big portion of energy radiates to the environment.
In Figure 11, it is observed that when the MS circuit contains a 90◦ bend, the EM field
in the TL cannot excite the resonator effectively, and as a result the six resonances start
to merge. In contrast, both the straight grounded SSPP TL and the bending one can
effectively excite the spiral with comparable intensity. In view of this, we remark that the
proposed component in the plasmonic circuit is especially suitable for integrated systems
with complicated environments and flexible layouts.
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5. Conclusions

In this work, we propose a complementary six-branch spiral resonator that is able to
provide independent and flexible resonance in each single branch. In this way, controllable
multi-band rejection can be realized in compact circuits. From the point of view of digital
coding metamaterials, the multi-band rejection reveals a kind of 6-bit digital coding in
frequency domain, where “1” represents the existence of rejection in a specific band,
whilst “0” represents the inexistence of rejection in the band. Simulated and measured
results have demonstrated this design, and more or less branches may be adopted to realize
more or less bits.

This type of resonator is electrically small and could be easily sculptured in the ground
of a transmission line without occupying extra space. It can be embedded in plasmonic
circuits and systems to realize frequency identification, e.g., to transmit information en-
coded in the frequency spectrum. In addition, the proposed complementary six-branch
spiral can also be used to detect the change of surrounding medium, and therefore has
good potentials in high-resolution sensing and locating.
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