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Abstract: The determination of ultrasonic echo signal onset time is the core of performing the time
difference method to calculate wind speed. However, in practical cases, background noise makes
precise determination extremely difficult. This paper carries out research on the accurate determi-
nation of onset time, exploring the advantages of an improved method based on the combination
of Hilbert-Huang Transform (HHT) and high-order statistics (kurtosis). Performing Hilbert-Huang
Transform to the received wave is aimed at determining a rough arrival time, around which a fixed
size of data is extracted as initial sample to avoid a false pick. Then the fourth-order kurtosis of a
smaller sample, extracted successively by a moving window from the initial sample, is calculated. The
minimum point corresponds to the initial onset time. This approach was tested on a real ultrasonic
echo signal dataset, acquired in a wind tunnel with an ultrasonic anemometer. The proposed method
showed satisfying results in both ideal cases and low signal-to-noise ratio (SNR) environment, com-
pared with traditional onset time determination approaches, including Akaike Information Criterion
(AIC-picker), Short-term Average over Long-term Average (STA/LTA), and Teager-Kaiser energy
operator (TKEO). The experimental results acquired by the HHT-kurtosis method demonstrated that
the proposed method possesses a high accuracy.

Keywords: wind speed; ultrasonic; arrival time; HHT; kurtosis

1. Introduction

During the process of wind tunnel experiment, wind speed is one of the most critical
parameters that needs to be accurately measured [1,2]. Precise determination of wind
speed can be of great significance in many fields relating to weather forecasting, power
generating, farming, engineering, and manufacturing [3,4]. For instance, in the field of
wind power utilization, wind speed determination is vital for selecting sites and wind
machines [5]. The traditional method generally adopts mechanical anemometers, thermal
anemometers, or pitot tube anemometers. However, the anemometers mentioned above
have some limitation. Mechanical anemometers can be easily damaged, especially for
the rotating component inside. Besides, this component needs an initial speed to rotate
due to its inertia, hence it is almost impossible to measure low-speed wind. Thermal
anemometers have a limited measurement range, and its performance is heavily dependent
on environmental factors, including temperature and noise. Due to the low accuracy of the
pressure sensor, it is exorbitantly consuming to design a pitot tube anemometer to precisely
detect the pressure difference of low-speed wind. In contrast, ultrasonic anemometer is a
reliable method with a wide measurement range and no start-up wind speed limitation
while being applied in the field of wind speed determination.

Recent mainstream approaches utilizing ultrasonic anemometers can be categorized
into vortex-shedding method [6] and time-of-flight (TOF) method [7]. Measuring the vortex
frequency, vortex-shedding method is based on the proportional relationship between
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ultrasound and wind speed. However, this approach is difficult to conduct and temperature
influence must be considered. The idea of the TOF method is to implement a sensor array
and measure a set of ultrasound traveling times between transmitters and receivers [8],
and therefore both wind speed and wind direction can be determined. The mainstream
application of TOF estimation is time difference method [9,10], whose theory is to calculate
the travel time difference between tailwind ultrasound and headwind one, following the
Equation (1),

Vcosθ =
l
2
(

1
t1
− 1

t2
), (1)

where l is the distance between a pair of emitter and receiver, and V is the wind speed,
having an angle of θ by the east-west direction. As shown in Figure 1, t1, and t2 are the
travel time of ultrasound in tailwinds and headwinds respectively.
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Figure 1. Unidimensional wind speed measurement based on time-difference method.

As shown in Equation (1), in order to acquire a trustworthy wind speed, picking a pre-
cise arrival time is of vital importance. Previously, the automatic onset time determination
was carried out by a picking algorithm, which generally falls into three categories. The
simplest technique is to use an amplitude threshold picker, which applies an empirically
determined value as a threshold to filter the received wave [11]. However, the determi-
nation of this value can be puzzling and this method is not applicable in a high-noise
environment. An improved method in this category is to apply a short-term-average over
long-term-average (STA/LTA) filter to avoid false pick [12], but window length determina-
tion remains difficult. The second type of automatic onset time picker is to apply a running
extraction window along the time-axis and successively calculate the characteristic function
value corresponding to each picked sample. As assumed, at the time of signal arrival,
the value of this characteristic function changes significantly. In this category, prevailing
methods include Akaike information criterion (AIC) picker [13,14], Teager-Kaiser energy
operator (TKEO) [15], and kurtosis-based picker [16]. The final type is to calculate the
matching rate between the received wave and a reference waveform [17,18], based on
the assumption of the existence of a reference waveform similar to the received wave.
However, the calculated onset time corresponding to the maximum matching rate can be
easily influenced by the shape of echo signal in the time domain.

In order to get a time-frequency spectrum, many signal processing methods have
been advanced [19], including Wavelet Transform (WT) [20], Short Time Fourier Transform
(STFT) [21], and Hilbert-Huang Transform (HHT) [22]. HHT is a superior algorithm among
them, because this transformation does not follow the uncertainty principal, which enables
acquiring a high resolution in both time domain and frequency domain. In this paper, we
propose an improved method based on the combination of HHT and kurtosis characteristic
function. First, Empirical Mode Decomposition (EMD) was applied to the received wave to
get a series of intrinsic mode functions (IMFs). Next, Hilbert Transform (HT) was utilized
on each of the IMFs to get an instantaneous frequency spectrum. A rough onset time was
then determined based on the acquired frequency spectrum. Finally, a moving extraction
window was used to calculate a series of fourth-order kurtosis value, and the minimum
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point corresponded to the calculated onset time. To verify the accuracy and stability
of this method, it was applied to a dataset measured by a three-dimensional ultrasonic
anemometer. The experimental results showed satisfying advantages compared to other
three picking algorithms, including AIC, TKEO, and STA/LTA.

2. Materials and Methods

In this section, the theory of the proposed method is introduced, which is based on
the combination of HHT and kurtosis characteristic function. Then, we briefly explain how
the other three comparative methods are carried out, including AIC, TKEO, and STA/LTA.

2.1. Overview of HHT-Kurtosis Method

As suggested in the method name, HHT-kurtosis, the proposed method includes
two steps, Hilbert-Huang Transform and kurtosis characteristic function calculation. As
shown in Figure 2, the first step is to perform Hilbert-Huang Transform on the wave to
determine a rough arrival time, around which a fixed size of data is extracted as the initial
sample. Then in the second step, the fourth-order kurtosis of a smaller sample extracted
successively by a moving window from the initial sample is calculated. The minimum
point corresponds to the onset of the ultrasonic echo signal.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 11 
 

 

paper, we propose an improved method based on the combination of HHT and kurtosis 

characteristic function. First, Empirical Mode Decomposition (EMD) was applied to the 

received wave to get a series of intrinsic mode functions (IMFs). Next, Hilbert Transform 

(HT) was utilized on each of the IMFs to get an instantaneous frequency spectrum. A 

rough onset time was then determined based on the acquired frequency spectrum. Finally, 

a moving extraction window was used to calculate a series of fourth-order kurtosis value, 

and the minimum point corresponded to the calculated onset time. To verify the accuracy 

and stability of this method, it was applied to a dataset measured by a three-dimensional 

ultrasonic anemometer. The experimental results showed satisfying advantages com-

pared to other three picking algorithms, including AIC, TKEO, and STA/LTA. 

2. Materials and Methods 

In this section, the theory of the proposed method is introduced, which is based on 

the combination of HHT and kurtosis characteristic function. Then, we briefly explain 

how the other three comparative methods are carried out, including AIC, TKEO, and 

STA/LTA. 

2.1. Overview of HHT-Kurtosis Method 

As suggested in the method name, HHT-kurtosis, the proposed method includes two 

steps, Hilbert-Huang Transform and kurtosis characteristic function calculation. As 

shown in Figure 2, the first step is to perform Hilbert-Huang Transform on the wave to 

determine a rough arrival time, around which a fixed size of data is extracted as the initial 

sample. Then in the second step, the fourth-order kurtosis of a smaller sample extracted 

successively by a moving window from the initial sample is calculated. The minimum 

point corresponds to the onset of the ultrasonic echo signal. 

 

Figure 2. Flowchart of carrying out Hilbert-Huang Transform (HHT)-kurtosis method. 

2.1.1. Hilbert-Huang Transform 

Hilbert Transform, though effective in preserving time localities, requires input to be 

linear and stable [23]. Huang et al. proposed an improved method, Hilbert-Huang Trans-

form, combining Empirical Mode Decomposition (EMD) and Hilbert Transform. EMD 

preprocessing makes input signals to be linear and stable, and therefore meets the input 

requirement of Hilbert Transform [24]: 

Hilbert-Huang Transform can be divided into three steps, as is shown in Figure 3. 

Step 1: perform EMD to the original ultrasonic echo signal, and get a series of IMFs 

and a residual. 

Step 2: perform Hilbert Transform (HT) to each of IMFs to get the transient frequency 

spectrum. 

Step 3: determine a rough arrival time by setting a threshold to the spectrum. 

Figure 2. Flowchart of carrying out Hilbert-Huang Transform (HHT)-kurtosis method.

2.1.1. Hilbert-Huang Transform

Hilbert Transform, though effective in preserving time localities, requires input to
be linear and stable [23]. Huang et al. proposed an improved method, Hilbert-Huang
Transform, combining Empirical Mode Decomposition (EMD) and Hilbert Transform. EMD
preprocessing makes input signals to be linear and stable, and therefore meets the input
requirement of Hilbert Transform [24]:

Hilbert-Huang Transform can be divided into three steps, as is shown in Figure 3.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 3. Flowchart of carrying out Hilbert-Huang Transform. 

2.1.2. Kurtosis Characteristic Function Calculation 

In order to pick precise onset time of ultrasonic further, higher order statistics 

method, which is an effective approach for processing non-Gaussian signals, is utilized to 

deal with this task. In this paper, kurtosis that is fourth-order cumulants was chosen as 

characteristic function because it is insensitive to the Gaussian noise and can achieve a 

higher accuracy with a smaller order and less calculation time [25,26]. 

Kurtosis, defined as the standardized fourth moment about the mean, is a statistical 

value describing how a given set of data is distributed [27]. For a dataset of N samples, 

represented as 𝑥 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑁}, with a mean of 𝑥̅, the discrete form of kurtosis can be 

calculated as shown in Equation (2), 

𝐾 =
𝐸[(𝑋−𝜇)4]

𝐸[(𝑋−𝜇)2]2 =
1

𝑁
∑ (𝑥𝑖−𝑥̅)4𝑁+1

𝑖=1

[
1

𝑁
∑ (𝑥𝑖−𝑥̅)2𝑁+1

𝑖=1 ]2
. (2) 

At the time of wave arrival, the kurtosis will increase significantly from a relatively 

low value [28]. Thus, the minimum kurtosis corresponds to the calculated onset time. 

The steps of calculating fourth-order kurtosis characteristic function are shown in 

Figure 4a: 

Step 1: Extract a dataset of n values, represented as 𝑥 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}, around the 

rough arrival time determined by Hilbert-Huang Transform. 

Step 2: Slide a moving extraction window of N samples along x-axis, and record its 

first-order kurtosis values as 𝐾1(𝑖), 𝑖 ∈ [1, 𝑛 − 𝑁 + 1]. 

Step 3: Apply a succession of transformation to the first-order kurtosis characteristic 

function as shown in steps (4)–(6). 

Step 4: Perform the first transformation and calculate the second-order kurtosis char-

acteristic function as shown in Equation (3), 

{
𝐹2(1) = 𝐹1(1)

𝐹2(𝑖 + 1) = 𝐹2(𝑖) + 𝛿(𝑖) × [𝐹1(𝑖 + 1) − 𝐹1(𝑖)]
, (3) 

Where 

𝛿(𝑖) = {
1,   𝐹1(i + 1) − 𝐹1(i) ≥ 0

0,   𝐹1(i + 1) − 𝐹1(i) < 0
, (4) 

Step 5: Perform the second transformation and calculate the third-order kurtosis 

characteristic function as shown in Equation (5), 

𝐹3(𝑖) = 𝐹2(𝑖) − [
𝐹2(𝑁) − 𝐹2(1)

𝑁
× (𝑖 − 1) + 𝐹2(1)] (5) 

Step 6: Perform the final transformation and calculate the fourth-order kurtosis char-

acteristic function as shown in Equation (6), 

𝐹4(𝑖) = 𝐹3(𝑖) − 𝑀𝑖 (6) 

where 𝑀𝑖 is the local maximum of 𝐹3. 

Figure 3. Flowchart of carrying out Hilbert-Huang Transform.

Step 1: perform EMD to the original ultrasonic echo signal, and get a series of IMFs
and a residual.

Step 2: perform Hilbert Transform (HT) to each of IMFs to get the transient frequency
spectrum.

Step 3: determine a rough arrival time by setting a threshold to the spectrum.
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2.1.2. Kurtosis Characteristic Function Calculation

In order to pick precise onset time of ultrasonic further, higher order statistics method,
which is an effective approach for processing non-Gaussian signals, is utilized to deal with
this task. In this paper, kurtosis that is fourth-order cumulants was chosen as characteristic
function because it is insensitive to the Gaussian noise and can achieve a higher accuracy
with a smaller order and less calculation time [25,26].

Kurtosis, defined as the standardized fourth moment about the mean, is a statistical
value describing how a given set of data is distributed [27]. For a dataset of N samples,
represented as x = {x1, x2, · · · , xN}, with a mean of x, the discrete form of kurtosis can be
calculated as shown in Equation (2),

K =
E
[
(X− µ)4

]
E
[
(X− µ)2

]2 =
1
N ∑N+1

i=1 (xi − x)4[
1
N ∑N+1

i=1 (xi − x)2
]2 . (2)

At the time of wave arrival, the kurtosis will increase significantly from a relatively
low value [28]. Thus, the minimum kurtosis corresponds to the calculated onset time.

The steps of calculating fourth-order kurtosis characteristic function are shown in
Figure 4a:

Step 1: Extract a dataset of n values, represented as x = {x1, x2, · · · , xn}, around the
rough arrival time determined by Hilbert-Huang Transform.

Step 2: Slide a moving extraction window of N samples along x-axis, and record its
first-order kurtosis values as K1(i), i ∈ [1, n− N + 1].

Step 3: Apply a succession of transformation to the first-order kurtosis characteristic
function as shown in steps (4)–(6).

Step 4: Perform the first transformation and calculate the second-order kurtosis
characteristic function as shown in Equation (3),{

F2(1) = F1(1)
F2(i + 1) = F2(i) + δ(i)× [F1(i + 1)− F1(i)]

, (3)

where

δ(i) =
{

1, F1(i + 1)− F1(i) ≥ 0
0, F1(i + 1)− F1(i) < 0

, (4)

Step 5: Perform the second transformation and calculate the third-order kurtosis
characteristic function as shown in Equation (5),

F3(i) = F2(i)− [
F2(N)− F2(1)

N
× (i− 1) + F2(1)] (5)

Step 6: Perform the final transformation and calculate the fourth-order kurtosis
characteristic function as shown in Equation (6),

F4(i) = F3(i)−Mi (6)

where Mi is the local maximum of F3.
As shown in Figure 4b, four curves record F1, F2, F3, and F4 of the extracted initial

sample, and the greatest minimum of F4 corresponds to the arrival time of the wave.
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2.2. Introduction of Other Comparative Methods

The AIC method is applied by calculating the local minimum of AIC function,

AIC(k) = klg(Var(x[1, k])) + (l − k− 1)lg(Var(x[k + 1, l])), (7)

In this equation, the value k that can make AIC(k) reach the maximum is the calculated
onset time [29].

The STA/LTA method is based on an empirically determined threshold. At onset
point, the change of STA (average power in a short moving window) is much greater than
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LTA (average power in a long moving window), so the value n that makes STA
LTA ≥ threshold

is the calculated onset time [30].
To carry out TKEO method we first need to perform EMD and then calculate the

maximum value of TKEO operator,

ψ[y(n)] = y[n− 1]2 − y[n]× y[n− 2], (8)

In this equation, the value n that can make ψ[y(n)] maximum is the calculated onset
time [31,32].

3. Experiments and Results

In this section, how actual experiments are carried out in a wind tunnel is explained.
Then we perform four methods mentioned in the last section to the received ultrasonic
signal and determine the onset time. Results show the great performance of the proposed
method.

3.1. Experimental Device

To verify the performance of the proposed method further, actual experiments are
carried out in a wind tunnel. All experiments are based on an experimental ultrasonic
anemometer consisting of three pairs of ultrasonic sensors, which excites ultrasound and
receives it from the corresponding sensor, whose structure is shown in Figure 5a. All ultra-
sonic sensors were produced by Airmar with a center frequency of 200 kHz. For gaining
sufficient ultrasonic signals, experiments were performed under diverse wind velocities
in the Low-Speed Wind Tunnel at the China Aerodynamics Research and Development
Center, as is shown in Figure 5b. Consequently, a total of 300 sets of ultrasonic signals were
sampled at a sampling rate of 1 MHz.
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3.2. Accuracy Test under Different Signal-to-Noise Ratios

To test the reliability of the proposed the method, we conducted a series of experiments
under different signal-to-noise ratios (SNRs). These experiments utilized received waves
obtained by fixing the distance of one pair of transducers, whose standard arrival time
was measured in the noiseless environment. As mentioned above, there are 300 sets of
signals acquired from the proposed device. And these signals are added White Gaussian
Noise (WGN) with different SNRs for testing the noise robustness of the proposed method.
In order to show the satisfactory performances of our method, STA/LTA algorithm, AIC
algorithm, and TKEO algorithm were performed under the same conditions to compare
with the proposed method, respectively. The results are illustrated in Figures 6–8, in which
the green dots represent the distributions between measured arrival time by different
algorithms and corresponding actual arrival time, and the orange lines termed trend line
are a set of dots where the measured value equals the actual value.

As is shown in Figures 6–8, under different SNRs, the measured results generated from
the proposed method are close to the trend line, which denotes the deviations between the
actual arrival time and the measured arrival time were quite small. The average deviation
is within 5 µs. The experimental results demonstrated the noise robustness of the proposed
method. In contrast, the results from STA/LTA algorithm deviated from the trend line
overall, and this method could generate erroneous measurement results possibly; AIC
algorithm has a tendency to engender false pick with a fixed deviation; and the measured
results from TKEO algorithm deviated from the trend line out of the range of±10 µs, which
is much worse than ours. Table 1 indicates the Mean Square Error (MSE) and R-square
determined by the four methods, which also demonstrates the great performance of the
proposed method in determining arrival time of ultrasonic signals.
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Table 1. Mean Square Error and R-square determined by the four methods.

MSE(s2) R-Square

15 dB 10 dB 5 dB 15 dB 10 dB 5 dB

STA/LTA 1.42 × 10−9 1.99 × 10−9 2.53 × 10−9 0.7191 0.4680 0.2808
AIC 2.78 × 10−9 3.00 × 10−9 3.08 × 10−9 −1.0122 −1.0825 −0.7674

TKEO 2.36 × 10−10 2.45 × 10−10 2.85 × 10−10 0.9372 0.9279 0.9180
Our

method 4.30 × 10−11 4.99 × 10−11 7.42 × 10−11 0.9871 0.9849 0.9751

4. Discussion

As shown in Figure 6c, Figure 7c, and Figure 8c, the measured results obtained by
AIC approach directly deviated from the trend line with a fixed distance obviously. After
checking erroneous results, we find that there are two minima in the AIC function. The
sample arrival point was considered to divide the signal into two different stationary
processes. Similarly, the ending point of ultrasonic echo signal played the same role in
dividing the signal into two different stationary processes. Therefore, the AIC function was
likely to exist two minima corresponding to the onset point and end point of ultrasonic
signals, respectively. If the minimum result was determined by the ending point, the
method was more likely to generate false pick with fixed deviation.

Therefore, in the proposed method, we utilized HHT to determine an approximate
range for kurtosis algorithm, which can avoid the fixed deviation, as is shown above. The
experimental results demonstrate the great noise robustness and performances in arrival
time determination of ultrasonic signals via the proposed method.

5. Conclusions

The purpose of this study is to develop an effective method for detecting the arrival
time of ultrasonic signal, which is of vital importance during the wind speed determination.
The main improvement regarding this study relates to the combination of Hilbert-Huang
Transform and kurtosis characteristic function calculation. HHT was applied to the received
wave to determine a rough arrival time. Then, the fourth-order kurtosis was calculated,
and its minimum point corresponded to the precise arrival time of the ultrasonic echo
signal.

The results obtained through this hybrid method were satisfying. To verify the
advantages of our proposed method, a comparison among the results acquired by using
the proposed method, AIC, STA/LTA, and TKEO was carried out. It turns out that, results
acquired through the proposed method indicate the high determination accuracy of this
method, under both the ideal case and real cases.
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