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Abstract: Range images are commonly used representations for 3D LiDAR point cloud in the field of
autonomous driving. The approach of generating a range image is generally regarded as a standard
approach. However, there do exist two different types of approaches to generating the range image:
In one approach, the row of the range image is defined as the laser ID, and in the other approach, the
row is defined as the elevation angle. We named the first approach Projection By Laser ID (PBID),
and the second approach Projection By Elevation Angle (PBEA). Few previous works have paid
attention to the difference of these two approaches. In this work, we quantitatively analyze these
two different approaches. Experimental results show that the PBEA approach can obtain much
smaller quantization errors than PBID, and should be the preferred choice in reconstruction-related
tasks. If PBID is chosen for use in recognition-related tasks, then we have to tolerate its larger
quantization error.

Keywords: LiDAR point cloud; range image; autonomous driving

1. Introduction

Projecting a 3D LiDAR point cloud to a 2D image is a common approach for LiDAR
point cloud processing. Compared with 3D voxel space, the 2D image view is a more
compact representation. Besides, the 2D image can also capture the local geometry of the
LiDAR data. By utilizing this intrinsic property, we can readily obtain the neighboring
points of each LiDAR point without constructing a kd-tree [1].

Popular 2D projection methods include bird’s eye view projection, cylindrical pro-
jection [2,3] and spherical projection. In this paper, we focus on spherical projection. The
spherical projected view is also known as the range image, and is widely used in the field
of LiDAR point cloud processing. Successful applications include object proposal [4], object
detection [5–7], object segmentation [8,9], motion prediction [10], semantic segmentation [2],
LiDAR odometry [11], etc.

By taking a closer look at the approaches to generate the range image, we noticed two
types of different approaches. These two categories differ in the way of defining the rows
of the range image. In one type of approach [7–9,12,13], the row is defined as the laser
ID, whilst in the other approach, the row is defined as the elevation angle [2,4–6,11,14].
This difference is also noticed in [15], where the first type of approach is called the scan
unfolding method, and the second approach is called the ego-motion corrected projection
method. In this paper, we named the first approach Projection-By-LaserID (PBID), and the
second approach was named Projection-By-ElevationAngle (PBEA).

For some types of LiDAR, such as the well-known Velodyne HDL64, which is also
used to construct the KITTI dataset [16], the pitch angle spacing between two adjacent laser
beams is approximately the same. In this case, the two different approaches for defining
the range image rows do not make a significant difference. However, for some recently
introduced LiDAR [17], such as Pandar128 (https://www.hesaitech.com/en/Pandar128)
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(accessed on 20 May 2021) or RS-Ruby 128 (https://www.robosense.ai/rslidar/RS-Ruby)
(accessed on 20 May 2021) , the elevation angles between adjacent beams differ a lot, as
shown in Figure 1. For these types of LiDAR, the two ways of defining the range image
rows produce significant differences.

Figure 1. Different types of LiDAR have different settings for elevation angles. Therefore, the range
images generated by PBID and PBEA may be significantly different. This figure shows three types
of LiDAR and the range images they generate. From left to right: The LiDAR itself; the elevation
angle for each laser beam; the 3D point cloud generated by the LiDAR; range image generated by the
approach of PBID (top) and PBEA (bottom).

In addition, the intra-frame distortion caused by LiDAR’s ego-motion is a non-
negligible effect, which must be taken into account when processing the LiDAR point
cloud [18]. After the intra-frame compensation, the points generated by each laser beam
no longer share the same elevation angle. In this case, the first approach of defining the
row as the laser ID is not justified.

In this paper, we treat the range image as an intermediate representation of the original
LiDAR point cloud. The LiDAR point cloud can be projected to generate a range image, and
the range image could also be back projected to restore the 3D point cloud. By comparing
the restored point cloud with the original point cloud, we can quantitatively analyze the
information loss of the range image representation.

Based on the experimental results, we show that comparing to PBID, the PBEA
approach could obtain a higher accuracy. In order to keep the information loss within
a negligible range, the number of range image rows should be set to a relatively large
number (192 pixel or 384 pixel) than is usually used (64 pixel or 128 pixel).

This paper is structured as follows: Section 2 describes some related works. Sections 3
and 4 describe the approaches of PBID and PBEA and a method to evaluate the quantization
error. Section 5 performs experiments on both the KITTI dataset and our own dataset, and
recommended range image settings are given for three different types of LiDAR. Section 6
concludes the paper.

2. Related Work

Range image is a common representation form of LiDAR point cloud in the field of
autonomous driving. With the LiDAR is rotating at a high constant rate, the data captured
by each laser beam naturally forms a ring structure. This implicit sensor topology facilitates

https://www.robosense.ai/rslidar/RS-Ruby
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the query of 3D point neighborhoods, and motivates the use of the PBID approach to
generate range images.

In [8], the authors proposed to use the range image representation for object segmen-
tation. Each point in the range image is directly compared with its four neighboring points.
A simple geometric criterion is then introduced to judge if the compared two points belong
to the same object. In [12], the range image representation is utilized to estimate the point
normal, which is then used in the scan registration. The range image is also used in [7] to
extract multi-channel features and these features are then fed into a deep network to train
the object detectors.

In the field of autonomous driving, the LiDAR is usually installed on the top of the
vehicle. As the vehicle moves, the LiDAR scan captured in one sweep is motion distorted,
and therefore the points captured in one scan line no longer share the same elevation angle.
An illustrative example is shown in Figure 2. In this case, if we continue to choose to
use the PBID method, then a larger quantization error may occur. To remedy this, some
approaches choose to use the PBEA approach to generate the range image. The range
image representation is then widely used for object proposal [4], object detection [4], flow
estimation [2], voxel grid reconstruction [19], semantic segmentation [20], etc.

Figure 2. A LiDAR frame in the KITTI odometry dataset. The point cloud is colored by the laser ID.
An obvious intra-frame distortion could be observed in the region outlined by the white rectangle.

Comparing the range images generated by the two approaches in Figure 1, one may
notice that there exists a large portion of empty area in the range image generated by PBEA.
This is also the reason why some studies prefer to use the PBID approach. However, we
believe that sparsity is an inherent property of LiDAR data. Even in the PBID approach,
there are still some empty holes. These empty areas are probably caused by the absorption
or absence of target objects, or an ignored uncertain measurement [9]. Therefore, the
algorithm for processing the range image should have the ability to deal with empty areas
in the range image. Existing methods include simply filling the empty areas with default
value of zero [2], performing linear interpolation from its neighborhood [13], or specifically
designing a sparsity invariant approach [21]. The work of [21] also inspired a large portion
of research work on depth completion [22] or LiDAR super-resolution [23].

Besides PBID and PBEA, the authors of [24] proposed to define the range image row
as the height value to facilitate the temporal link between consecutive frames. This is in
analogous to the cylindrical projection used in [3].

3. Generating the Range Image

For a n-channel LiDAR, each of its laser beam has a specific elevation angle θl , where
l ∈ {1, 2, ..., n}. With the LiDAR spinning at a high constant rate, each laser emits towards
different directions. Let φt denote the emission azimuth at time instance t. By multiplying
the light speed with the time difference between the emission time and receiving time, the
range r can be calculated. Based on r, φt and θl , the 3D coordinate can be calculated as:
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x = r ∗ cos(θl) ∗ sin(φt)
y = r ∗ cos(θl) ∗ cos(φt)
z = r ∗ sin(θl)

. (1)

Note that the above formula is a simplified version of the LiDAR projection model. In
this model, all the laser beams are assumed to emit from the same physical location, i.e.,
the LiDAR center. However, there is indeed a small offset from the installation position
of each laser to the LiDAR center. This offset is considered in earlier LiDAR models, such
as Velodyne HDL64. However, as technology improves, the LiDAR itself has become
more compact and smaller, and the influence of this offset can be neglected, or it can be
explicitly considered in the internal calibration of the LiDAR beam. Therefore, the recently
introduced LiDAR, such as Pandar128 or RS-Ruby 128, have begun to use the simplified
LiDAR projection model defined in Equation (1).

Given a point’s 3D coordinate (x, y, z), based on Equation (1), the range r, the azimuth
angle φ and the elevation angle θ can be calculated as:

r =
√

x2 + y2 + z2

φ = arctan(x/y)
θ = arcsin(z/r)

. (2)

Let u and v represent the column and row index of the range image. Ideally, the center
column of the range image should point to the vehicle’s heading direction. Therefore, the
column index u can be calculated as:

u =

⌊
1
2
(1 + φ/π) · w

⌋
, (3)

where b·c is the floor operator, w is the width of the range image.
For the range image row index v, if we use the PBID (Projection By laser ID) method,

it is defined as:

v = l, l ∈ {1, 2, ..., n}, (4)

where l is the laser ID. The elevation angle θv of each row is the same as the elevation angle
θl of the corresponding laser beam:

θv = θl . (5)

If we use the PBEA (Projection By Elevation Angle) method and define θup and θdown
as the maximum and minimum elevation angles, we have:

v =
⌊
(θup − θ)/(θup − θdown) · h

⌋
, (6)

where h denotes the height of the range image.
If more than one point are projected to the same (u, v) coordinate, then the range value

r of the nearest point is stored in the range image.
Moreover, note that in the PBEA method, the elevation angle is equally divided, so

the vertical angular resolution of the range image is:

θres = (θup − θdown)/h. (7)

The horizontal angular resolution of the range image is:

φres = 2π/w. (8)

4. Analyzing the Quantization Error of the Range Image

The range image is generally considered as a compact and lossless compression of the
original 3D point cloud. However, if we recover a 3D point cloud from the range image
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representation, and compare it with the original point cloud, then some errors might occur.
We named this error as the range image quantization error. In this section, we proposed an
approach to quantitatively evaluate this error.

Given a n-channel LiDAR scan composed of 3D points {Xl
i = (xl

i , yl
i , zl

i), l ∈ (1, 2, ..., n)},
the elevation angle θl

i and the azimuth angle φi of each point is firstly calculated by
Equation (2). Based on φi, the range image column index ui can be computed by Equation (3).
Depending on the projection method, the range image row index vi can be computed either
by Equation (4) or Equation (6).

The elevation angle for each laser beam can be then calculated as the average of the
elevation angles of all points generated by this laser beam:

θl =
1

ml ∑
i
(θl

i ), (9)

where ml is the number of points generated by laser beam l.
After the range image computation, each point Xl

i = (xl
i , yl

i , zl
i) is transformed into the

range image coordinates: (ui, vi, ri). Note that both ui and vi are integers and are usually
obtained by the floor operator. In order to minimize the quantization error caused by this
floor operator, half of the range image resolution should be added to recover φ′i and θ′i from
ui and vi. According to Equations (3) and (6), φ′i and θ′i can be calculated as:

φ′i = π(2ui/w− 1) + φres/2

= (2ui − w + 1)π/w
θ′i = θup − (θup − θdown) ∗ vi/h + θres/2

= θup − (θup − θdown) ∗ (vi − 1/2)/h

. (10)

Based on φ′i and θ′i , the recovered point X′i = (x′i , y′i, z′i) can be calculated by Equation (1).
For PBID, the laser beam elevation angle θl computed in Equation (9) can be directly used
for all the points generated by this beam. In contrast, a point-specific elevation angle θ′i
needs to be used for each point in PBEA.

Ideally, the recovered X′i should be very close to the original Xl
i . In order to quantita-

tively analyze the error between {Xl
i} and {X′i}, we firstly find the nearest point X′′i in {X′i}

for each Xl
i and then calculate the distance between these two points. The average distance

of all points in {Xl
i} is used as a measure for the quantization error:

E =
1
m ∑

i
‖Xl

i − X′′i ‖, (11)

where m is the number of points in {Xl
i}, ‖ · ‖ is the L2 norm of the vector.

The quantization error E is mainly caused by two reasons: The LiDAR’s egomotion
and the different values of w and h. For the LiDAR’s egomotion, it breaks the assumption
in PBID that all the points generated by one laser beam shares the same elevation angle.
For a smaller value of range image width w, as the range image only stores the information
of the nearer points, the information of the occluded further points are lost.

5. Experimental Results

Experiments are conducted both on the KITTI odometry dataset and our own dataset.
The LiDAR data in KITTI was collected by the Velodyne HDL64. According to the LiDAR
specification, θup and θdown are set to 6 degrees and -26 degrees. Our own dataset is collected
by Pandar128 and RS-Ruby 128 which are both 128-channel LiDARs. The layout of these
LiDARs’ elevation angle are shown in Figure 1. As these two LiDARs are specifically
designed for city environment, where the road is mostly flat, most of its laser beams
concentrate on the horizontal direction to facilitate the detection and tracking of far-away
moving objects. According to the LiDAR specifications, the θup and θdown for these two
types of LiDARs are set to 16 and −26 degrees.
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5.1. Experiments on KITTI Dataset

We firstly conduct experiments on the KITTI dataset. Since the data provided in
the KITTI dataset is already ego-motion compensated, we use an approach similar to the
scan-unfolding approach proposed in [15] to recover the laser ID information for each
LiDAR points.

Two representative frames are selected from KITTI odometry sequence 07 dataset.
One is frame 700 when the vehicle speed is 0, and the other is frame 789 when the vehicle
speed is around 43 km/h. For both frames, the range image width w and the range image
height h are set to different values. An illustrative example of the range image generated
by PBID and PBEA under the parameter settings of w = 1080, h = 64, 128, 192 or 256 is
shown in Figure 3.

Figure 3. Range images generated by PBID and PBEA with varying heights for the Velodyne
HDL64 LiDAR.

Under each parameter setting of the range image, the quantization error E as defined
in Equation (11) is calculated. The results are shown in Figure 4.

From Figure 4, it is observed that as the height or width of the range image increases,
the quantization error decreases. This is in accordance with our common belief. When
the range image height is set to 64, PBEA is prone to produce larger errors than PBID. By
carefully monitoring the errors occurred, we found that the quantization error produced
by PBID and PBEA are not exactly the same.
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Figure 4. Quantization error under different settings of range image width and height. For PBID, the
range image height has to be set to the number of LiDAR channels, i.e., 64 for the Velodyne HDL64.
For PBEA, the range image height can be set to different values. The image on the left is the result of
frame 700 when the LiDAR is stationary, and the image on the right is the result of frame 789 when
the LiDAR is moving.

Figures 5 and 6 show the original LiDAR point cloud and the recovered point cloud
after PBID or PBEA projection. From Figure 5, we can observe that the planar ground
surface in the original point cloud become no longer flat after the PBID projection. The
reason is mainly due to the intra-frame distortion caused by LiDAR’s egomotion. As shown
in Figure 2, the LiDAR’s egomotion distorts the LiDAR point cloud. The points generated
by the same laser beam no longer share the same elevation angle. However, in the PBID
approach, it is still assumed that all the points generated by each beam have the same
elevation angle. Therefore, after recovering from the PBID projection by Equation (1),
points originally on a planar surface might become distorted. In contrast, this type of error
does not occur in PBEA. However, as shown in Figure 6, the continuous line segments
(regions framed by the yellow rectangle) in the original point cloud become no longer
continuous in the recovered point cloud from PBEA. The reason is that in PBEA, the
elevation angle is equally divided. It is possible that a continuous line segment in the
original point cloud is quantized into different elevation intervals, thereby destroying the
continuity in the original point cloud. This phenomenon is more likely to occur in areas
with small incident angles, such as the ground plane.

Figure 5. The left figure shows the original point cloud, and the right figure shows the recovered
point cloud after the PBID projection. As highlighted in the yellow rectangle region, the planar
ground surface in the original point cloud becomes no longer flat after the PBID projection. Points
are colored by height.
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Figure 6. The left figure shows the original point cloud, and the right figure shows the recovered
point cloud after the PBEA projection. As highlighted in the yellow rectangle region, the continuous
line segments become no longer continuous after the PBEA projection.

It is also observed from Figure 4 that with the increase of range image height in PBEA,
its quantization error drops significantly. For PBID, the range image height cannot be
changed and must be set to the number of LiDAR channels. However, for PBEA, the range
image height can be set to arbitrary values. This additional flexibility makes the PBEA
approach more appealing.

In practice, we have to find a good compromise between accuracy and processing
speed. Under a fixed computing budget, should we increase the width or height of the
range image? To answer this question, we multiply the width by the height, and plot the
relationship between the quantization error and the area of the range image. The result is
shown in Figure 7. It is observed that using the approach of PBEA and setting the range
image height to 128 is always a preferred choice. Only when the range image width is as
small as 360, the performance of PBEA-360*128 is inferior to PBEA-720*64 and PBID-720*64.
Therefore, the recommended parameter settings for generating range image on the KITTI
dataset are: PBID-360*64, PBID-720*64, PBEA-720*128, PBEA-1080*128, PBEA-1440*128,
PBEA-1800*128, PBEA-2160*128 and PBEA-2520*128.

Figure 7. The horizontal axis represents the area of the range image, which is calculated by multiply-
ing the range image height by the range image width. The vertical axis is the quantization error. The
left figure is the result of frame 700 in KITTI odometry sequence 07 dataset, and the right figure is the
result of frame 789.

We then perform experiments on the whole KITTI odometry sequence 07 dataset. It
contains 1101 scans in total. The range image width is set to 1080 or 2160. The quantization
error for the entire sequence is shown in Figure 8. It can be seen that the performance of
‘PBID-64’ is on par with ‘PBEA-64’ (PBEA approach with range image height set to 64), and
much worse than ‘PBEA-128’. As the height of the range image increases, the quantization
error continues to decrease.
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Figure 8. Quantization error for the whole KITTI sequence 07 dataset. In the left figure, the range
image width is set to 1080, whilst it is set to 2160 on the right.

5.2. Experiments on Our Own Dataset

We also perform experiments on the data collected by Pandar128 LiDAR. Experiments
were performed on a frame collected in urban environment when the vehicle’s speed is
around 20 km/h. To compensate the LiDAR’s egomotion, the intra-frame rectification
approach proposed in [18] is used. The range images generated for this LiDAR under
different range image width and height are shown in Figure 9. The quantization error is
shown in Figure 10.

Figure 9. Range images generated by PBID and PBEA with varying heights for Pandar128 LiDAR.

From the error plot of Figure 10, it is observed that the error of PBID-128 is much
smaller than PBEA-128, or even smaller than PBEA-256. We attribute this to two reasons:
First, the vertical angular range of Pandar128 is 10 degrees larger than that of Velodyne
HDL64, which makes PBEA’s equally angular partition approach prone to produce larger
quantization errors. Secondly, the angular distribution of this LiDAR is not uniform, which
makes it have variable angular resolution. It is calculated that the lowest angular resolution
is 0.47 degrees, and the highest angular resolution is 0.12 degrees. In contrast, the angular
resolution of PBEA-128 and PBEA-256 are 0.32 degrees and 0.16 degrees, respectively.
From Figure 10, it is also observed that the error of PBEA-384 is smaller than PBID-128 on
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all range image width settings, suggesting that PBEA-384 is a preferred choice if we can
tolerate its three times heavier computational load.

Figure 10. Quantization error for Pandar128 under different settings of range image width and height.

We also tested the RS-Ruby LiDAR in an off-road scenario with uneven terrain. This
LiDAR was originally designed for urban environments. Therefore, most of its laser beams
are focused in the horizontal direction. A frame is selected when the LiDAR undergoes
not only translational motion but also rotational motion, thus producing a more severe
intra-frame distortion. The range image generated for this frame is shown in Figure 11,
and Figure 12 shows the quantization error.

Figure 11. Range images generated by PBID and PBEA with varying heights for the Ruby128 LiDAR.

From Figure 12, it is observed that the approach of PBID-128 produces the largest
quantization error. The reason is mainly due to the larger intra-frame distortion, which
will cause the points generated by the same laser beam to not necessarily share the same
elevation angle. Compared with PBID-128, the approach of PBEA-256 and PBEA-384
produce much smaller errors in all the different settings of the range image width. Therefore,
these two approaches are the recommended range image generation approaches. If we
have more computational resources, PBEA-384 is the more preferable choice.
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Figure 12. Quantization error for Ruby128.

5.3. Further Discussion

From above experiments, we show that by doubling or tripling the range image height
(using the approach of PBEA), a much smaller quantization error can be obtained than PBID.
However, as the range image height increases, there will be more empty regions in the
range image. This may hinder the performance of tasks such as object detection or semantic
segmentation. For these recognition-related tasks, we can still choose to use the PBID
approach, but we should bear in mind that PBID may produce larger quantization error.

In reconstruction-related tasks, such as normal estimation, terrain modeling, LiDAR
odometry or LiDAR-based mapping, the approach of PBEA should be the preferred choice.
Since these geometry-related tasks are mainly based on arithmetic calculations, their
performance is highly related to the range image quantization error.

In addition, we have noticed that there is a trend that more and more different types
of LiDAR are emerging, and each new LiDAR has a specific layout of the elevation angle. If
we train an object detector on one type of LiDAR, and expect the model to be applicable for
another type of LiDAR, then we have to design approaches on a standard representation
(PBEA) rather than a LiDAR specific representation (PBID).

6. Concluding Remarks

In this paper, we discussed two approaches for generating range image, namely the
PBID (Projection By laser ID) approach and the PBEA (Projection by Elevation Angle) ap-
proach. We believe that the range image should be an intermediate lossless representation
of the original point cloud. Therefore, we analyzed these two types of approaches from
the perspective of quantization errors. Further analysis shows that the quantization error
has two main causes: The intra-frame distortion caused by the LiDAR’s egomotion, and
the width and height of the range image. The quantization errors of both approaches are
evaluated for three different types of LiDAR, namely Velodyne HDL64, Hesai Pandar128,
and Robosense Ruby128.

Experimental results show that by using the approach of PBEA and setting the range
image height to a relatively large value, a much smaller quantization error could be
obtained than PBID. If the range image height is set to 128 for Velodyne HDL64 or 384 for
Pandar128 or Ruby128, the PBEA’s quantization error is always smaller than PBID. We
emphasize that in recognition-related tasks, PBID might be a preferred choice due to its
compactness. However, we have to bear in mind that PBID could produce a much larger
quantization error. In reconstruction-related tasks, PBEA should be the preferred choice.
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