i?‘lg electronics

Article

Development and Real-Time Performance Evaluation of Energy
Management Strategy for a Dynamic Positioning Hybrid
Electric Marine Vessel

Truong M. N. Bui '*©, Truong Q. Dinh !, James Marco ! and Chris Watts 2

check for

updates
Citation: Bui, TM.N.; Dinh, T.Q.;
Marco, J.; Watts, C. Development and
Real-Time Performance Evaluation of
Energy Management Strategy for a
Dynamic Positioning Hybrid Electric
Marine Vessel. Electronics 2021, 10,
1280. https://doi.org/10.3390/
electronics10111280

Academic Editors: Cheng Siong Chin

and Hamid Reza Karimi

Received: 19 April 2021
Accepted: 25 May 2021
Published: 27 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Energy Innovation Centre, WMG, University of Warwick, Coventry CV4 7AL, UK;
t.dinh@warwick.ac.uk (T.Q.D.); james.marco@warwick.ac.uk (J.M.)

Babcock International Group, Leicester LE3 1UF, UK; chris.watts@babcockinternational.com
*  Correspondence: truong.bui@warwick.ac.uk; Tel.: +44-24-765-75855

Abstract: Hybridisation of energy sources in marine vessels has been recognized as one of the
feasible solutions to improve fuel economy and achieve global emission reduction targets in the
maritime sector. However, the overall performance of a hybrid vessel system is strongly dependent
on the efficiency of the energy management system (EMS) that regulates the power-flow amongst
the propulsion sources and the energy storage system (ESS). This study develops a simple but
production-feasible and efficient EMS for a dynamic positioning (DP) hybrid electric marine vessel
(HEMV) and real-time experimental evaluation within a hardware-in-the-loop (HIL) simulation
environment. To support the development and evaluation, map-based performance models of
HEMVs’ key components are developed. Control logics that underpin the EMS are then designed
and verified. Real-time performance evaluation to assess the performance and applicability of
the proposed EMS is conducted, showing the improvement over those of the conventional control
strategies. The comparison using key performance indicators (KPIs) demonstrates that the proposed
EMS could achieve up to 4.8% fuel saving per voyage, while the overall system performance remains
unchanged as compared to that of the conventional vessel.

Keywords: hybrid electric propulsion system; energy management strategy; dynamic positioning
marine vessel; map-based performance model; real-time verification

1. Introduction

In the maritime transport sector, ships are identified as the most efficient transport
means for heavy freight and cargo transportation. Conventional marine vessels, which
utilise a traditional internal combustion engine (ICE) as a main propulsion system, are very
noticeable with high fuel consumption, low fuel economy, and large exhaust emissions,
comprising carbon dioxide (CO;) and particulate matter, that produce harmful impacts to
the environment [1-4]. Since recent regulations [5] agreed upon by the International Mar-
itime Organization (IMO) and the European Union (EU) have required significant reduction
of exhaust emissions to prevent air pollution of ships, many ship-building manufacturers
have been forced to reduce the operating speed as an immediate measure of reducing fuel
consumption, hence lowering gas emissions [6]. Other approaches have focused on devel-
oping new propulsion technologies and suggested feasible energy management solutions
to cut down environmental pollution, reduce CO, emissions, and maximise fuel efficiency
for many kinds of shipping transportation [7].

One practical and feasible solution to address these concerns is the hybridisation
of the vessel’s propulsion systems. The hybridisation is based on the combination of
diesel-generator-powered (DG) electric propulsion systems and optimal energy storage sys-
tems (ESSs), accompanied by advanced control strategies of energy management systems
(EMSs) to regulate the power-flow between DG and ESSs. Although the electrical-powered
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propulsion systems have been introduced throughout the world in the early 1990s, offering
benefits over mechanical propulsion systems in terms of fuel economy, emissions, and
maintenance loads, hybrid electric propulsion systems (HEPSs) have just been introduced
to numerous applications of automotive industry sector recently [8-10]. However, in the
maritime industry sector, the development of HEPSs for vessels is just at the commence-
ment of its exploration [4,11-13]. They are attracting research intention in both academia
and industry, especially with regard to the integration of battery storage systems (BSSs)
into the system as well as the development of achievable EMS to lower fuel consumption
and gas emissions. Recently, extensive studies have been reported on high power efficiency
ships using new hybrid propulsion technologies and competency EMS [14-16]. Jaurola
et al. [14] suggested an optimising design tool for the power management system of a
marine vessel based on a literature review. The article presented a key idea focusing
on the EMS development, which allows individual power sources to run closer to their
optimal output power. However, the study is a purely theoretical investigation, and there
is no simulation or experimental result carried out. Kanellopoulos et al. [17] investigated
the application of a HEPS in an offshore construction support vessel. An electromotive
force control approach was designed based on the IF-ELSE logics and look-up tables to
determine suitable actions for the system. From the load flow analysis, it is shown that
the hybrid system is more flexible in providing the necessary loads under certain opera-
tional conditions. The simulation results illustrated the improvement in reducing pollutant
exhaust gas emissions and noise levels on board. Practical comparison of the system is
necessary to evaluate the system performance in real-time. Diju et al. [18] studied HEPS for
inland waterway vessels and developed a three-layer logic threshold control method for the
system to reduce the fuel consumption and gas emission. The simulation results show the
improvement of the fuel economy as compared to that of the fuzzy logic strategy. In general,
the main control objective of the control strategies for hybrid ships is to allow the engines to
operate near to their highest working efficiency point or lowest emission point for a given
operating speed within a particular load profile. This limits the operational capacity of
the system within a specific profile while there is considerable diversity in the operational
capability. Furthermore, the control performance of the discussed hybrid systems was
evaluated via simulation methods based on limited load profiles and operating conditions,
and real-time validation is necessary to evaluate the performance of those approaches. In
fact, the implementation of HEPS is mostly restricted to certain types of vessels, as it is
particularly applicable in cases where the mean propulsion power demand is significantly
lower than the installed capacity [17]. The performance of a HEPS is also limited to its
operating load profile where the influence of load changes can be addressed by the optimal
EMS. However, due to the diversity of working conditions and the complexity of control
systems, efficient EMS design and verification concerns for the HEPS still draw significant
attention from researchers.

Notwithstanding, real-time verification of a complete HEPS with EMS remains chal-
lenging due to the high capital cost of prototype development, time consumption, and
safety concerns, etc. The hardware-in-the-loop (HIL) simulation technique, which has been
intensively used in many fields such as control development and verification, product
and component assessment, and system performance validation [19-22], seems to be the
most favourable method for real-time testing and evaluating the system. It enables the
testing of actual components in conjunction with a virtual computer-based simulation
model to represent parts of the system. This testing method avoids complex processes in
hardware setup and time constraints and helps lower the risks to people and equipment.
The novelties and contributions of this study are summarized as follows. First, the ap-
proach establishes an applicable methodology to conduct simulation and verification of
the EMS on a prototype of dynamic positioning (DP) hybrid electric marine vessel (HEMV)
application in a real-time environment. The method provides the ability to apply HIL
techniques in constructing a real-time HEMV system and to transfer the advantages of HIL
technology, which are very well documented and researched within the automotive and
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aerospace domains, to the marine sector for real-time validation, evaluation, and verifica-
tion. Thus, it can be the premise for the development, verification, and deployment of the
next generation of hybridization and electrification of marine vessels. Second, a simple but
production-feasible and efficient EMS, which is able to deal with different operating modes
of HEMV application enhancing the fuel economy and reducing environmental emissions,
is developed to overcome the drawbacks of traditional control approaches in terms of effi-
ciency and performance. Third, the successful deployment of a real-time battery simulator
(BAT-S), which represents the complete BSS, extends the applicability of the traditional HIL
testing method for testing and evaluating the performance of the EMS. The BAT-S has been
completely integrated into the system to evaluate the control strategies instead of using a
physical BSS that has obviously high costs, testing time, and safety concerns. Finally, as a
technical transfer method from the automotive to maritime sector, a HIL-based DP HEMV
platform is built for the experimental evaluation of EMS in a real-time testing environment.
The achievable HIL simulator platform can potentially provide the capability of evaluating
the EMS under any drive cycles with different operational modes of DP marine vessels.

The remainder of the paper is organised as follows. The system architecture and
representative plant model are introduced in Section 2. The modelling of key components
of the DP HEMV system is presented in Section 3. In Section 4, an extended rule-based
control (ERBC) scheme is developed as a feasible control logic based on the principle of
load levelling to control the power flow amongst the energy sources of the system. In
this section, other rule-based control schemes, e.g., conventional DG control (DGC) and
standard rule-based control (RBC), are also developed for comparison purposes. Then, a
real-time HIL simulation platform is built in Section 5 to enable real-time simulation and
evaluation of the control system. In Section 6, experimental comparison of the system with
different control strategies is carried out to access the control performance of the employed
HEMYV system and the operational ability of the EMS in a real-time environment. Finally,
the conclusion and future works are presented in Section 7.

2. DP HEMYV System Description

Dynamic positioning in the maritime industry is known as a control procedure that
automatically maintains the vessel and ship position and heading direction by using its
own propellers and thrusters [23]. A ship equipped with this kind of automatic control
system offers a capability of holding itself stationary while retaining performance for other
tasks. This is therefore relevant for the vessel when mooring or anchoring at sea or in a
deep-water area or wherever a DP operation is needed. Since the DP system has recently
been increased in the maritime industry, different types of shipping vessels are being fitted
with a DP system to enhance the control performance and handling characteristics of the
vessels [24]. However, similar to the hybrid propulsion ships, DP vessels require effective
EMS due to the complexity and diversity in the control system in order to manage the
operational sequence of various power sources in the vessel so that they can perform well
while maintaining DP operation.

In fact, the operation of DP vessels generally consists of seven modes: harbour, harbour
loading, transit (or cruising), DP loading, DP standby, emergency, and black start [25,26].
To guarantee the vessel performance within its operation modes as well as to maintain
the capability to respond quickly to peak loads, the traditional propulsion system needs
to have a power capacity much higher than the average power required to operate the
vessel. This leads to the fact that the vessel would be equipped with large size engine-
generators while normally operating in low power modes or at low efficiency regions,
therefore resulting in high fuel consumption and thus gas emissions [26]. Hence, a hybrid
propulsion system should be employed, replacing the traditional one, to overcome these
restrictions. Subsequently, an efficient EMS for hybrid propulsion systems should be
developed as an urgent demand to improve the environmental impacts and performance
of DP vessels.



Electronics 2021, 10, 1280

40f28

In this study, a series alternating current (AC) DP HEMV is chosen as the target system
for the verification and evaluation of the developed EMS. The architecture diagram of the
employed HEMYV is illustrated in Figure 1. The system principally consists of two DG
units, a battery pack representing the ESS, two AC propulsion motors, power converters,
transformers, and auxiliary and hotel loads. In each DG, a diesel ICE is engaged to drive
the AC generator that acts as the main power source to produce electric power for the
common AC grid. In this system, the AC generator is a synchronous machine, which means
the output frequency of the generator is dependent upon its rotation speed; the operating
frequency of each DG is therefore required to be constant to maintain the grid operating
frequency. Consequently, the diesel ICE must be maintained at a constant speed as well. The
operation parameters of the DG used in this study are listed in Table 1 [25]. The lithium-ion
battery-based ESS is utilised to store the excess electric energy from the grid when available
and release that to the grid when requested. By using the transformers and converters,
the energy in the common AC bus provided by the DGs and ESS is then converted and
distributed to consumers such as propulsion motors and all other system loads.

1: Battery system |m——————— ==
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4: Auxiliary loads : : AC
5: Diesel engine | |

6: AC Generator L ————————— !
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Figure 1. Structure of the employed HEMV system.

Table 1. DG’s parameters.

Parameter Value Unit
Number of DG 2 -
Maximum output power (@2200 rpm) 533 kW
AC generator’s working frequency 60 Hz
Number of poles of the generator 4 -
Working speed 1800 rpm

3. DP HEMYV System Modelling

In this section, the DP HEMYV is built as the combination of key components’ sub-
models, comprising the DG, battery ESS system, and power electronics, while other supple-
ment components are ignored or assumed unaffected. To cut down the complexity of the
system model as well as to support the EMS development and verification, the following
key assumptions are applied:
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(1) The speed, torque, and output power of the ICE are properly defined as in Table 1 to
fit the laboratory testing condition. The pre-defined ICE parameters are based on the
proper selection and combination of commercial Tier 4 marine engines from JCB Itd.
and Caterpillar ltd. marine engine manufacturers, which are detailed in [27,28].

(2) The efficiency and variation sensitivity of the propellers are unchanged. Hence,
the efficiency is expected to be ideal and set to 100% (there is no deficit of power
or performance).

(3) Depending on the actual torque and total power request, the fuel consumption of each
diesel ICE is calculated based on a fuel consumption map; likewise, the performance
of each AC generator is interpolated based on an efficiency map.

(4) Total measurement accuracy and power loss through power electronic equipment
within the AC grid is assumed constant and expressed by an efficiency coefficient.

(5) The transient behaviours of the battery-based ESS during dynamic cycling are ne-
glected. Thus, a simple battery empirical model is feasible for the control verification.

(6) Negative influence of temperature on the performance of the ESS and overall HEMV
system are not considered in this study.

(7)  The influences of battery degradation on the control performances are ignored; hence,
the battery performance remains unchanged during the operation.

(8) The propulsion and auxiliary and hotel loads are represented by total operation power
request, which is already merged into the load profile.

3.1. Diesel Engine-Generator Modelling

The steady-state output power of the selected ICE is easily calculated via a two-
dimensional function look-up table to map the inputs of engine speed and torque to its
output power. Figure 2 illustrates the relationship of the ICE output power and torque
versus its operational speed, which demonstrates the performance of the selected diesel
ICE. Depending on the actual operational speed and the torque request, the output power
of the ICE can be obtained. The output power of the generator can be therefore calculated
based on an efficiency factor of the generator.

Pgen = Peng’?gen 1)

where Peyg is the output power of the ICE (kW); Pg,y, is the output power of the generator
(kW); 11gen is the efficiency factor, which is calculated based on the efficiency map of the
AC generator.
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Figure 2. ICE output power and torque versus speed.
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Likewise, the ICE fuel consumption is derived from a brake-specific fuel consumption
(BSFC) map versus engine torque and speed, as shown in Figure 3. This figure depicts an
optimal operating line (OOL) and maximum operating line (MOL) of the ICE that represent
the output power limit of the ICE when running at the optimum and maximum operational
curves, respectively. They are calculated based on the power maps of the reference engines
in the assumptions. Here, the OOL (blue dash-line) indicates the best energy efficiency of
the ICE, while the MOL (red dash-line) offers the maximum output power of the engine.
In any type of engine, OOL is a set of optimal operational points (OOP), based on engine
speed and torque, at which the highest energy efficiency can be delivered. Similarly, MOL
is a set of maximum operating points (MOP) where the engine provides maximum output
power according to actual engine speed and torque. The instantaneous fuel consumption
rate can be calculated as follows:

Peyg1073
Meng = BSFC-"8——

2)
where Meyg is the instantaneous fuel consumption rate (L/h); BSEC is the brake-specific fuel
consumption (g/kWh); Peyg is the output power of the ICE (kW); p is the diesel fuel density
(0=0.84kg/L).
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Figure 3. BSFC map of the selected diesel ICE.

Consequently, the fuel consumption is determined by the integration of the instanta-
neous fuel consumption rate over time as follows:

ffuel(t) = /Meng(t)dt 3)
0

3.2. Battery Modelling

The battery pack plays an important role in a HEMV. It acts as the ESS of the vessel
system, providing the capability of storing excess electrical energy when the total power
generated by the DGs exceeds the load demand. The battery is also able to release electrical
energy to the grid when the load demand is greater than the total power provided by the
internal DGs. In this circumstance, the battery pack acts as a second power source that
supplies extra energy to fulfil the system power. In the literature, different types of battery
chemicals are used as a dominant energy source, such as lithium-ion, nickel-cadmium,
lead-acid, and alkaline. Amongst them, lithium-ion batteries are the most competitive



Electronics 2021, 10, 1280

7 of 28

candidate because of their unique features such as their high energy density, long life cycle,
high efficiency, and environmental-friendly performance [29]. Recent studies also show that
advanced lithium-ion battery models such as the equivalent circuit model (ECM) [30,31]
and electrochemical-based battery models [32,33] have been employed in the control design
and energy management systems. However, a drawback that remains in such studies is
the calculation effort, which has a negative impact on the control performance, especially
for real-time feedback control and verification. Hence, depending on the complexity of
the battery model and the size of the whole system model, a suitable battery model can be
selected to satisfy the calculation constraint of real-time applications.

In this study, a lithium-ion battery type is therefore equipped to regulate any excess or
deficit electric power of the employed HEMV. The battery pack is formed by a series of
eight identical battery modules, while each module is created by connecting, in series and
parallel, Sony lithium-ion cells—US18650VTC6 as of 165167P configuration, which are 16
cells in series and 167 cells in parallel connected. The employed Sony cell can provide 3.63
V of nominal voltage and 3 Ah of maximum capacity. The key parameters of the employed
battery pack are shown in Table 2.

Table 2. Battery parameters.

Battery Parameters Symbol Value Unit
Cell nominal voltage Ve 3.63 \%
Cell capacity Ce 3 Ah
Battery module (165167P) nominal voltage Vi 60 1%
Battery module (165167P) capacity Cm 500 Ah
Number of battery module in series - 8 -
Battery pack nominal voltage Vp 480 Vv
Battery pack capacity Cnax 500 Ah
Peak charging current I, 500 A
Charge efficiency Heh 90 %
Peak discharging current ;™% 1000 A
Discharge efficiency W dis 100 %

The battery model used in this study is inherited from our previous studies [25,26].

The following discussion summarises the essential battery information of an ECM as

depicted in Figure 4. The open circuit voltage (OCV) and internal resistance of the battery

are the function of battery state of charge (SOC) and temperature that are easy to measure

and estimate using experimental characterisation. The battery OCV can be calculated by
using the following equation:

Voc = lpatRpat + Vi 4)

where Vo is the OCV of the battery (V); I is the battery current (A); Ry, is the battery
internal resistance ((2). V; is the terminal voltage (V).
The output power of the battery can be calculated as follows:

Pyat = VocIvat — Ipar*Rear 5)

where Py, is the output power of the battery (W); Ipai* Ry is the power lost factor of the
battery and can be approximated by a Coulomb efficiency term: #;,;.
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Figure 4. Battery equivalent circuit model.

The battery current and the variation of SOC in the battery can be defined as follows:

Voc — v/Voc? — 4Ryt Pyt

I =
bat 2Rt (6)
SéC —— par ?)
Cmax

where SOC is the variation of the battery SOC (%); Cpqy is the maximum battery capacity (Ah).
The SOC then can be updated for step t* using the Coulomb counting method as follows:

Iy,
bat(®) ¢ ®)

t
SOC ;) = SOC g + / C
max
0
where t is the time taken, SOC(t) is the SOC at time ¢, and SOC(O) is the initial SOC of the battery.

The OCV-SOC curve and the internal resistance variation versus SOC depicted in
Figure 5 are derived based on the characterisation data of three pristine battery cells. The
experimental works were carried out at the Energy Innovation Centre (EIC) laboratory,
WMG, the University of Warwick, United Kingdom. Before the characterisation was per-
formed, the cells were rested within a thermal chamber at 25 °C, allowing a stabilisation for
12 h. The characterisation test was then conducted through four tests including the capacity
measurement, OCV-SOC relationship, and internal resistance measurement through both
a pulse power test and electro-chemical impedance spectroscopy (EIS) measurement [34].
The characterisation data describing electrical behaviours of the cells are used to derive the
parameters of the battery model.

In fact, for safety purposes, the variation of the battery SOC is limited within its safety
operational range. This is to avoid over-charge or over-discharge during the operation
and prolong the lifetime of the battery. Additionally, for testing the system within the
laboratory environment and reducing the simulation time effort and capital cost, it is noted
that the whole battery pack is simulated by the BAT-S. The battery pack is represented
by a battery sub-module, which consists of a single string of 16 cells connected in series
as of the 1651P configuration. This representative battery sub-module can produce 60 V
nominal voltage and 3 Ah capacity. It is then scaled-up to represent the complete battery
pack of the system, as depicted in Table 2. Table 3 proposes the normal working modes
of the battery pack, where SOC stands for the actual state-of-charge level of the battery;
SOCy, SOCy, and SOCy represent the low, medium, and high operating thresholds of the
battery pack, respectively.
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Figure 5. (a) Battery OCV-SOC curve; (b) internal resistance curve.

Table 3. Battery working modes.

SOC Level Battery Power Level Definition
SOC < SOCL Very low battery power Charge priority mode
SOCy, < SOC < SOCy Low battery power Charge sustaining mode
SOCy < SOC < SOCy Medium battery power Charge sustaining or depleting mode
SOCy < SOC High battery power Charge depleting mode

3.3. Power Electronics and Other Components Modelling

The performance of the hybrid system is also affected by the efficiency of the power
electronic equipment. To reduce the complexity of the system modelling progress, the
model of power electronic components of the AC grid such as transformers, DC/AC
converter, AC/AC converters, and other devices are represented by an efficiency factor,
1Tpe- As a result, the actual output power of the AC grid is therefore defined as follows:

Pt = Pout’?pe )

where P and P, are, in turn, the output power of the grid after and before considering
the efficiency of the power electronic components 7., respectively.
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4. Energy Management Strategy Development

In this section, the EMS control strategies of the hybrid system are developed to control
and supervise the power flows amongst the two DGs and the battery pack according to
the variation of load command, power level, and operating constraints between the DG
and the battery. The objectives of the EMS are to minimize the fuel consumption and thus
exhaust gas emissions while maintaining the performance of the system and to maximize
the utilisation of the battery within the hybrid system while continuing to prevent it from
exceeding the safety pre-set SOC range. In these strategies, the output power of the DG
and battery is the control variable, while the power split defining the power distribution
between two DGs and the battery pack is the control input of the system.

Rule-based control systems have been widely developed for the automotive sector
and other smart grids in the literature [35-37]. They possess several advantages, such as
being simple in structure, steady response, and fast switching amongst various operation
modes according to different load demands and control scenarios. Theoretically, the
algorithm of the rule-based control strategy is easy to implement and suitable for real-time
management. However, the transition amongst operation modes in the hybrid system
is mostly dependent on the pre-designed switching condition or control criteria such as
total power request, constraints of engine start/stop duration, actual battery SOC, and
remaining energy in the battery pack. Additionally, the decision of the power split in each
mode is mostly dependent on the designer’s experiences in understanding the operational
behaviour of the vessel and the way to construct the switching rules for the EMS [26].

In this study, the control diagram of the proposed rule-based EMS is depicted in
Figure 6. The EMS is established based on two rule sets: the logic for operating mode
selection and the logic for power split decision. The first rule set is utilised to select
a proper working mode of the vessel according to load demand. Next, the resulting
mode and the status of the DGs and battery are fed into the second rule set to define the
power split between the DGs and battery. In this figure, the EMS receives the driving
command from the load profile, which represents the total operational power request and
generates the power request for the two DGs and the battery. The power requests for
the DGs are then sent through a procedure to interpolate the torque commands based
on their desired operational speed. The power requests for the battery are converted
to the current commands based on the actual SOC of the battery. The resulting torque
command and current command are finally utilised as the control signals for the ICEs and
battery, respectively.

V S E—
I
I g z
Rule-based EMS Diesel Electric |
_1'» Engine 1 => Generator 1 :"‘|> "
| DG1 Propulsion
ffffffffffffffffff == =
Logic for Logicfor || res===cc - -—co oo oo —
. Operating o r 0 }
Operational Mode ] Pg;::;}:‘ht : Diesel > Electric ﬁ ?\oC\S:]T
power |3 | Selection I Engine 2 Generator 2 N Bcisncy
request | DG2, efficiency)
(n s by || | S | A A | B e
T l Auxiliary &
Battery Torque > Batteries :> I:> Hotel
voltage & Interpolation Loads
SOC Algorithm

I:‘J> Mechanical connection :> Electrical conrection —— Signal link

Figure 6. General EMS control diagram of the targeted AC HEMV.

As a result, three rule-based control schemes are finally developed for a non-hybrid
vessel and the employed HEMYV as follows:

(1) Control scheme 1 is a conventional DG control strategy (denoted as DGC) developed
for the traditional propulsion vessel without a battery pack (non-hybrid vessel). In
this strategy, the start/stop duration, operating sequence, and output power of the
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DGs are controlled to directly follow the load demands (known as the load following
method), disregarding the energy efficiency.

(2) Control scheme 2 is a standard rule-based control strategy (RBC) developed for the
employed HEMV. Conventionally, the RBC is designed based on the power level
of the load profile, which is known as the load levelling method, to manage the
power distribution amongst the two DGs and battery. Using the RBC concept, the
DGs are allowed to operate up to their MOP following the MOL, which provides
maximum output power, to track the load demand before requesting power from the
battery pack.

(3) Control scheme 3 is an extended rule-based control strategy (ERBC), which is the
expanded version of the RBC, to overcome the limitation of the standard RBC. It is
developed based on the load levelling method coupled with the presence of extra
function logics to control the operating sequence of the ICE and the start/stop dura-
tion of each ICE and manage the power distribution of the two DGs and the battery
so that the ICEs can operate at the optimal region while maximising the usage of
the battery. As a result, the ERBC allows the ICE to operate at or close to its OOP
following the OOL to provide the best fuel economy. By operating the DGs at the
OOL, the battery unit can be used more effectively and productively to maintain the
overall system performance.

The drawback of the standard RBC strategy is that the ICE, and thus the DG, is usually
operating at or close to the MOL. This is not always true, as the higher torque does not
improve the fuel saving but conversely leads to the increment of fuel consumption if the
ICE keeps running at the high torque region and thus a soaring level of gas emissions. To
overcome this issue, the ERBC is considered in such a way to control the DG to operate at
or close to the OOL, in combination with the logics to control the ICE operating sequences,
start/stop order, and running period to enhance the performance and reduce the overall
fuel consumption.

4.1. Representative Operating Load Profile

In the rule-based EMS development process, understanding the characteristics of the
operating load profile is very important. Due to the diversity of the operational scenarios
of the vessel along with the different power demand level in every voyage, the complexity
of the load profile must be considered in the development of a reliable and efficient EMS.
To underpin the design and validation of the EMS strategies, a representative load profile
based on the characteristic and behaviour of a DP vessel [38] is derived, as shown in
Figure 7, where t; (i=1 — n) and P; (j =1 — m) are, in turn, the operation time and power
request during the voyage, respectively. The load profile represents the total power request,
which includes the propulsion power demand and auxiliary and hotel load demand of
the vessel. The load profile comprises five operation modes: transit (cruising), DP loading,
DP standby, harbour loading, and harbour. Literally, for each voyage, the vessel usually
experiences all such working modes, where it consumes low energy at port and depletes
high energy when loading, unloading, or cruising. In some specific circumstances, the
vessel can turn into any of such DP modes to keep stationary during the journey to transmit
merchandise or to perform any particular tasks, for example. Therefore, the efficient EMS
control strategy of a hybrid DP system must have the capability to flexibly switch the
system amongst those operation modes, control the performance of the propulsion system
and the ESS, and manage the power flows between them efficiently.
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Figure 7. A representative load profile of a DP vessel.

4.2. Power Level Definition

According to the normal operational characteristics of the selected DP vessel and the
power capacity of the two DGs and battery, four levels of power request (Pr) are defined,
allowing the system to operate within four different power levels as shown in Table 4. The
power thresholds are defined as follows:

P = 0.5(PICEOPt + pICEmax)
Py = Prcg™™ + 0.5Pg o™ (10)
Py = 2Pjcg™®

where, P, Py, and Py are in turn the power request, low-power threshold, medium-power
threshold, and high-power threshold of the load demand; P;cg* and Pjcg™3 are in turn
the engine optimal and maximum power at a certain speed; Ppar™®* is the maximum
power of the battery.

Table 4. Power level and vessel switching mode definition.

Power Request Power Level Vessel Mode Definition
Pr <Py Very low power request Harbour

Pr <Pr <Py Low power request Harbour loading + Harbour

Py <Pr <Py Medium power request DP standby + DP loading
Pr > Py High power request Cruising

where Py, is the instantaneous power request.

It is noteworthy that the values of the power levels are defined as the same for all
control strategies. When evaluating the DGC, the battery is not being used in the vessel;
the battery maximum power and the initial SOC are set to zero to remove the effect of the
battery. In evaluating the RBC and ERBC, to avoid continuous switching between working
modes, a small value is added to the thresholds of the battery SOC.
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4.3. Operational Constraints

The following constraints have been adopted to maintain the system performance and
stability and improve the operational lifetime of the equipment.

Battery useful operational range: the battery charging and discharging current and the
operational SOC level are limited for safety reasons. As the output voltage of the battery
is varied within its operational range, the input and output power of the battery are also
limited. The constraints for the charging/discharging current and SOC variation versus
time are as follows:

I(t) < I,™® for charging
Ip(t) < 13;s™* for discharging (11)
SO0Cmin < SOC(t) < SOCmax

where, 1, 1;;;™%, and Iy(t) are, in turn, the maximum charging current, maximum

discharging current, and instantaneous battery current (A); SOCpin, SOCmax, and SOC(t)
are, in turn, the minimum limit threshold, maximum limit threshold, and instantaneous
SOC of the battery (%). In this study, the negative current stands for the charging current
and the positive one represents the discharging one; the SOCpin and SOCpay thresholds
are set to 30% and 95%, respectively.
The instantaneous and maximum output power of an ICE unit is also limited and
defined as follows:
0 < Prce(t) < Preg™™ (12)

where Pjcp(t) and Picp™?* are the instantaneous and maximum output power of the ICE.

Load command conditions: as mentioned, when the load command is larger than or
equal to two times the maximum DG output power, the system will be controlled in high
power level mode, as shown in Table 4. In this mode, the energy deficit will be compensated
by the energy remaining in the battery. Therefore, the maximum load command (Pj,;3™)
to which the system can respond is defined as follows:

0 < Progg™™ < 2Prcg™® + Ppar™™ (13)

To improve the fuel economy, as well as to minimise the electrical power consumption
in starting the ICE, and avoid the high engine start/stop frequency during the journey,
once a DG is started, it should be kept running for at least a pre-set duration (AT) and can
be expressed as follows:

tice®N/OFF > AT (14)

4.4. EMS Control Strategies Development and Justification
4.4.1. Conventional Diesel-Generators Control Strategy (DGC)

DGC is designed for the traditional non-hybrid vessel in which the battery unit is not
presented. It solely controls the power flow and the operational sequence of two DGs; thus,
the total power request distributing to two DGs only follows the load demand disregarding
energy efficiency, fuel consumption, and gas emissions. Depending on the power demand,
the DGC produces the control signals including the power request and start/stop signal
for each DG so that the total output power generated by the two DGs meets the power
requirement. Figure 8 shows the block diagram of the DGC strategy, where ICE; and ICE,
stand for diesel engine 1 and 2, respectively; ICE = ON, ICE = OFF are, in turn, to turn on
and off the engine, respectively; P; and P; are the instantaneous power request of the DG
and DG, respectively.
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Figure 8. Conventional DGC control block diagram.

4.4.2. Rule-Based Control Strategy (RBC)

RBC is designed for the HEMV based on the power levels of the load profile and
the operational mode switching rules, as shown in Equation (10) and Table 4. Once the
output power of each DG is controlled up to its maximum power, then the battery depletes
additional energy to support the system or accumulates excess energy from the system. In
this strategy, the battery pack plays an important role in optimizing the energy of the DGs.
The following rule-based logics are employed in order to achieve the control target.

Rule 1: If Pg is less than or equal to P;.

Then, if the remaining energy in the battery is sufficient to support the system within a
pre-set operating duration, two DGs are kept “OFF” and the battery is depleted to support
the system; else, when the battery energy is lower than 75% SOC, one DG is started and
kept “ON” at the MOP. In this circumstance, the battery accumulates the excess energy
from the system for later usage.

Rule 2: If Py is larger than P and less than or equal to Py,.

Then, only one DG is started and kept “ON" so that the output power is up to MOP.
The battery is switched to charging or discharging mode according to its required power
and SOC status. In this case, the battery SOC is limited so that it can be charged up to 95%
(top threshold) or discharged up to 70% to maintain the performance of the battery.

Rule 3: If Py is larger than Py and less than or equal to Pp.

Then, depending on the load demand and current battery SOC, one DG or two DGs
are turned “ON” and kept running so that the DG’s output power is up to MOP. The battery
SOC thresholds are set the same as in Rule 2. When the battery SOC reaches the bottom
threshold, it is switched to charge mode, and both DGs are started. In this circumstance,
the output powers of both DGs are kept “ON” at the same power output to balance the
performance of two DGs.
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Rule 4: If Pg is larger than Py.

Then, two DGs are turned “ON” and held working at MOP; the battery is discharged
to the target SOC thresholds, which is stated in Equation (11). Once the battery SOC reaches
the bottom threshold (e.g., 30%), the battery is switched “OFF” and thus there are only two
DGs operating at MOP. Therefore, the maximum output power of the system in this case is
estimated by the total power generated by the two DGs and the maximum discharging
power of the battery.

4.4.3. Extended Rule-Based Control Strategy (ERBC)

On RBC, it can be seen that two DGs are priority controlled up to their MOP before
depleting the energy from the battery in most of the cases. This leads to the fact that there
is significant unnecessary excess energy generated by the DGs that will then be stored in a
limited battery capacity. It is therefore increasing the amount of fuel feeding to keep the
ICE “ON”, thus increasing fuel consumption and gas emission, while the useful utilisation
of the battery is restricted. Consequently, to overcome the weakness of the RBC, ERBC
is proposed and applied. ERBC strategy essentially employs the same logics of the RBC,
however, by using the load levelling concept with additional function logics to control the
ICEs operating at or close to the OOP, following the OOL, to achieve the highest energy
efficiency and maximise the utilisation of the battery. In this strategy, the torque command
of the ICEs is interpolated based on actual ICE power request and their desired speed so
that the total output power is close to the OOP before requesting power from the battery.
Furthermore, extra function logics are integrated into ERBC in order to control the ICE
operating sequences, which firstly prioritise the single ICE to operate at OOP and then
both ICEs at the same working point depending on the power request. This behaviour
prevents the ICE from being started /stopped regularly to diminish the influence of the ICE
transitional period and the sensitivity of the start/stop function. Additionally, the logics
also avoid the operating modes from switching frequently to maintain the stabilisation and
reliability of the system. The detailed block diagram of the ERBC strategy is illustrated in
Figure 9, where Picgy is the optimal power output of the ICE; Pgar is the instantaneous
input/output power capacity of the battery according to the charge mode (BAT charged)
and discharge mode (BAT discharges) of the battery, respectively.

It is noteworthy that the ERBC maximises the utilisation of the battery and keeps one
or both ICEs operating at their OOPs depending on actual power demand. The battery in
this strategy can function optimally, and its SOC is varied within its boundaries. It can be
used to store the excess energy whenever the supply energy is higher than the demand or
feed its energy back to the main grid to support the ICEs when the current energy is smaller
than the demand. Furthermore, based on the constraints of the power level switching as
in Table 4, and the operational rules and the SOC boundary limits as in Equation (11), the
ERBC can fully control the ICEs and manage the battery SOC so that they can operate
within the limits. Hence, this EMS strategy can increase the resiliency of the battery SOC
whenever the excess energy is positive while maintaining the overall system performance
to meet the load requirement.
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Figure 9. ERBC control block diagram.

5. Real-Time HIL Configuration for Complete HEMV Evaluation
5.1. HIL Platform Definition

To represent the complete DP HEMV system, a HIL simulation platform is built by
employing multiple pieces of real-time equipment in combination with the models of
key components to simulate the whole system. Figure 10 illustrates the complete system
configuration and signal connection. Basically, the platform consists of a SCALEXIO, a
MicroAUTOBOX II (MAB), a Battery Simulator (BAT-S), which is manufactured by dSPACE
GmbH, a local management unit (LMU) from Texas Instruments, and other peripheral
devices that are used for physical signal communication and transmission. The main tasks
of each real-time machine can be explained as follows:
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Figure 10. HIL platform communication block diagram.

SCALEXIO is utilised to simulate the complete HEMV system excluding the battery
pack based on the developed models as well as to represent the EMS based on the control
strategies. In addition, the load profile illustrates that the total power request of the vessel
is loaded into this machine to support the system verification. Once the load profile is
generated, the EMS then regulates the power split signals for the DGs and the battery pack
based on their individual control logic. The control signals for each DG and battery are
interpolated accordingly and sent to the targets via a common controller area network
(CAN) bus. To demonstrate physical signal transmission amongst EMS, ICE, DG, and
battery, all control or feedback signals will be populated into the common system CAN
bus; then, they will be delivered or received accordingly by their terminals.

BAT-S is a controllable power electronic device that can simulate a single or multi-cell
battery pack based on any kind of mathematical battery model. It can output physical cell
voltage with high precision based on the given voltage command from the battery model.
This device is ideal to represent a physical battery module or pack for the developing and
testing of battery management systems (BMSs) or evaluating the performance of EMSs. In
this study, the BAT-S is used to generate physical signals of a battery sub-module 1651P
configuration as described in Section 3.2. The BAT-S is controlled by the MAB via an
ethernet bus protocol.

MAB contains the battery model and the BMS algorithm to represent the complete
BSS. It is mainly employed to generate the control signals for the BAT-S to simulate the
physical battery pack and execute the BMS functions to manage the whole virtual BSS. It is
also used to transmit the battery information to the main control unit. Initially, the MAB
receives the battery current command, which is the input to the battery model, from the
common CAN bus. The battery model then generates the driving command for the BAT-S,
which is the cell voltage command, enabling the BAT-S to output physical cell voltages. As
mentioned, a 1651P configuration battery sub-module is generated to simulate the complete
scaled-up battery pack. Thereby, once the battery is simulated, all cell information will be
physically captured by an LMU where the cell voltages will then be measured, filtered,
and broadcasted to the common CAN bus. This information will be once again captured
by the MAB for further analysis at the BMS. As the result, the physical output power and
parameters of the battery such as cell, module, and pack voltages, driving current, and
battery SOC are measured, calculated, and estimated accordingly by the BMS. Finally, the



Electronics 2021, 10, 1280

18 of 28

battery information received from the BMS allows the EMS to determine a suitable decision
for the battery, ICE, DG, and overall system. The Matlab/Simulink models developed for
the SCALEXIO and MAB are depicted in Figures Al and A2 in Appendix A, respectively.

In order to monitor the physical cell voltages of the battery pack generated by the
BAT-S, LMU is utilised as a measurement device to capture the physical information
of the simulated battery. The LMU consists of a battery evaluation board named Ti-
BQ76PL455EVM from Texas Instrument and a CAN converter to communicate with the
system CAN bus. The role of the battery evaluation board is to capture all physical cell
voltages generated by the BAT-S in real-time and transmit to the central BMS over the
common CAN bus. Figure 11 depicts the actual HIL simulation platform setup of the
real-time HEMYV system.

Figure 11. Actual HIL simulation platform setup.

5.2. System Communication Interfaces and Challenges

Unlike offline model-based simulation techniques, a real-time HIL simulation method
requires a number of physical communication interfaces for signal exchange between
different real-time components. As shown in Figure 10, there are different communication
interfaces within the platform for signal transmission such as the CAN bus, Ethernet bus,
analogue/digital (A/D) input/output (I/O), and DC power bus where the physical signals
can be transmitted or received. The CAN bus is designed to allow various electronic-based
devices to exchange their information or signals with each other over a common serial
bus. It reduces the wiring harness between devices, thereby reducing the wiring bulkiness
and complexity of the complete system. In this configuration, a Vector CANalyzer device
(model VN1630A) is installed to monitor and record all CAN signals transmitted within
the common CAN bus for post-processing purposes. The details of the CAN signals and
messages definition can be seen in Table A1 of Appendix A. As aforementioned, the BAT-S,
via Ethernet bus protocol, receives the driving commands from the MAB, in which the
battery model and BMS are simulated, to reproduce the physical cell voltages of the battery
pack. The physical cell voltages, which are the analogue signals representing the actual
terminal voltage of the battery cells, are then captured by the LMU. The LMU receives and
broadcasts the cell data to the common CAN bus accordingly.

In fact, during the HIL implementation, it was observed that the communication errors
and signal noises occurring due to physical connection are unavoidable. For example, in
CAN communication protocol, all signals transmitted amongst components are packed
and unpacked according to the magnitude and resolution of the signals. Depending on
the priority criteria of the designer, the signal accuracy can be adjusted to fit into a CAN
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message and determine how fast the signal can be broadcasted or triggered. These issues
significantly affect the accuracy, latency, and update rate of the exchanged signals. In
general, it can be summarised as follows:

(1) Signal resolution and its accuracy: this can be caused by the measurement hardware
and the way to transmit and/or receive the signals. While measuring analog signals,
depending on the resolution of the analog-to-digital converter (ADC) of the measur-
ing instruments and the signal magnitude or their operating range, the measured
signals can be presented within a specific resolution. In addition, performing signal
exchanging via CAN bus, all signals need to be “resized” into suitable bit-length
so that they can be fitted into predefined messages. This task causes a difference in
the accuracy between the original signals and the actual transmitted one. Therefore,
depending on the requirement of the accuracy of the signal, the designer can define a
suitable resolution for each signal.

(2) Signal latency and time-shift: this happens in real-time operation activities when a
signal is transmitted or received from different devices; the signal can be held for one
or several time-steps due to the pre-set sample rate of the model or the priority of
the employed hardware. This can lead to the fact that the sent or received signals are
being held, delayed, or time-shifted.

(3) Measurement inaccuracy, noise, and power loss through the power electronic com-
ponents: these un-avoided drawbacks usually happen when examining analogue
signals using electronic measurement equipment.

6. Experimental Results and Discussion

In this section, comparative test-cases of the complete HEMV system are carried out to
evaluate the control performance of the proposed ERBC with those of the RBC and DGC on
the designed real-time HIL-based HEMYV system. Thereby, the results can be used to assess
the potential improvement of energy cost, fuel consumption, and thus the emissions of the
typical marine system. The representative load profile with five operation modes defined in
the previous section is employed as the total power request of the whole voyage. The entire
duration of the load profile is pre-scaled to 17.5 h, which enables running experimental tests
at current laboratory conditions. As a result, the total power request and the operational
duration of each mode of the load profile are illustrated in Figure 12. The whole simulation
platform is placed in a temperature controllable thermal chamber where the temperature is
held constant at 25 °C to maintain the stability of the electronic systems during the test. To
enable and evaluate the control performance comparison in different operating conditions,
the system is conducted with two different parameter sets of the ICE minimum operation
duration, i.e., 10 and 20 min, and two different initial SOC of the battery, i.e., 85% and
40%, while the rest of the system parameters shown in Tables 1 and 2 are configured the
same for all test-cases. As a result, ten test-cases with different control strategies and initial
parameter sets are generated, as shown in Table 5. The overall sampling rate is fixed at
10 milliseconds for all test-cases.
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Figure 12. A representative load profile of the HEMV.

Table 5. Test-cases definition.

Test-Cases C‘;;Zt\?sl)l e Minimum ICE Start/Stop Duration (Minute) Initial SOC (%)
1 DGC 10 -
2 DGC 20 -
3 RBC 10 85
4 RBC 10 40
5 RBC 20 85
6 RBC 20 40
7 ERBC 10 85
8 ERBC 10 40
9 ERBC 20 85
10 ERBC 20 40

First, test-case 7 is randomly chosen as the representative case within the four test-
cases of ERBC to evaluate the applicability of the proposed control strategy in real-time
testing conditions. Correspondingly, the necessary output power of the complete HEMV
system is estimated in comparison to the total power demand, as shown in Figure 13. The
total necessary power is predicted to be higher than the power demand at any certain time
of the journey. This behaviour reflects the overall system efficiency including that of the
propulsion system (represented by the ICE and DG’s operating efficiency), battery storage
(BSS’s efficiency), and overall efficiency of the power electronic and other components.
The difference between the total power request and the estimated required power output
is shown in the bottom sub-plot of this figure; it shows that a higher power request may
obviously lead to a larger difference between the two powers.
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Figure 13. Load profile and estimated necessary power of the HEMV.

Figure 14 depicts the variation of the battery SOC over time, which demonstrates the
utilisation performance of the battery during the journey. The battery pack is controlled to
be charged or discharged according to the actual power request generated by the ERBC
controller. The SOC variation satisfies the safety constraints, as it is altering within the
range between 30% and 95% of SOC. In addition, Figure 15 illustrates the battery input
power (in charged mode—negative part) and output power (in discharge mode—positive
part) variation over time. The results show that the HIL-based battery pack performs very
well in real-time and the LMU unit can successfully capture the battery information and
send it to the central BMS, and then the EMS, to represent the behaviour of the physical
battery system. Consequently, this simulation method provides a capability of validating
the control performance of the controllers and allows the testing of the overall HEMV
system in a real-time environment.
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Figure 14. Variation of battery SOC during operation.
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Figure 15. Battery power variation during operation.

Additionally, Figure 16 illustrates the operating performance of the two ICEs and
thus the DG’s output powers. The top sub-plot shows the start/stop sequences and the
operation duration of the ICE. The minimum start/stop duration satisfies the constraint of
this test-case; the ICE should operate at least 10 min before stopping. The DG1 has eight
start/stop cycles with a stop ratio of 13.59%, while the DG2 has 13 with a 72.57% stop
ratio. The bottom sub-plot presents the output power of the DG1 and DG2 according to
the ICE start/stop sequences. Both DG1 and DG2 can be turned on and/or off during the
voyage to minimize the ICE operation time and thus the fuel consumption and maximize
the utilisation of the battery. Once turned on, the DG1 is controlled as close as possible to
the OOP while the DG2, if turned on, is controlled so that the output power is the same as
that of the DG1 to balance system performance.
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Figure 16. DGs working performance in HIL simulation.

Second, to demonstrate the performance improvement of the proposed ERBC over
other control strategies, the key performance indicator (KPI) table is built based on the
controller design requirements, as depicted in Table 6. The KPI table enables the comparison
of the performance of the HEMV system under three different control approaches in a
number of criteria such as the number of ICE start/stop cycles, total operation time per
voyage of ICE and DG, fuel consumption, electrical consumption, and energy cost. It is
noted that the vessel energy cost is the total cost of fuel consumption, electrical cost for
cranking the ICE, and electrical cost, which produces the difference between the initial and
final battery SOC. In this table, test-case numbers 1, 3, and 7, which are the representatives
of each control strategy, are selected for the comparison. In these test-cases, the minimum
start/stop duration of ICE is set to 10 min, while the initial battery SOC is set to 85% for both
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RBC and ERBC. The total fuel consumption of the ERBC is saved up to 1251 (equivalent
to 4.87%) and 4.818% of the overall energy cost compared to those of the conventional
non-hybrid vessel, which uses the DGC. In addition, the results in Table 6 also indicate that
the fuel consumption improvement of the ERBC is 11.6l (equivalent to 0.47%), and there is a
difference of 0.38% in energy cost saved as compared to the one of the RBC control strategy.

Table 6. KPI comparison of test case number 1, 3, and 7.

Conv. Vessel Hemv Hemv
KPI Unit Test Case 1 Test Case 3 Test Case 7
DGC RBC ERBC
Total Run Time hh:mm:ss 17:30:00 17:30:00 17:30:00
DG 1 Stop/Start Count - 1 9 8
DG 1 Run Time s 63,000 54,480 54,432
DG 1 Stop Ratio % 0 13.52 13.59
DG 2 Stop/Start Count - 20 9 13
DG 2 Run Time s 36,089 18,600 17,276
DG 2 Stop Ratio % 42.68 70.47 72.57
Battery SOC Drop % - —1.04 2.08
Vessel Fuel Used L 2568.1 2454.7 2443.1
Vessel Fuel Cost £ 3223 3080.6 3066.1
Vessel Elec Used kWh - —2.52 5.0
Vessel Elec Cost £ 10.4 8.6 11.52
Vessel Energy Cost £ 3233.4 3089.2 3077.6
Energy Cost Saved vs DGC % - 4.458 4.818
Energy Cost Saved vs RBC % - - 0.38

The ICE fuel consumption is calculated based on the integration of the time-variant
BSEC rate over time. In terms of lowering the fuel consumption to reduce the exhaust
gas emission, the ICE running at the OOP is preferable. As mentioned, the ERBC controls
the ICE to follow the OOL offering the best fuel economy, while the RBC controls the ICE
to follow the MOL. This difference can be seen through the actual operational points of
the ICE when using the RBC and ERBC, as shown in Figure 17. The red “x” marks and
the blue “0” marks represent the actual ICE operating points using the RBC and ERBC,
respectively. From the results, within the range of £5% around the OOP by using the
ERBC, the ICE operational point focuses to 64.73%, while there is only 36.79% of the RBC.
This concentration shows that the performance of the ERBC is more effective than that
of the RBC in driving the system to the suitable operational point. However, it is easy
to find out that, with the selected BSFC map in this study, the BSFC rate between the
OOP and MOP does not differ significantly, because they are located in the same BSFC
level (between the range of 208 and 218 g/kWh in this figure). Therefore, this is the reason
why the improvement in fuel consumption by using the ERBC is not significant and thus
a small difference in the energy cost is saved in this comparative approach. The fuel
consumption improvement could be clearly recognized when the ICE has a large difference
in fuel-burning rates between the OOL and MOL.
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Figure 17. Actual operational point of the ICE under RBC and ERBC.

Finally, a comparison of the ICE fuel consumption and total energy cost of the HEMV
using the proposed control strategies is performed and summarised in Table 7. Depending
on the initial parameters of the simulation model, the SOC variation, fuel consumption, and
thus total energy cost are varied through each test case. In the traditional vessel, the DGC
controls the ICEs to follow the power request so these ICEs could not operate within their
optimal region. The output power of the ICEs is dependent on the power command and
thus the instantaneous fuel consumption rate of the system in this case is varied according
to the power level. In the HEMV with the use of a battery, the electrical energy stored in
the battery is converted to support the system when needed, while the excess energy of the
system is accumulated and stored in the battery. This allows the ICEs to operate up to their
maximum or optimum power regions under the control of the RBC and ERBC strategies,
respectively. Therefore, the fuel consumption under these control strategies is improved
compared to that of the conventional vessels.

Table 7. Comparison of energy consumption under MIL and HIL simulation methods.

Test Cases Energy Consumption
No. CTRL ICE on Initial Final soc ICE Fue% Fuel Energy
Duration s0C sOoC Drop Consumption Cost Cost

- - min % % % L £ £
1 DGC 10 - - - 2568.1 3223.0 32334
2 DGC 20 - - - 2576.1 3233.0 3239.9
3 RBC 10 85 86.04 —1.04 2454.7 3080.6 3089.2
4 RBC 10 40 82.82 —42.82 2488.6 3123.2 3118.9
5 RBC 20 85 73.39 11.61 2459.4 3086.6 3095.0
6 RBC 20 40 89.75 —49.75 2483.5 3116.8 31109
7 MRBC 10 85 82.92 2.08 2443.1 3066.1 3077.6
8 MRBC 10 40 84.12 —44.12 2476.8 3108.4 3105.7
9 MRBC 20 85 89.74 —4.74 2458.1 3084.9 3089.9
10 MRBC 20 40 89.58 —49.58 2480.2 3112.7 3107.3
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From the simulation results and discussion, it can be stated that the developed system
model is reliable and robust under different testing methods. The system outputs perform-
ing within the two methods met each other very well. As discussed, the difference in the
performance of key components can be recognised as just the influence of the communica-
tion issues when using the HIL method. The real-time simulation results help to predict
the performance and response of the actual system in the real world. Additionally, the
EMS-based ERBC strategy performs very well and satisfies the control design requirement
and constraints. By using this control approach, the ICEs work closely to the OOP to
achieve the best efficiency and thus the lowest fuel consumption.

7. Conclusions and Future Works
7.1. Conclusions

In this paper, an ERBC EMS is proposed and validated on a real-time HIL-based DP
HEMYV system. Map-based performance system models are developed and unified to
represent a complete HEMV for the EMS control strategies” development and verification.
The KPI comparative results between the developed EMSs and the traditional ones illustrate
the improvement in terms of fuel saving and thus gas emission reduction and operational
cost minimisation. The result of the validation method underpins the transferability and
applicability of the HIL testing technology from the automotive sector into the maritime
industry, which will be the premise for complete testing procedures before deploying to a
real vessel system.

7.2. Future Works

Beyond the scope of the study, an extended validation of the system performance and
evaluation of the ERBC over those of the RBC using actual DGs and a battery pack can be
conducted to overcome the limitations of the current HIL simulation platform. The follow-
ing directions can be potentially considered for the implementation of an HEMV system:

(1) For the system modelling, a model of the propeller should be considered to capture
the behaviours of the propellers of the vessel.

(2) A full dynamic system model of a DP HEMV should be developed to represent
the performance of the system. In this case, different load profiles and working
conditions could be applied to investigate the control capability of the designed EMS
over different working conditions.

(3) To consider the influences of the DG performance, especially the ICE operational
transient, actual ICE and generators can be employed. Then, actual BSFC efficiency
maps of the engine and DG can be incorporated to address the cost issues between
the EMS strategies.

(4) To perform an extended evaluation of the control performance with complex be-
haviours of the battery such as the transient during charging and discharging and
battery degradation, advanced battery models such as high order ECM or electrochem-
ical models can be employed and incorporated into the system model, particularly
with the integration of the battery degradation mechanism that can capture the non-
linear ageing behaviour of the battery to evaluate the influence of battery ageing on
the control performances.

(5) To evaluate the performance of the battery under the effect of temperature, a tempera-
ture model can be developed and integrated into the ECM, or an actual scaled-down
battery module operating within controlled climate chamber can be employed.
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Table A1. Definition of CAN messages.

No. Messages Signals Size (bit) Resolution Min Max Unit
1 LMU_RES_M Cell_volt_x @ 16 7.63 x 1075 0 5 Volt
2 Bat_char 1 1 0 1 -

3 Bat_dischar 1 1 0 1 -
4 Bat_pwr ® 18 0.01 —1000 1000 kW
5 BAT_DATA Bat_curr © 18 0.01 —1000 1000 A
6 Bat_volt 13 0.1 0 500 Volt
7 SOC 10 0.1 0 100 %
8 Bat_pwr_req ® 18 0.01 —1000 1000 kW
9 Bat_curr_req ©) 18 0.01 —1000 1000 A

10 MAB_CONTROL SOC_init 10 0.1 0 100 %
11 Bat_stacked 1 1 0 1 -
12 Bat_reset 1 1 0 1 -

(M/2); The authors would like to maintain the same accuracy of the cell voltages measured by the employed
evaluation board LMU (16 bits resolution); therefore, 4 messages are created (e.g., LMU_RES_M, M = 1-4) where
each message contains 4 signals accordingly (e.g., Cell_volt_x, x = 1-16). ®): negative value stands for charging
and vice versa.
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