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Abstract: In human–robot collaborative assembly tasks, it is necessary to properly balance skills to
maximize productivity. Human operators can contribute with their abilities in dexterous manipu-
lation, reasoning and problem solving, but a bounded workload (cognitive, physical, and timing)
should be assigned for the task. Collaborative robots can provide accurate, quick and precise physical
work skills, but they have constrained cognitive interaction capacity and low dexterous ability. In
this work, an experimental setup is introduced in the form of a laboratory case study in which the
task performance of the human–robot team and the mental workload of the humans are analyzed for
an assembly task. We demonstrate that an operator working on a main high-demanding cognitive
task can also comply with a secondary task (assembly) mainly developed for a robot asking for some
cognitive and dexterous human capacities producing a very low impact on the primary task. In this
form, skills are well balanced, and the operator is satisfied with the working conditions.

Keywords: human–robot interaction; assembly; mental workload

1. Introduction

In the context of the Fourth Industrial Revolution, also known as the Industry 4.0
paradigm, collaborative and autonomous robots are emerging. They are modifying the way
that tasks are performed. For instance, collaborative robots modify the safety conditions
usually applied to industrial robots [1]; autonomous mobile robots increase mobility task
skills by simultaneously following a route and avoiding static and dynamic objects, such
as an industrial operator moving inside the plant [2].

A key element in this transformation to Industry 4.0 is the emphasis on a human-
centered approach and full automation. This human-based transformation implies a
paradigm shift from independent automated and human activities towards a human-
automation symbiosis characterized by the cooperation of machines with humans in
workplaces, which are designed not to replace (eventually, overcome) the skills and abilities
of humans, but rather to co-exist and assist humans in increasing human well-being and
production performance [3]. In recent reports, such as the Good Work Charter of the
European Robotics Industry [4], fusion skills are defined as an interesting challenge: skills
that draw on the fusion of humans and robots within a business process to create better
outcomes than working independently.

In manufacturing systems, there have been attempts to completely replace the routine
activities of manual assembly tasks with robotics, but these have been unsuccessful many
times [5]. In the case of developing this work in the form of human–robot collaboration, an
assessment was made of operator stress and is detailed in Reference [6]. In [7], the effects of
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robot appearance and the relative status on human–robot collaboration are investigated to
the extent to which people relied on and ceded responsibility to a robot coworker. Negative
impact reduction of integrating human–robot teams is investigated in [8], by maintaining
human aspects, such as social interaction, autonomy, problem solving, and task variety.
Hence, further studies about the role definition of the human operator in manufacturing
applications is required.

Cognitive skills should be not only considered for the operators, but also for the
robotics systems. Human–robot interaction design at a cognitive level is a key element
for the success of the collaborative workplace [9]. In some cases, the operator could get
help from an assistant with cognitive skills to improve the operator’s understanding of
technology equipment. Hence, in [10], a cognitive work analysis method is applied for the
design of an assistance system to support humans in the control of intelligent manufac-
turing systems. In [11], an intelligent decision making method is developed that allows
human–robot task allocation using the robot operating system (ROS) framework. With the
aim to decrease the workload of the human and maximize the user adaptation, a set of
cognitive models (task model, truth-maintenance model, interaction model, and intention
rule-base) is developed in [12]. A mathematical model is introduced in [13] relating the
low workload of humans (physical, mental) to high performance in a human–robot collab-
oration framework, depending on the complexity of the task and whether the robot task is
performed successfully or with errors (human intervention is required).

For cognitive interaction between an operator and a station, the type of interface that
allows efficient dialogue should be considered. In [14], a framework (methods, metrics,
design recommendations) is developed for the study of effective interface designs in
collaborative human–robot interaction. Moreover, when collaborative robots progress
towards cognitive robotics, the human operator should be trained to be at that same level
of competence. In this context, cognitive architectures for human–robot teaming interaction
must be developed and tested [15].

1.1. Role Allocation in Human-Collaborative Robot Workplaces

Human operators and robots can adopt several cognitive roles in collaborative human–
robot workplaces. They are listed in the following in order of increasing cognitive workload
for both sides; operator and robot.

1.1.1. Role 1: Human Operator/Collaborative Robot

The operator accomplishes a physical activity that involves attending to the flow of
material in the station, replacing parts (feeding), taking a product to either another station
or to the warehouse, and checking product quality. The adaptability of the station operation
can allow the human and robot to either share the task or the task to be performed between
them sequentially. The worker uses cognitive skills such as visual processing or attention.
For stations endowed with visual indicators, the worker knows the state of the station:
“robot working”, “worker intervention is necessary”.

The associated task could produce physical fatigue, so it is necessary to take care of
the physical body and reduce stress and repetitive hand and arm movements. In case the
worker must move the robot, the robot should have a manageable weight and be suitable
for all human anthropometric variability. If the operator asks a technical expert for help,
the following can be agreed on: the rhythm of production (i.e., the speed of the robot),
the limit force value allowed in the case of physical contact, and the level of cooperation
(i.e., human and robots work sequentially or complete a shared task together).

This low-level cognitive skills workplace is the one considered for the assembly task
in our work.

1.1.2. Role 2: Human Technical Expert/Programmable Collaborative Robot

The human technical expert is provided with skills in robotic tasks, maintenance, pro-
gramming and security. This role requires a holistic approach with flexibility to understand
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at all times which technical aspect is a priority. This expert is responsible for the start-up,
operation and maintenance of the robotic station. The technical expert uses cognitive skills,
such as reasoning, logic, problem solving programming skills.

This technical expert uses the robot teach pendant for communication with the robot.
The robot programming is able to create a pop-up window and offer clear feedback to the
human when an activity is finished: “an operator action is required”.

The robot programming software adapted to the human technical expert requires
splitting the task difficulty into several levels. A program software must be easy to use,
easy to configure and scalable. This software can have palletizing, assembly, or similar
semi-configured routines. The programming must be designed with a level for novices,
intermediate and expert human operators. The robot user’s manual could have a training
program with tutorials, recommendations, examples and flexible possibilities in the devel-
opment of applications. The start-up time of the robot must be short, i.e., quick unboxing,
easy integration of end effector and a graphical programming interface with high usability.

1.1.3. Role 3: Human Supervisor/Robot Recommender

In this operational mode, the human supervisor accesses information on production
management (key performance indexes, dashboards). The human supervisor plans, or-
ganizes, and analyzes the behavior of an industrial plant. The supervisor uses cognitive
skills, such as reasoning, strategy analysis, decision making. Visual processing helps the
supervisor effectively visualize representations of data, such as graphs and tables. The hu-
man supervisor needs a flexible human–machine interface with access to the database that
makes it easier for him/her to understand the performance variables.

A cognitive robot could work as a human partner [16]. The functionality of a cog-
nitive robot could be a recommender system. If the robot is connected to the intelligent
manufacturing system, it could give relevant information upon human request. The cog-
nitive robot can understand the complexity of the human ability and adapt to a specific
understanding level.

1.1.4. Transition between Roles

Current technology allows a trained operator to easily move between the roles previ-
ously described. If the operator has a tablet, he/she can move from one station to another
by consulting the relevant production information on the screen and at the same time
assess whether a robotic station requires direct intervention.

From the cognitive point of view, workload and attention must be assessed. A pri-
ori, semi-automatic systems (collaborative systems) should facilitate effective teamwork
between robots and humans. The human task must be adequately balanced so as not to
excessively increase the assigned load. With regard to attention, it is necessary to analyze
what type of attention is appropriate for the tasks that are being performed (sustained,
selective, divided). If a task has high priority, then it has preferable sustained attention, i.e.,
the human is focused and motivated to continue the task and complete it. The other case
is preferable selective attention, i.e., the human is developing the task even when there
are distractions around him. In some situations, the operator needs to have attention in
multiple places. Divided attention helps the human retain information while successfully
completing two or more tasks at the same time.

Having to intervene in various places can cause stress for the operator and make it
difficult for the chosen task to be carried out successfully. To understand in detail how
humans behave when faced with the challenge of completing a task or interrupting it to
carry out direct intervention at the station, the following section shows how to prepare a
laboratory scenario in which to perform and evaluate human–robot collaboration tasks.

1.2. Objective

The evaluation of mental workload is a key issue to research and develop for human
machine interfaces, as well as to find levels of comfort, satisfaction, efficiency, and security
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in the workplace [17]. Moreover, some researchers explain in detail how important the
cognitive load and the mental workload are in the design of workplaces for assembly
tasks [18]. A laboratory scenario in a manufacturing context has been designed to create
an environment where humans can work side-by-side with robots in close proximity [19].
The human operator facilitates the assembly task carried out by the robot since it feeds
the station with parts, collects the products and attends to any possible malfunction.
The variation of the human operator’s mental workload is evaluated when switching
from a main task into a secondary task in this human–robot collaboration workspace
scenario. The general objective of the test in this scenario is to evaluate the variation of
mental workload, when the mental workload of the operator is increased due to regular
time-constrained collaborations with a robot. Our hypothesis is that when the operator
performs the collaborative task with the robot, the mental workload value is not very
far from the mental workload of the main task. Moreover, both values would be in an
intermediate comfort zone of mental workload. If tasks are designed in which the perceived
mental workload is in an intermediate zone, quality in performance and decision-making
in problem solving are guaranteed [20].

The second section of this paper explains in detail the materials and methods used.
In particular, the experimentation aims to evaluate the participants’ perceived mental
workload through the adoption of the NASA TLX standard questionnaire, after the task
development. Section three shows the experimental results, which are discussed in Section
four. Finally, conclusions and future steps are presented.

2. Materials and Methods

This section shows the laboratory resources, the task allocation between humans and
robots and the preparation of scenarios for the experimental sessions.

2.1. Human–Robot Collaborative Workspace

The experimental study of this work was developed in the laboratory scenario shown
in Figure 1. A laboratory scenario has great adaptability for the identification of human–
robot solutions, development of new methodologies, application of algorithms and evalua-
tion of collaborative human–robot workstations [21].

The human supervisor plans the activities with one or more human operators, with one
or more collaborative robots, tuning the task allocation between human and robot, giv-
ing visual feedback of the robot behavior to the human (using visual color lights) and
information using pop up windows into the robot teach pendant.

Figure 2 shows the workspace, which is divided into two areas. Area 1 is where the
operator executes the Tower of Hanoi game with five disks (TOH5). It is considered Task 1,
the main task for the operator. Area 2 is where the operator executes the Collaborative
Assembly (CA) with the robot of the product. It is named Task 2, the secondary task.
In Area 1, the human is in the loop. The information processing system allows visual
feedback of the task developed to the participant. The participant can plan strategies and
make decisions. The participant executes physical actions on a touch screen.

If the participant pays attention to Area 2, in this case, the human is in the loop.
The visual color lights alert the participant if a human collaborative task is required.
The participant can decide whether to leave Area 1 momentarily to go to Area 2. In this
case, the human is in the loop attending the assembly station.

Inside Area 1, it is possible to design cognitive tasks with regard to human capabilities.
The Tower of Hanoi with 5 disks (TOH5) task is an example of problem solving (high-level
reasoning capabilities) where people use mental skills and learning abilities to achieve a
successful solution [22,23]. The collaborative assembly task in Area 2 is a good example
of the pick and place task in an industrial environment. It shows the human eye–hand
coordination to achieve a successful solution. Hence, this work illustrates the idea that a
human–robot collaborative task must include physical and cognitive aspects together.



Electronics 2021, 10, 1317 5 of 19

Figure 1. Laboratory resources: the main task developed on a tablet and the secondary collaborative
task of assembly with the robot on the left in the background.

Figure 2. Human–robot collaborative workspace: Area 1 is on the left, with the primary task, demanding cognitive skills.
Area 2 is on the right, a collaborative assembly task with low-demanding cognitive and physical skills.

2.1.1. Task 1. Tower of Hanoi (TOH5)

The objective of the task is to move the tower of disks from the first support to another
support, see Figure 3, with the help of an intermediate support. The tower is segmented
into disks, which are the ones that are actually moved to rebuild it again in the final position.
This task must be performed in as few movements as possible and with as few errors as
possible. Disk movements are conditioned by two constraints:

• It is not allowed to place a larger disk on top of a smaller one.
• You can only move the disks in the order in which they are placed in the tower, starting

with the one at the top first.

In this study, the Tower of Hanoi was only performed by the human, using a digital
version of this problem, available at Google Play HANOI 3D. This software allows the
manipulation of the disks and records the number of moves and total time in seconds
required to complete the task. It is proved that there is no experimental cognitive variation
if either wood pieces or a digital version are used in experimental sessions [23]. Following
the workload level evaluation scale in [24], this task is classified as appreciated mental
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workload because a human without previous expertise in this game must develop and
plan effective strategies. In fact, as a first contact with the Tower of Hanoi problem, the case
with 3 disks is a challenge for many users. The difficulty of this task was previously
tuned according to several early participants and a medium level of difficulty with 5 disks
was decided.

Figure 3. Digital version of the Tower of Hanoi with five disks (TOH5) task.

For the solution of the TOH task, the minimum number of moves is given by the
formula 2n−1, where n is the number of disks on tower number 1 at the beginning of the
test [25]. Hence, the TOH5 task can be optimally solved with 31 moves.

2.1.2. Task 2. Collaborative Assembly (CA)

The assembly area (Area 2) is where robotic work takes place in the process. Humans
and robots should cooperate in order to simplify the job and make the overall system more
efficient and productive [26]. The objective of this task is to collaborate in the assembly of
a product composed of 3 components: a base, a bearing and a cap, as shown in Figure 4.
The task is a priori classified as a low mental workload from a human-centered perspective
because eye–hand coordination skills are most relevant in this task. The collaborative
assembly task shows a low level of risk for the human, and no action is required to decrease
this risk.

Figure 4. Assembly process: on the left, the working area; on the right, the parts to be assembled into the product.
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Figure 4 shows the implementation of the assembly process using a collaborative
robot from the company Universal Robots, model UR3. The difficulty of the programmed
robot task was previously tuned experimenting with early participants, and a medium
level of difficulty for robot velocity was decided. The purpose is to allow the participant
to approach the station and be able to intervene physically without compromising safety
and performance.

2.1.3. Cycle of Work

In the workspace, the distribution of activities between the human operator and the
collaborative robot (cobot) is shown in Table 1. Figure 5 shows an instance of the cycle of
work for a participant.

Table 1. Tasks and activities allocation in the human–robot collaborative workspace’s experiment.

Task Activity Operator

Task 1 Solve problem TOH5 Human

Task 2 Get base Cobot

Task 2 Get bearing Cobot

Task 2 Get cap Human

Task 2 Reload storage Human

Task 2 Assembly product Cobot

Task 2 Palletize product Cobot

Figure 5. Cycle of work in the Collaborative Assembly task (CA).
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2.2. Safety Conditions

In the Human–Robot Collaborative Workplace, safe conditions are considered, differ-
ent from traditional industrial robots. These specific safety requirements are:

1. Universal Robot’s UR3 cobot has been designed to work in direct cooperation with
humans within a defined workspace according to the ISO 10218-1: 2011 standard [27].

2. Maximum speeds and torque have been reduced, as can be seen in Table 2.
3. Virtual safety planes are defined for the cobot to reduce the workspace.
4. Visual indicators alert the operator of the robot’s operating condition.

Table 2. Motor operating conditions for the UR3 cobot.

Variable Normal Mode Maximum

speed 1500 mm/s 5000 mm/s

torque 150 N 250 N

In this approach, the authors are not considering strategies and possibilities of collision
between the robot and human operator because the human operator and robot do not
physically coincide in the same spatial location in the case study [28]. In fact, the robot can
wait until the end of the human operator activity before starting its work [29].

2.3. Case Study

Experiments took place at the Teaching Laboratory of the Automatic Control Depart-
ment of the Universitat Politècnica de Catalunya, Barcelona Tech (North Campus, FIB
Faculty, Barcelona, Spain).

Following the hypothesis explained at the beginning of this paper and the tasks
detailed in Table 1, two working scenarios are designed:

• Working Scenario 1 (TOH5): The participant only executes Task 1, without distractions,
using a tablet for this end, as seen in Figure 6.

• Working Scenario 2 (TOH5 + CA): The participant executes a combination of the two
tasks. The main task is TOH5 and also collaborates with the cobot in activities of
Task 2, according to the work cycle in Table 1 (see Figure 7).

Figure 6. Working Scenario 1 (TOH5): the operator works on Task 1 (TOH5) without distractions.
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Figure 7. Working Scenario 2 (TOH5 + CA): the operator works with divided attention on the main task (TOH5) and a
secondary task (CA).

2.3.1. Participants

Data in both scenarios were collected from 18 participants. Among the participants
there were undergraduate students, vocational students, and teaching staff. Details about
them are shown in Table 3. Nobody had previous experience working with cobots.

Table 3. Participants.

Type Number Gender Age (Years) Percent

Undergraduate students 10 male 22–26 55%
2 female 22–24 11%

Vocational students 2 male 18–20 11%

Teaching staff 4 male 40–50 23%

Total 18 - - 100%

2.3.2. Procedure

The participant’s study is composed of two main steps: demo and test.

• Demo. As a first step, a facilitator provides each participant with a brief demonstration,
usually about 2–3 min long, about the main functionalities of the experience.

• Test. For each test, the participant works on the two defined working scenarios.

During the test, both scenarios are considered by the participant: firstly, Scenario 1 for
6 min, then Scenario 2 for 15 min, fulfilling the objectives described in Table 4.

Table 4. Experimental tasks and activities.

Scenarios Task Activities Goals Time

Scenario 1 TOH5 The participant solves the TOH5 problem Solve the problem with 31 moves 6 min

Scenario 2 TOH5 + CA
The participant solves the TOH5 problem and
responds to requests for collaboration from
the robot

Solve the problem with 31 moves
and complete 9 cycles of work
with cobot

15 min

A facilitator supervised the test and took notes about the time expended by the partic-
ipants during the performance of each task. When tasks were completed, each participant
was invited to fill a NASA TLX index questionnaire form about the proposed experience.

2.3.3. Measure

There are several mental workload physiological metrics to be taken into consideration,
for instance, heart rate, pupil dilation, respiration rate, skin temperature and fundamental
frequency [30,31]. In the participants’ study presented in this paper, the authors used
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a subjective mental workload measure through the adoption of the NASA TLX index
standard questionnaire. It allows deriving the overall workload score based on a weighted
average of ratings on six subscales: mental demand, physical demand, temporal demand,
performance, effort, and frustration level. This questionnaire is an effective tool for the
study of the mental workload.

The questionnaire form was derived from the app NASA TLX index v1.8.2 (see
Figures 8 and 9). As shown in Figure 8, the participant must fill in the two questionnaires,
one for the working scenario 1 (TOH5) and the other for scenario 2 (TOH5 + CA).

Figure 8. NASA TLX index app with the two forms defined.

Figure 9. Example NASA TLX index app. On the right, the range of subscales, and on the left,
the weight of the pair of subscales.
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A description for each of these subscales was provided to help participants answer
accurately. They are rated for each task within a 100-point range with 5-point steps. These
ratings are then combined with the task workload index. These scales and descriptions are
shown in Table 5.

Table 5. Rating scale definitions for the NASA TLX index standard questionnaire.

Subscale Endpoints Descriptions

Mental Demand Low/High How much mental and perceptual activity was required? Was the task
easy or demanding, simple or complex?

Physical Demand Low/High How much physical activity was required? Was the task easy or de-
manding, slack or strenuous?

Temporal Demand Low/High How much time pressure did you feel due to the pace at which the tasks
or task elements occurred? Was the pace slow or rapid?

Overall Performance Low/High How successful were you in performing the task? How satisfied were
you with your performance?

Effort Low/High How hard did you have to work (mentally and physically) to accomplish
your level of performance?

Frustration Level Low/High How irritated, stressed, and annoyed versus content, relaxed, and com-
placent did you feel during the task?

3. Experimental Results

Descriptive statistics, t-test, and analysis of variance tests were used to analyze the
effects of the experience in time. The statistical significance level was set at p < 0.05, and in
all the cases, the confidence level is 95%. For a better understanding, Table 6 shows the
used markers with adjectives that qualify the mental workload (MWL) [32], where np
TOH5 and np TOH5 + CA are the number of participants versus the observed qualitative
mental workload.

Table 6. The interpretation score for the NASA TLX index.

Mental Workload Range Value np TOH5 np TOH5 + CA

Low 0–9 0 0

Medium 10–29 0 1

Somewhat High 30–49 5 2

High 50–79 12 13

Very High 80–100 1 2

3.1. Mental Workload Results

The data collected from both scenarios were gathered and are presented in the
histogram in Figure 10.

The distribution of the data obtained is not symmetric and they tend to accumulate
in the areas with high mental workload. Six out of twelve participants perceived that
the mental workload of the task TOH5 was high. Eight of twelve participants perceived
that the mental workload of the main and secondary tasks TOH5 + CA was high. Table 7
shows the obtained score for each scenario in terms of mean value and standard deviation.
The mean values of the NASA TLX index score for both scenarios are very close, 59.11%
and 60.17%, respectively. These scores are at the end of the first third of the range (High).
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Figure 10. Histogram of participants’ mental workload (MWL) for both scenarios.

Table 7. Results of NASA TLX Index Score.

Statistics TOH5 TOH5 + CA

Mean value 59.11 60.17

sd 12.20 17.41

Non-Blank 18 18

Interpretation Score High High

The hypothesis in this study is that when the operator performs the collaborative task
with the robot (TOH5 + CA, second scenario), the mental workload value is not very far
from the mental workload of the main task (TOH5, first scenario). That is, a very little
increment δ is expected,

MWLTOH5+CA ∼ MWLTOH5 + δ (1)

Moreover, both values would be in an intermediate comfort zone of mental workload;
hence, they are not saturating the mental workload.

To test this hypothesis, a paired t-test was performed on the results obtained. The re-
sults in Table 8 show that there exists a p-value < 0.02 associated with the probability
that the difference is greater than 10, so the null hypothesis is rejected, δ < 10, and the
alternative hypothesis is corroborated: certainly, there is only a small increase in MWL
when the operator is moving from only one task to a dual task with a collaborative robot.

Table 8. Paired t-test.

Confidence Level 95

Null Hypothesis Difference > 10

Descriptive Statistics - Average Difference 1.06

Mean Difference value −1.1 Confidence Interval Low −9.72

Median Difference value −8.0 Confidence Interval High 7.61

sd 17.43 Margin Error 8.7

n (sample size) 18 p-value 0.02

The interpretation scores shown in Table 7 for the associated mental workload are
in the low range of the label “High” (59.11 and 60.17) for both scenarios using the scale
in Table 6. According to the cumulative frequency distributions of TLX Global Workload
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Scores by Task by Grier [33] (see Table 9), a common experimental mental workload score
is related to cognitive tasks with a value of 64.90 as the maximum and 54.66 as within 75%
of the results obtained in experiments with the TLX-Index. Hence, the results for scenarios
TOH5 and TOH5 + AC are in this range, indicating that the proposed tasks are actually
high cognitive tasks, but they are not saturating the regular experiments on cognitive tasks.

Table 9. Cumulative frequency distributions of mental workload scores by task.

Min 25% 50% 75% Max

Cognitive Tasks 13.08 38.00 46.00 54.66 64.90

Figure 11 shows the distribution of the mean values of MWL for the different subscales.
The mental demand is the subscale with the highest values for both scenarios, which is in
accordance with the working conditions established for this study.

Figure 11. Mean values of subscales in the NASA TLX index on the experiment.

The results obtained for the subscales studied using the NASA TLX index are shown
in Table 10. The physical subscale shows a p-value < 0.05, i.e., it is the only one showing
significant statistical differences between both scenarios, while the other subscales do not.
This is consistent with our hypothesis.

Table 10. Paired samples test for subscales of the NASA TLX index, TOH5 and TOH5 + CA.

Subscale Mean Standard Dev. p-Value

Mental 3.39 10.01 0.172

Physical −2.11 2.66 0.004

Temporal −1.15 10.03 0.633

Performance −3.72 7.00 0.038

Effort −1.07 8.39 0.594

Frustration 3.61 7.26 0.050

3.2. Task Performance

As a complement to the study of mental load, details on task performance are pre-
sented below.
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3.2.1. Effectiveness

This subsection shows the results for the effectiveness of the tasks developed in
the Human–Robot Collaborative Workplace. The variable Task Completion Rate (TCR)
is considered,

TCR =
Nsucsess

Nreplay
% (2)

Table 11 shows the results for TCR when task TOH5 is solved in both scenarios.
For Scenario 1, a low effectiveness is obtained (TCR = 44.44%), while for Scenario 2, there
is a 22% of percent increase (TCR = 66.67%) as a result of the experience obtained from
Scenario 1.

Table 11. TCR results for TOH5 in both scenarios.

Scenario 1 (TOH5) Scenario 2 (TOH5 + A)

Nsucsess 8 12

Nreplay 18 18

TCR 44.44% 66.67%

Difference 22.22%

Table 12 shows the results for the effectiveness in the resolution of the TOH5 problem
as well as in the collaboration in the CA assembly. The results show that the collaboration
is carried out effectively, TCR = 94.44%.

Table 12. TCR results for TOH5 and CA in Scenario 2.

TOH5 CA

Nsucsess 12 17

Nreplay 18 18

TCR 66.67% 94.44%

Difference 27.77%

3.2.2. Fluency

A measure able to evaluate the team’s work is fluency. According to [34], fluency
evaluation allows determining the performance as a team that the human–robot pair has.
These metrics are percentage of concurrent activity (C-ACT), human’s idle time (H-IDLE),
robot’s functional delay (F-DEL), and robot’s idle time (R-IDLE). To calculate fluency,
parameters shown in Table 13 were measured from the robot side. Values obtained are
summarized in Table 14 in the form of mean values.

Table 13. Time parameters from robot.

Parameter Description

Idle_Time Sum Robot wait time

Cycle_Time Sum Robot work time

Shared_Time Sum Shared Time to resolve task
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Table 14. Mean values of times from robot.

Statistics Cycle_Time Idle_Time Shared_Time

Mean value 626 117 34

sd 176 38 8

n 18 - -

The fluency values are calculated as follows:

Time to Task = Cycle_Time + Idle_Time (3)

H-IDLE =
Cycle_Time
Time to Task (4)

R-IDLE = Idle_Time
Time to Task (5)

C-ACT = Shared_Time
Time to Task (6)

Figure 12 allows to visualize the results from the calculation. It can be seen that
the value for H-IDLE is much higher than the one for R-IDLE. Moreover, C-ACT gets a
low value.

Figure 12. Objective fluency metrics in the Human-Collaborative Robot Workplace.

4. Discussion

The use of the NASA TLX-index protocol has allowed us to perform a multidimen-
sional assessment of the variation of the mental workload on the participant, in this case
in the role of human operator/collaborative robot As established in the hypothesis of
the study, it has been shown that there are no significant differences between the mental
workload in the solution of the TOH5 problem and its solution when a collaborative task
with a robot is added in the same workspace. Moreover, as the results show, the level of
mental workload found in both scenarios is high without overloading the operator. In the
results, it can be observed that no participant has indicated a level of underload in the
mental workload, and according to the experience found with other experiments, the level
of mental workload can be considered normal in cognitive tasks, such as the TOH5 of this
study. It could be that a high level of mental workload is necessary to be alert and make
decisions in time.

The NASA TLX-index considers that the first three subscales (mental, physical and
temporal) correspond to the demands imposed on the operator. In this aspect, the results
show that the mental demand is the largest subscale of the mental workload. However, as
the results show, no significant differences were found between the scenarios. The phys-
ical subscale is the least contributing subscale; however, the results show that there are
significant differences in both scenarios, which is consistent with the differences in the
physical characteristics of the scenarios. The next three subscales (effort, frustration and
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performance) refer to the interaction of the participant with the workspace. In this as-
pect, the results show that there are significant differences in performance between the
scenarios, which is a result of the demand of attention that the cobot imposes on the
participant. The frustration subscale, according to the results, does not show significant
differences; however, it is an important subscale in the resolution of the problem when the
operator begins his experience in the experiment. The use of descriptive adjectives and
multidimensional graphs allows stakeholders to have a representative perspective of the
results obtained.

In relation to the performance of the tasks, the results show that human operators
can solve the task TOH5 effectively (TCR = 66.67%). Additionally, the human–robot team
working in the collaborative assembly task is also able of effectively solving the task
(TCR = 94.44%).

Following the results of the objective metrics and based on [34], some considerations
can be presented. The measure H-IDLE relates the subjective perception of the human
operator while waiting for the robot, e.g., wasting time or being bored. In this study,
H-IDLE value remains at the same level, as shown in Figure 12, when the human operator
develops Task 1 while waiting for the robot’s request for collaboration; hence, it could be
said that the human operator is taking advantage of his/her time.

Moreover, Hoffman relates the R-IDLE measure with fluency, establishing two possible
conditions; either the robot is physically inactive but is doing internal work on its processor,
or it is inactive while waiting for an intervention from the human operator. In our use case,
the second condition is present, the robot starts its idle time by sending a message to the
operators waiting for their collaboration and remains in this state until an operator informs
it about the end of the collaboration. This collaboration time of the human operator is
variable. In the subjective sense, this could be seen as either an inefficient use of the robot
or an imbalance in the distribution of the task. In this study, the R-IDLE value is much
lower than the H-IDLE value (see Figure 12), indicating that there is an efficient use of the
robot. However, it could also indicate an imbalance in the distribution of the task.

Regarding C-ACT, Hoffman describes that a high value for this measure could indicate
a subjective feeling of fluency when considering that the teams are well synchronized
and that there is a similarity in the team members, perhaps a fair balance of work. In this
study, the value for C-ACT is low from a physical point of view (see Figure 12). It could be
considered an imbalance in the work. However, when considering a complete vision of the
work capacities for each member, the distribution is fair in the sense that each member does
what it does the best, i.e., the human operator undertakes more of the cognitive activity
and the robot operator more of the physical activity.

For the measure F-DEL, it is established that a low level is related to the subjective
perception of human–robot fluency since it indicates an efficient use of the time of the
team members. In this study, it can be seen that such F-DEL is not present (see Figure 12).
The human operator’s sensation would be of efficient work; however, it should be taken
into account that for this task, the level of collaboration is also low.

5. Conclusions

The cognitive interaction approach allows studying the cognitive load associated with
assembly tasks in manufacturing systems. In a first approach, this paper show scenarios in a
laboratory environment, taking into account task difficulty, participant skills, and observed
performance, in the analysis of mental workload.

For this, the context of collaboration between person and robot has been considered ap-
propriate. One of the most representative tasks in collaborative robotics is the assembly task,
and one of the most representative tasks of the human is the problem solving. With these
ideas in mind, in this paper, these related tasks are embedded in laboratory scenarios.

The participants in the experimental session show that it is possible to keep the mental
workload under control while they are developing primary and secondary tasks. This
feature could consider flexibility as an important parameter in the operator’s condition.
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In industry 4.0 real scenarios, the operator may be subject to task changes, task
difficulty, task shared with a robot, and interruptions (for instance, noise) [35,36]. In these
cases, understanding the cognitive load types (intrinsic, extraneous, germane) and the
relationship with mental workload could be useful for the improvement of the human
information processing system, human performance and the effectiveness of the overall
system [37,38].

Understanding this human cognitive load will allow the design of intelligent assistant
systems to help and support human operators in future cognitive manufacturing systems.
Moreover, the vision of the performance of the human–robot team through fluency could
be considered an additional component to improve the design of a help support system
from the perspective of the human–robot team.

In future works, the role assigned to the human in this work can be expanded con-
sidering that there are two robots available in the laboratory. Each robot could perform a
task, and the participant would be asked to attend to one robot or the other based on the
quality and performance criteria. In this case, the analysis would focus on human decision
making. The current human operator requires that her/his work be analyzed not only from
traditional perspectives, such as physical, sensory and cognitive characteristics, but as it is
proposed in [39], it is necessary to consider the interaction skills in the human–robot team.
Fluency is oriented in this dimension.
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