Multi-Dependency and Time Based Resource Scheduling Algorithm for Scientific Applications in Cloud Computing
Abstract
:1. Introduction
1.1. Existing Challenges
1.2. Research Contribution
- 1.
- Parent to child node dependencies (which parent has the maximum number of child nodes);
- 2.
- Child to parent node dependencies (which child has the minimum number of parent odes);
- 3.
- Time of different tasks (in case of a tie in the second condition, as mentioned above) present at different levels in the workflow. The task having maximum time in the ready queue will be scheduled in case of the same dependency ratio.
1.3. Paper Organization
2. Workflow Scheduling
3. Scientific Applications
3.1. CyberShake
3.2. Montage
3.3. Epigenomics
3.4. Inspiral
3.5. SIPHT
4. Problem Formulation
5. Proposed Solution
- 1.
- Parent to child node dependencies (which parent has the maximum number of child nodes);
- 2.
- Child to parent node dependencies (which child has the minimum number of parent nodes);
- 3.
- Time of different tasks (in case of a tie in the second condition, as mentioned above) present at different levels in the workflow. The task having maximum time will be scheduled in case of the same dependency ratio.
Working of the Proposed P2C Algorithm
6. Experimental Setup and Results
Algorithm 1 Proposed P2C Algorithm. |
: Workflow () and Virtual Machines (VMs) : Execution Time ()
|
Algorithm 2 Ready queue check condition. |
|
6.1. Cloud Resources
6.1.1. Fast Computing Utility
6.1.2. Storage Utility
6.1.3. Communication Utility
6.1.4. Power Utility
6.1.5. Security
6.2. Workflows Dataset
6.3. Simulation Environment
6.4. Statistical Analysis
6.5. Results
6.6. Complexity Analysis
- 1.
- Each task has a priority associated with it;
- 2.
- A task with high priority must precedes the low priority tasks;
- 3.
- Two tasks can have same priority, however, such tasks will be scheduled as per their order in the queue.
7. Conclusions and Future Scope
Author Contributions
Funding
Conflicts of Interest
References
- Harmon, P. Business Process Change: A Business Process Management Guide For Managers and Process Professionals; Morgan Kaufmann: San Francisco, CA, USA, 2019. [Google Scholar]
- Li, J.; Li, X.; He, D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access 2019, 7, 75464–75475. [Google Scholar] [CrossRef]
- Deelman, E.; Vahi, K.; Rynge, M.; Mayani, R.; da Silva, R.F.; Papadimitriou, G.; Livny, M. The evolution of the pegasus workflow management software. Comput. Sci. Eng. 2019, 21, 22–36. [Google Scholar] [CrossRef]
- De Carvalho Silva, J.; de Oliveira Dantas, A.B.; de Carvalho Junior, F.H. A Scientific Workflow Management System for orchestration of parallel components in a cloud of large-scale parallel processing services. Sci. Comput. Program. 2019, 173, 95–127. [Google Scholar] [CrossRef]
- Pandey, S.; Vahi, K.; da Silva, R.F.; Deelman, E.; Jiang, M.; Harrison, C.; Chu, A.; Casanova, H. Event-Based Triggering and Management of Scientific Workflow Ensembles. In Proceedings of the HPC Asia, Tokyo, Japan, 28–31 January 2018. [Google Scholar]
- Senkul, P.; Toroslu, I.H. An architecture for workflow scheduling under resource allocation constraints. Inf. Syst. 2005, 30, 399–422. [Google Scholar] [CrossRef]
- Yu, J.; Buyya, R. A taxonomy of workflow management systems for grid computing. J. Grid Comput. 2005, 3, 171–200. [Google Scholar] [CrossRef]
- Ma, X.; Gao, H.; Xu, H.; Bian, M. An IoT-based task scheduling optimization scheme considering the deadline and cost-aware scientific workflow for cloud computing. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 249. [Google Scholar] [CrossRef] [Green Version]
- Marozzo, F.; Talia, D.; Trunfio, P. A workflow management system for scalable data mining on clouds. IEEE Trans. Serv. Comput. 2016, 11, 480–492. [Google Scholar] [CrossRef]
- Khennaoui, R.; Belala, N. Towards a Formal Context-Aware Workflow Model for Ambient Environment. In Proceedings of the International Conference on Smart Homes and Health Telematics, Hammamet, Tunisia, 24–26 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 415–422. [Google Scholar]
- Talwani, S.; Singla, J. Comparison of Various Fault Tolerance Techniques for Scientific Workflows in Cloud Computing. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 454–459. [Google Scholar]
- Deelman, E.; Mandal, A.; Jiang, M.; Sakellariou, R. The role of machine learning in scientific workflows. Int. J. High Perform. Comput. Appl. 2019, 33, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Da Silva, R.F.; Livny, M.; et al. Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 2015, 46, 17–35. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Chana, I. A survey on resource scheduling in cloud computing: Issues and challenges. J. Grid Comput. 2016, 14, 217–264. [Google Scholar] [CrossRef]
- Kijak, J.; Martyna, P.; Pawlik, M.; Balis, B.; Malawski, M. Challenges for scheduling scientific workflows on cloud functions. In Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 460–467. [Google Scholar]
- George, S.S.; Pramila, R.S. A review of different techniques in cloud computing. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Zhou, J.; Wang, T.; Cong, P.; Lu, P.; Wei, T.; Chen, M. Cost and makespan-aware workflow scheduling in hybrid clouds. J. Syst. Archit. 2019, 100, 101631. [Google Scholar] [CrossRef]
- Barrett, E.; Howley, E.; Duggan, J. A learning architecture for scheduling workflow applications in the cloud. In Proceedings of the 2011 IEEE Ninth European Conference on Web Services, Lugano, Switzerland, 14–16 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 83–90. [Google Scholar]
- Isaac, E.U.; Izuchukwu, A.C. Development of a Model Architecture for Job Scheduling. Sci. J. Circuits Syst. Signal Process. 2020, 9, 16. [Google Scholar] [CrossRef]
- Yu, J.; Buyya, R. A taxonomy of scientific workflow systems for grid computing. ACM Sigmod Rec. 2005, 34, 44–49. [Google Scholar] [CrossRef]
- Kintsakis, A.M.; Psomopoulos, F.E.; Mitkas, P.A. Reinforcement learning based scheduling in a workflow management system. Eng. Appl. Artif. Intell. 2019, 81, 94–106. [Google Scholar] [CrossRef]
- Varalakshmi, P.; Ramaswamy, A.; Balasubramanian, A.; Vijaykumar, P. An optimal workflow based scheduling and resource allocation in cloud. In Proceedings of the International Conference on Advances in Computing and Communications, Kochi, India, 22–24 July 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 411–420. [Google Scholar]
- Zhou, X.; Zhang, G.; Sun, J.; Zhou, J.; Wei, T.; Hu, S. Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT. Future Gener. Comput. Syst. 2019, 93, 278–289. [Google Scholar] [CrossRef]
- Prakash, V.; Bala, A.G. An Efficient Workflow Scheduling Approach in Cloud Computing. Ph.D. Thesis, Thapar Institute of Engineering and Technology, Patiala, India, 2014. [Google Scholar]
- Masdari, M.; ValiKardan, S.; Shahi, Z.; Azar, S.I. Towards workflow scheduling in cloud computing: A comprehensive analysis. J. Netw. Comput. Appl. 2016, 66, 64–82. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, H.; Deng, X.; Li, K.; Li, K. A scheduling scheme in the cloud computing environment using deep Q-learning. Inf. Sci. 2020, 512, 1170–1191. [Google Scholar] [CrossRef]
- Mansouri, N.; Javidi, M.M. Cost-based job scheduling strategy in cloud computing environments. In Distributed and Parallel Databases; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–36. [Google Scholar]
- Kumar, A.; Bawa, S. DAIS: Dynamic access and integration services framework for cloud-oriented storage systems. In Cluster Computing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–20. [Google Scholar]
- Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25, 599–616. [Google Scholar] [CrossRef]
- Hu, J.; Gu, J.; Sun, G.; Zhao, T. A scheduling strategy on load balancing of virtual machine resources in cloud computing environment. In Proceedings of the 2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming, Dalian, China, 18–20 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 89–96. [Google Scholar]
- Prakash, V.; Bala, A. Workflow Scheduling Algorithms in Grid and Cloud Environment—A Survey. J. Comput. Technol. 2014, 3, 2278–3814. [Google Scholar]
- Njenga, K.; Garg, L.; Bhardwaj, A.K.; Prakash, V.; Bawa, S. The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward. Telemat. Inform. 2019, 38, 225–246. [Google Scholar] [CrossRef]
- Yu, Y.; Su, Y. Cloud Task Scheduling Algorithm Based on Three Queues and Dynamic Priority. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 12–14 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 278–282. [Google Scholar]
- Xia, W.; Shen, L. Joint resource allocation using evolutionary algorithms in heterogeneous mobile cloud computing networks. China Commun. 2018, 15, 189–204. [Google Scholar] [CrossRef]
- Patra, M.K.; Sahoo, S.; Sahoo, B.; Turuk, A.K. Game theoretic approach for real-time task scheduling in cloud computing environment. In Proceedings of the 2019 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 454–459. [Google Scholar]
- Li, J.; Ma, T.; Tang, M.; Shen, W.; Jin, Y. Improved FIFO scheduling algorithm based on fuzzy clustering in cloud computing. Information 2017, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Nazar, T.; Javaid, N.; Waheed, M.; Fatima, A.; Bano, H.; Ahmed, N. Modified shortest job first for load balancing in cloud-fog computing. In Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Taichung, Taiwan, 15 July–15 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–76. [Google Scholar]
- Devi, D.C.; Uthariaraj, V.R. Load balancing in cloud computing environment using improved weighted round robin algorithm for nonpreemptive dependent tasks. Sci. World J. 2016, 2016, 3896065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazumder, A.M.R.; Uddin, K.A.; Arbe, N.; Jahan, L.; Whaiduzzaman, M. Dynamic task scheduling algorithms in cloud computing. In Proceedings of the 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Ghosh, S.; Banerjee, C. Dynamic time quantum priority based round robin for load balancing in cloud environment. In Proceedings of the 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 22–23 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 33–37. [Google Scholar]
- Samadi, Y.; Zbakh, M.; Tadonki, C. E-HEFT: Enhancement heterogeneous earliest finish time algorithm for task scheduling based on load balancing in cloud computing. In Proceedings of the 2018 International Conference on High Performance Computing & Simulation (HPCS), Orleans, France, 16–20 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 601–609. [Google Scholar]
- Gao, Y.; Zhang, S.; Zhou, J. A hybrid algorithm for multi-objective scientific workflow scheduling in IaaS Cloud. IEEE Access 2019, 7, 125783–125795. [Google Scholar] [CrossRef]
- Bugingo, E.; Zheng, W.; Zhang, D.; Qin, Y.; Zhang, D. Decomposition based multi-objective workflow scheduling for cloud environments. In Proceedings of the 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD), Suzhou, China, 21–22 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 37–42. [Google Scholar]
- Wu, N.; Zuo, D.; Zhang, Z. Dynamic fault-tolerant workflow scheduling with hybrid spatial-temporal re-execution in clouds. Information 2019, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Arabnejad, V.; Bubendorfer, K.; Ng, B. Budget and deadline aware e-science workflow scheduling in clouds. IEEE Trans. Parallel Distrib. Syst. 2018, 30, 29–44. [Google Scholar] [CrossRef]
- Kaur, G.; Bala, A. An efficient resource prediction–based scheduling technique for scientific applications in cloud environment. Concurrent Eng. 2019, 27, 112–125. [Google Scholar] [CrossRef]
- Kaur, G.; Bala, A. Prediction based task scheduling approach for floodplain application in cloud environment. In Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–22. [Google Scholar]
- Niehaus, D.; Ramamritham, K.; Stankovic, J.A.; Wallace, G.; Weems, C.; Burleson, W.; Ko, J. The Spring scheduling co-processor: Design, use, and performance. In Proceedings of the 1993 Proceedings Real-Time Systems Symposium, Raleigh, NC, USA, 1–3 December 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 106–111. [Google Scholar]
- Burleson, W.; Ko, J.; Niehaus, D.; Ramamritham, K.; Stankovic, J.A.; Wallace, G.; Weems, C. The spring scheduling coprocessor: A scheduling accelerator. IEEE Trans. Very Large Scale Integr. Syst. 1999, 7, 38–47. [Google Scholar] [CrossRef]
- Trakadas, P.; Nomikos, N.; Michailidis, E.T.; Zahariadis, T.; Facca, F.M.; Breitgand, D.; Rizou, S.; Masip, X.; Gkonis, P. Hybrid clouds for data-intensive, 5G-enabled IoT applications: An overview, key issues and relevant architecture. Sensors 2019, 19, 3591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; et al. CyberShake: A physics-based seismic hazard model for southern California. Pure Appl. Geophys. 2011, 168, 367–381. [Google Scholar] [CrossRef]
- Bharathi, S.; Chervenak, A.; Deelman, E.; Mehta, G.; Su, M.H.; Vahi, K. Characterization of scientific workflows. In Proceedings of the 2008 Third Workshop on Workflows in Support of Large-Scale Science, Austin, TX, USA, 17 November 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–10. [Google Scholar]
- Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.; Vahi, K. Characterizing and profiling scientific workflows. Future Gener. Comput. Syst. 2013, 29, 682–692. [Google Scholar] [CrossRef]
- Braun, T.D.; Siegel, H.J.; Beck, N.; Bölöni, L.L.; Maheswaran, M.; Reuther, A.I.; Robertson, J.P.; Theys, M.D.; Yao, B.; Hensgen, D.; et al. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 2001, 61, 810–837. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Akl, S.G. Scheduling Algorithms for Grid Computing: State of the Art and Open Problems; Technical Report; Queen’s University: Kingston, ON, Canada, 2006. [Google Scholar]
- Prakash, V.; Bala, A. A novel scheduling approach for workflow management in cloud computing. In Proceedings of the 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014), Ajmer, India, 12–13 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 610–615. [Google Scholar]
- Di Cosmo, R.; Lienhardt, M.; Treinen, R.; Zacchiroli, S.; Zwolakowski, J.; Eiche, A.; Agahi, A. Automated synthesis and deployment of cloud applications. In Proceedings of the 29th ACM/IEEE International Conference On Automated Software Engineering, Vasteras, Sweden, 15–19 September 2014; pp. 211–222. [Google Scholar]
- Jennings, B.; Stadler, R. Resource management in clouds: Survey and research challenges. J. Netw. Syst. Manag. 2015, 23, 567–619. [Google Scholar] [CrossRef]
- Parikh, S.M.; Patel, N.M.; Prajapati, H.B. Resource management in cloud computing: Classification and taxonomy. arXiv 2017, arXiv:1703.00374. [Google Scholar]
- Chen, W.; Deelman, E. Workflowsim: A toolkit for simulating scientific workflows in distributed environments. In Proceedings of the 2012 IEEE 8th International Conference on E-Science, Chicago, IL, USA, 8–12 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software Pract. Exp. 2011, 41, 23–50. [Google Scholar] [CrossRef]
- Glen, S. Statistical Analysis. Available online: https://www.statisticshowto.com/statistical-analysis/ (accessed on 15 April 2021).
- Zaiontz, C. Two Factor ANOVA without Replication. Available online: https://www.real-statistics.com/two-way-anova/two-factor-anova-without-replication/ (accessed on 15 April 2021).
Parent | 1 | 2 | 3 | 4 | 5 | |||||||||||
Child | 6 | 7 | 9 | 7 | 8 | 10 | 12 | 13 | 9 | 10 | 11 | 9 | 12 | 14 | 13 | 14 |
Parent | 2 | 4 | 1 | 3 | 5 | |||||||||||
Child | 7 | 8 | 10 | 12 | 13 | 9 | 12 | 14 | 6 | 7 | 9 | 9 | 10 | 11 | 13 | 14 |
Parent | 16 | ||||
---|---|---|---|---|---|
Child | 17 | 18 | 19 | 20 | 21 |
Parent | 16 | ||||
---|---|---|---|---|---|
Child | 20 | 19 | 21 | 17 | 18 |
Workflow | Number of Task | Number of VM | Dataset File |
---|---|---|---|
CyberShake | 30 | 5 | CyberShake_30 |
50 | 10 | CyberShake_50 | |
100 | 20 | CyberShake_100 | |
1000 | 50 | CyberShake_1000 | |
Montage | 25 | 5 | Montage_25 |
50 | 10 | Montage_50 | |
100 | 20 | Montage_100 | |
1000 | 50 | Montage_1000 | |
Epigenomics | 24 | 5 | Epigenomics_24 |
46 | 10 | Epigenomics_46 | |
100 | 20 | Epigenomics_100 | |
997 | 50 | Epigenomics_997 | |
Inspiral | 30 | 5 | Inspiral_30 |
50 | 10 | Inspiral_50 | |
100 | 20 | Inspiral_100 | |
1000 | 50 | Inspiral_1000 | |
SIPHT | 30 | 5 | SIPHT_30 |
60 | 10 | SIPHT_60 | |
100 | 20 | SIPHT_100 | |
1000 | 50 | SIPHT_1000 |
Factors | SUMMARY | Sum | Average | Variance |
---|---|---|---|---|
Algorithms | FCFS | 1566.79 | 391.69 | 48,472.73 |
Min-min | 1608.55 | 402.13 | 57,146.5 | |
Max-min | 1499.74 | 374.93 | 46,607.81 | |
MCT | 1566.79 | 391.69 | 48,472.73 | |
MaxChild | 1563.36 | 390.84 | 47,722.96 | |
P2C | 1456.5 | 364.12 | 49,551.19 | |
Workflow Size | CyberShake_30 | 1579.98 | 263.33 | 172.31 |
CyberShake_50 | 1581.96 | 263.66 | 55.93 | |
CyberShake_100 | 1785.53 | 297.58 | 305.15 | |
CyberShake_1000 | 4314.26 | 719.04 | 511.36 |
Source of Variation | SS | df | MS | F | p-Value | F-crit |
---|---|---|---|---|---|---|
Algorithms | 3798.654 | 5 | 759.73 | 7.996 | 0 | 2.901 |
Workflow Size | 892,496.7 | 3 | 297,498.91 | 3131.242 | 3.39E+00 | 3.287 |
Error | 1425.148 | 15 | 95.009 | |||
Total | 897,720.5 | 23 |
Factors | SUMMARY | Sum | Average | Variance |
---|---|---|---|---|
Algorithms | FCFS | 866.94 | 216.73 | 75,982.15 |
Min-min | 870.54 | 217.63 | 76,802.02 | |
Max-min | 866.08 | 216.52 | 75,850.97 | |
MCT | 866.94 | 216.73 | 75,982.15 | |
MaxChild | 866.63 | 216.65 | 75,903.93 | |
P2C | 833.23 | 208.3 | 74,158.48 | |
Workflow Size | Montage_25 | 340.79 | 56.79 | 1.73 |
Monatge_50 | 458.18 | 76.36 | 7.33 | |
Montage_100 | 606.7 | 101.11 | 19.26 | |
Montage_1000 | 3764.69 | 627.44 | 32.63 |
Source of Variation | SS | df | MS | F | p-Value | F-crit |
---|---|---|---|---|---|---|
Algorithms | 246.771 | 5 | 49.354 | 12.752 | 5.85373E−05 | 2.901 |
Workflow | 1,363,981.131 | 3 | 454,660.38 | 117,479.76 | 5.34794E−33 | 3.287 |
Error | 58.051 | 15 | 3.87 | |||
Total | 1,364,285.955 | 23 |
Factors | SUMMARY | Sum | Average | Variance |
---|---|---|---|---|
Algorithms | FCFS | 161,211.02 | 40,302.75 | 2,520,942,674 |
Min-min | 174,101.15 | 43,525.28 | 2,741,892,698 | |
Max-min | 171,923.1 | 42,980.77 | 2,713,164,848 | |
MCT | 161,211.02 | 40,302.75 | 2,520,942,674 | |
MaxChild | 161,211.02 | 40,302.75 | 2,520,942,674 | |
P2C | 161,211.33 | 40,302.33 | 2,520,942,674 | |
Workflow Size | Epigenomics_24 | 33,578.68 | 5596.44 | 0.04 |
Epigenomics_46 | 46,459.45 | 7743.24 | 0 | |
Epigenomics_100 | 230,865.9 | 38,477.65 | 15,052,972.16 | |
Epigenomics_997 | 682,378.61 | 113,729.76 | 10,729,351.4 |
Source of Variation | SS | df | MS | F | p-Value | F-crit |
---|---|---|---|---|---|---|
Algorithms | 43,480,779.16 | 5 | 8,696,155.832 | 2.526 | 0.024 | 2.901 |
Workflow | 45,928,839,780 | 3 | 15,309,613,260 | 2688.071 | 0 | 3.287 |
Error | 85,430,838.92 | 15 | 5,695,389.261 | |||
Total | 46,057,751,398 | 23 |
Factors | SUMMARY | Sum | Average | Variance |
---|---|---|---|---|
Algorithms | FCFS | 10,800.33 | 2700.08 | 4,953,313 |
Min-min | 12,054.6 | 3013.65 | 4,808,698 | |
Max-min | 10,771.88 | 2692.97 | 4,884,867 | |
MCT | 10,800.33 | 2700.08 | 4,953,313 | |
MaxChild | 10,802.75 | 2700.68 | 4,957,883 | |
P2C | 10,748.33 | 2687.08 | 4,884,225 | |
Workflow | Inspiral_30 | 10,469.64 | 1744.94 | 17,561.79 |
Inspiral_50 | 9741.8 | 1623.63 | 31,777.85 | |
Inspiral_100 | 9350.48 | 1558.41 | 10,026.64 | |
Inspiral_1000 | 36416.3 | 6069.38 | 12,884.62 |
Source of Variation | SS | df | MS | F | p-Value | F-crit |
---|---|---|---|---|---|---|
Algorithms | 336,530.6 | 5 | 67,306.1 | 40.834 | 0 | 2.901 |
Workflow Size | 88,302,172.05 | 3 | 2.9E+07 | 17,857.59 | 0 | 3.287 |
Error | 24,723.993 | 15 | 1648.27 | |||
Total | 88,663,426.64 | 23 |
Factors | SUMMARY | Sum | Average | Variance |
---|---|---|---|---|
Algorithms | FCFS | 20,100.22 | 5025.05 | 1,058,606.8 |
Min-min | 20,575.48 | 5143.87 | 1,589,971.89 | |
Max-min | 18,846.06 | 4711.51 | 172,348.68 | |
MCT | 20,100.22 | 5025.05 | 1,058,606.8 | |
MaxChild | 20,199.08 | 5049.77 | 1,162,325.93 | |
P2C | 18,375.08 | 4593.77 | 296,019.17 | |
Workflow | SIPHT_30 | 26,058.77 | 4343.12 | 31,144.96 |
SIPHT_60 | 27,849.2 | 4641.53 | 30.09 | |
SIPHT_100 | 26,859.25 | 4476.54 | 48.18 | |
SIPHT_1000 | 37,428.92 | 6238.15 | 549,233.12 |
Source of Variation | SS | df | MS | F | p-Value | F-crit |
---|---|---|---|---|---|---|
Algorithms | 955,130.555 | 5 | 191,026.111 | 3.471 | 0.0256 | 2.901 |
Workflow Size | 14,066,486.6 | 3 | 4,688,828.875 | 36.12 | 0 | 3.287 |
Error | 1,947,151.29 | 15 | 129,810.086 | |||
Total | 16,968,768.5 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, V.; Bawa, S.; Garg, L. Multi-Dependency and Time Based Resource Scheduling Algorithm for Scientific Applications in Cloud Computing. Electronics 2021, 10, 1320. https://doi.org/10.3390/electronics10111320
Prakash V, Bawa S, Garg L. Multi-Dependency and Time Based Resource Scheduling Algorithm for Scientific Applications in Cloud Computing. Electronics. 2021; 10(11):1320. https://doi.org/10.3390/electronics10111320
Chicago/Turabian StylePrakash, Vijay, Seema Bawa, and Lalit Garg. 2021. "Multi-Dependency and Time Based Resource Scheduling Algorithm for Scientific Applications in Cloud Computing" Electronics 10, no. 11: 1320. https://doi.org/10.3390/electronics10111320
APA StylePrakash, V., Bawa, S., & Garg, L. (2021). Multi-Dependency and Time Based Resource Scheduling Algorithm for Scientific Applications in Cloud Computing. Electronics, 10(11), 1320. https://doi.org/10.3390/electronics10111320