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and Barış Burak Kanbur

Received: 24 May 2021

Accepted: 1 June 2021

Published: 3 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electric Power, South China University of Technology, Guangzhou 510000, China;
201920113774@mail.scut.edu.cn (L.S.); xiaowx@scut.edu.cn (W.X.);
201920113761@mail.scut.edu.cn (H.J.); epbzhang@scut.edu.cn (B.Z.)
* Correspondence: epfxie@scut.edu.cn; Tel.: +86-020-8711-1764

Abstract: In order to quickly calculate the stable temperature of a reactor driven by high-frequency
and high-power pulse voltage, an improved thermal network model suitable for a reactor under this
condition is established in this paper. In power electronic equipment, the maximum temperature
of the reactor is usually concentrated in its internal core. Moreover, with the increasing demand
of high-power density in power electronic devices, the structure design of the reactor is more
compact, and the internal magnetic field will affect the accuracy of the temperature-measuring device.
Therefore, it is difficult to measure the internal temperature rise of the reactor directly. However,
its stable operating temperature could be analyzed by the thermal network modeling methods and
heat transfer analysis tool. Therefore, a convenient and accurate thermal network model of the
reactor under high-frequency and high-power square wave voltage is established by considering the
equivalent thermal resistance of the winding, the three-dimensional geometrical effect of the core and
the effect of the high-frequency repeated pulse stress on the thermal penetration depth. Additionally,
the internal temperature of the reactor can be obtained through the external temperature in terms
of the presented model. To verify the feasibility of the thermal network model, the corresponding
multiphysical field finite element simulation and the reactor temperature measurement platform is
built. The simulation and experimental results show that the proposed thermal network model has a
high precision and fast calculation speed, and it is an effective tool for thermal analysis of the reactor.

Keywords: thermal network model; optical fiber temperature measuring; multiphysical field finite
element model; high-frequency and high-power reactor

1. Introduction

Currently, high-power electronic equipment is essential for the smart grid and new
energy power generation. Hence, the safe and reliable operation of high-power electronic
equipment has an increasingly significance on power grid security [1]. Among high-power
electronic equipment, the high-frequency and high-power reactor is the link of power
transmission between the converter and AC system and plays the role of controlling
power transmission, filtering, restraining current fluctuation, restraining the circulation
and preventing the current from rising fast during short circuit [2]. Therefore, the overall
performance of the high-power electronic converter is highly dependent on the reactor,
and it is vital to make a detailed thermal analysis of it. As shown in Figure 1, the typical
winding voltage waveform of the high-frequency reactor is not a standard sine wave
but has a complex frequency harmonic of square wave, along with a rapid rise, serious
distortion and abnormal peak. The main reasons of this phenomenon are the influence
of the leakage inductance and distributed capacitance, and them also causes additional
core loss and winding loss [3]. Under this high-frequency electrical stress, the thermal
and mechanical stress have additional influences on the heating of the reactor, which

Electronics 2021, 10, 1342. https://doi.org/10.3390/electronics10111342 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10111342
https://doi.org/10.3390/electronics10111342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10111342
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10111342?type=check_update&version=1


Electronics 2021, 10, 1342 2 of 15

makes the operating temperature of the reactor more important. Moreover, under high-
frequency conditions, the edges and corners of the magnetic core with significant magnetic
field change will produce a very serious edge effect, resulting in serious heating, uneven
temperature distribution and insulation failure. In addition, the temperature hot spots of
the reactor are often concentrated in its interior, but the temperature sensor is difficult to
measure directly. Therefore, effective thermal analyses are essential to solve this issue.
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There are three main methods for thermal research on the reactors: the mathematical
calculation model, equivalent thermal network model and finite element model, investi-
gated in [4–8]. The mathematical calculation is based on the mechanism of heat transfer. It
is the basis of all types of heat research and is commonly used for hot spot temperature
prediction. Based on the geometry and material properties of the reactor, the equivalent
thermal network model is modeled by the thermal network method. The finite element
model uses the finite difference method, which is usually performed by powerful simula-
tion tools, such as COMSOL and ANSYS. Although these methods can illustrate the heat
transfer mechanism of the reactor accurately, the finite element model needs more details
and consumes more time. In contrast, the mathematical calculation model and the thermal
network model can obtain the temperature features by solving some simple equations from
divided nodes, and the latter is more accurate, which makes the thermal network model
more practical.

Many studies have focused on the thermal analysis of magnetic devices, such as trans-
formers, reactors and motors [9–14]. In [9], a transformer thermal network model based on
nonlinear thermal resistance and the lumped heat capacity under the transient condition
realizes the calculation of transformer temperature. The authors of [10] present a function
of core loss and ambience based on the temperature simplified analytical equivalent ther-
mal resistance of the planar transformer. A thermal model of inductor and transformer
windings, including litz wire, was built in [11]. In another example, L. Wang et al. applied
the dynamic thermal model with prephysical modeling for transformers in [12]. Addi-
tionally, the thermal network method and two-dimensional numerical simulation method
were used to study the rotor temperature field distribution of the permanent magnet
synchronous traction motor in [13]. Additionally, Eslamian et al. studied the temperature
distribution of transformers and verified the simulation by experiments [14]. Although all
of these methods can perform the thermal analysis of a magnetic device, they are either too
complex or only consider one aspect of heat transfer in magnetic devices. Therefore, a new
method, which is more explicit and calculates more rapidly, must be investigated for the
thermal analysis of the reactors.

The focus of this paper is to build a thermal network model suitable for a reactor
under high-frequency and high-power square wave voltage and to obtain the internal
temperature rise hot spots of the reactor through the external temperature data, ambient
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temperature and material coefficient. The geometrical structure of the reactor is taken into
account in the model, and its equivalent geometric heat transfer effect is obtained through
three-dimensional thermal resistance. The surface thermal impedance method is applied
to achieve an equivalent high-frequency thermal penetration effect, which is more accurate
than the traditional model. The winding thermal resistance can be equivalent to multilayer
cylindrical walls, and its equivalent conduction thermal resistance can be more quickly
calculated than with other models. At the same time, the transient temperature variation
of the reactor with time can be analyzed by using the lumped heat capacity method.

The paper is organized as follows: Section 2 includes the thermal analysis and thermal
modeling of the reactor. In Section 3, the finite element model is used to simulate the
temperature distribution of the reactor for comparison with the proposed thermal network
model. Additionally, experimental verification and analysis are presented in Section 4.

2. The Thermal Network Model of the Reactor
2.1. Conventional Temperature Model

The traditional temperature model of the reactor assumes that its cooling rate is
approximately proportional to the radiant area of its surface. The core loss and winding
loss are taken as the total loss. Under the equilibrium state, all the energy generated inside
the reactor is transferred to the outside through the surface radiation area. Among this,
45% is transmitted outward through heat conduction and 55% through heat radiation. The
temperature rise of the reactor under the equilibrium state can be expressed as [15]:

∆T = 450ψ0.826 = 450(PCW/At)
0.826 (1)

where At is the radiation surface and PCW is the sum of core loss and winding loss. This
model can only calculate the average temperature rise of the reactor, but not obtain the
temperature hot spot, and it ignores the influence of the high-frequency effect and three-
dimensional geometric effect. Therefore, it is not a suitable method for thermal analysis of
high-frequency and high-power reactors.

2.2. Heat Transfer Analysis

There are generally three ways of heat transfer: conduction, convection and radia-
tion [16]. Thermal resistance is usually used in heat propagation models such as heat
conduction and heat convection. The thermal resistance of heat conduction in a monolayer
material is

Rcond =
l

kc A
(2)

where l is the length, A is heat transfer area and kc is the thermal conductivity.
The thermal resistance in the process of thermal convection can be expressed as

Rconv =
1

hA
(3)

where h represents the thermal convection coefficient.
Thermal radiation thermal resistance can be expressed as

Rrad =
1

αrad A
(4)

where αrad represents the thermal radiation coefficient.
The conduction heat resistance of the winding can be equivalent to multilayer cylin-

ders. As shown in Figure 2a, the cylindrical coordinate system is tantamount to the heat
transfer of the winding to one-dimensional heat conduction along the radius direction [17].
Then, the equivalent thermal resistance of the winding can be expressed as
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RΦ =
ln(r2/r1)/a1 + ln(r3/r2)/a2 + ln(r4/r3)/a3

2πlh
(5)

where the definitions of each parameter are shown in Figure 2a.
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diagram.

The three-dimensional heat transfer of the core in the reactor can be simulated by the
multidimensional steady-state conduction analysis method [18], but the analytical solution
of the three-dimensional heat transfer equation is complicated. Based on the basic principle
that the isotherm must be perpendicular to the heat flow line, the three-dimensional heat
transfer effect of the core can be simulated through the shape factor, which can be equivalent
to the multidimensional conduction heat resistance. The equivalent thermal resistance of it
can be expressed as [19]:

Rconv(D) =
1

kcS
(6)

where S represents the shape factor, and

S =

{
0.54lC lC > ∆x
0.15∆y le > ∆y

(7)

where the definitions of lc, le, ∆x and ∆y are shown in Figure 2b.
It is necessary to consider the high-frequency effect on the thermal network modeling

of the reactor. It can be modeled by the thermal surface impedance method. The heat
source that causes the temperature rise of the core comes from two aspects. As shown in
Figure 3, one is generated by the loss of the core, which affects the core directly. Another
is the copper loss from the winding indirectly causes the temperature rise of the core
through heat transfer. Here, we assume that the core is a plate of finite thickness. Hence,
the high-frequency heatwaves generated by the core will decrease with the penetration
depth from the inside to the outside. Additionally, the heat generated by the winding will
decrease with the penetration depth from the outside to the inside. Moreover, the depth of
thermal penetration can be calculated by the working frequency and thermal conductivity.
Here, assuming that the thermal conductivity of the reactor is isotropic, the thermal surface
impedance Rf of its core can be expressed as [20]:

R f =
1√

4π f Cpρkc A
[

sinh(2a)− sin(2a)
conh(2a)− cos(2a)

] (8)

where f is frequency, Cp is heat capacity, ρ is density, a is a function of contact thickness,
a = d/δth, d is thickness and δth is depth of heat penetration. When the frequency be-
comes higher and the penetration depth becomes lower, the more uneven the temperature
variation and the higher the temperature gradient become.
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Due to the high-frequency effect, the core loss includes hysteresis loss, the eddy current
loss and the corresponding core loss for the reactor; it can be calculated by [21]:

Pcore = k f aBb
mDb−a+1 (9)

where k, a and b are the material correlation constants, respectively, Bm is the amplitude of
magnetic induction intensity and D is the duty cycle.

When the high-frequency time-varying current flows through the reactor windings,
they are in the magnetic field induced by the current of the neighboring conductor. The
field can further induce eddies in the conductor, converting electromagnetic energy into
heat energy. Furthermore, both the skin effect and proximity effect can make the high-
frequency current density uneven in the conductor, which limits the conductor’s ability to
conduct high-frequency current. The winding copper loss can be obtained by the improved
Dowell formula [22]:

Pcu = (
ξ

2
sinh(ξ) + sin(ξ)
cosh(ξ)− cos(ξ)

Rdc)I2
rms (10)

where Irms is the effective value of the current, RDC is the DC resistance of the winding, ξ is
a constant that can be deduced by the function of conductor height h and skin depth δ as
ξ = h/δ.

The core loss and winding loss are used as heat sources to flow into each node of the
thermal network model. Taking temperature as the quantity to solve, the heat balance
equation is established for each unit or loop:

∑
j

f (T j+1
n )− f (T j

n)

Rj,n
+ Pn = 0 (11)

where Tn
j+1 is the stable temperature of node j + 1, Tn

j is the initial temperature of node j
and Pn is the power flowing through node j + 1 and node j.

The heat balance equation can be written by the matrix expression∣∣∣∣∣∣∣∣∣∣∣

1
R11

1
R12

· · · 1
R1i1

1
R21

. . . . . .
...

...
. . . . . .

...
1

Ri1
· · · · · · 1

Rii

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∆T1
...
...

∆Ti

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

P1
...
...

Pi

∣∣∣∣∣∣∣∣∣∣
(12)

The temperature of each node can be obtained by solving Equation (12), which is the
function of the loss in magnetic core and the loss of winding. Additionally, the correspond-
ing expression is shown as follows:

∆Ti = xiPcore + yiPcu (13)

Finally, its time constant can be obtained based on the material parameters of the
reactor. The temperature distribution of the high-frequency and high-power reactor with
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time can be computed by the lumped heat capacity method. Therefore, the time-dependent
temperature can be calculated by

T = (T0 − T∞)e(−
t
τ ) + T∞ (14)

where Ti is the ambient temperature, T∞ is the stable temperature and the time constant τ
can be obtained by

τ =
ρVCCP

hA
(15)

where ρ is the density of the magnetic core, Vc is the volume of the core, Cp is the heat
capacity of the magnetic core and h is the thermal convection coefficient.

From the above analysis, the proposed thermal network can be built based on the
shape of the magnetic core, winding structure and material specification.

2.3. The Reactor Thermal Network Model and Temperature Calculation

The structure of the tested reactor is shown in Figure 4, and the corresponding param-
eters are shown in Table 1.
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Figure 4. (a) Reactor to be tested; (b) Reactor core size.

Table 1. Reactor parameters.

Reactor Regulation Magnetic Core Winding Insulation
L20A2M-0PH Ni-Zn Ferrite Copper Polyester Film

Rated Current Rated Temperature Frequency Inductance
20 A 100 ◦C 0–50 kHz 2 mH

Based on the analysis above, the proposed thermal model for the reactor can be
obtained. Figure 5 is the equivalent circuit of the proposed model. Here, the mechanism of
the different heat exchange, three-dimensional geometry effects, high-frequency thermal
resistances and the equivalent thermal resistance of the winding are considered completely.
The descriptions of nodes are listed in Table 2. The core and windings losses, red in Figure 5,
are injected into the model as heat sources, similar to a current source. Note that, in Figure 5,
PCore1, PCore2, PCore3 and PCore4 represent the core losses at the top, leftward, bottom and
dextral core columns of the studied reactor, respectively, and PCu1 and PCu2 display the
windings losses. Moreover, from Figure 5, in order to provide the proper balance with high
accuracy and a small calculation, 12 nodes are considered in the proposed thermal model.
These nodes are obtained by the proposed theoretical modeling and methodology.
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Table 2. Definition of each node.

Nodes

1: Core bottom column 2: Core bottom left corner 3: Core bottom right corner
4: Core left column 5: Core right column 6: Core top right corner
7: Core top left corner 8: Core top column 9: Core bottom surface
10: Core top surface 11: Left winding surface 12: Right winding surface

According to the heat balance equation, the temperature of each node can be obtained
by Equation (13). In order to simplify calculation, the temperature of nodes 1–8 can be
solved firstly for reducing the order of the matrix. Additionally, the temperature of nodes
9–12 can be obtained indirectly by nodes 1–8. The calculation results of nodes 1–8 are
shown in Table 3.

Table 3. Temperature calculation results of each node.

Node xi yi Node xi yi

1 0.2224 0.1160 5 0.2851 0.1854
2 0.2356 0.1540 6 0.2558 0.1586
3 0.2356 0.1540 7 0.2558 0.1586
4 0.2851 0.1854 8 0.2312 0.1310

The temperature calculation results of nodes 9–12 are shown as follows:

∆T11,12 = 0.4167∆T4,5 (16)

∆T9 = 0.8142∆T1 (17)

∆T10 = 0.8498∆T8 (18)

3. Finite Element Simulation

In order to verify the accuracy of the thermal network model, the corresponding
finite element simulation is built in this section. Finite element analysis is a more accurate
simulation than the thermal network model for the heat transfer mechanism of the reac-
tor. The advantage is especially obvious when the accurate model of three-dimensional
geometry is established for calculating its operating temperature. However, the main
disadvantage of the finite element analysis is that the calculation time is long, and the
thermal and electromagnetic time constants are difficult to be coupled. Moreover, due to
the high switching frequency, short step size and a large thermal time constant need to
be considered in the transient electromagnetic simulation, so that the simulation model
becomes a rigid system with multiple time scales.
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The algorithm flow of the finite element modeling is shown in Figure 6. Considering
the frequency-transient simulation, the thermal and magnetic finite element models can
be coupled. To some extent, this method overcomes the simulation difficulties caused by
multiple time scales.
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The simulation adopts a three-dimensional model. Here, the components are com-
posed of a finite element domain, magnetic core, winding and insulation. The finite element
domain is air, the magnetic core material is nickel zinc ferrite, the winding is copper con-
ductor and the insulating material is polyester film. Moreover, the physical field consists
of an electromagnetic field and solid heat transfer. Note that the latter has the coupling
developed by multiple physical fields. Additionally, the frequency-transient cosimulation
is employed in this simulation, i.e., the electromagnetic field working in the frequency
domain and the temperature field working in the transient state. The electromagnetic field
equation is shown as follows:

∇× J = 0
∇× H = J
B = ∇× A
E = −∇ ·V − jωA
J = σE + jωD + σv× B + Je

(19)

where J is the conduction current density, H is the magnetic field intensity, B is the magnetic
flux density, E is the electric field intensity, V is the electric potential, ω is the angular
frequency, σ is the electrical conductivity, D is the electric flux, Je is the displacement current
density and A is the vector magnetic potential.

The temperature field equation is{
ρCp · ∇T +∇ · q = Q + Qted
q = −k∇T

(20)
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where ρ is material density, Cp is material heat capacity, q is heat flux, Q is heat increment,
Qted is initial heat and ∇T is temperature rise.

The finite element mesh model of the reactor is shown in Figure 7. The skin effect of
the winding is analyzed by the boundary layer mesh at high frequency. Fine mesh and
coarse mesh are used to manage simulation time with higher precision. However, the
total number of finite element mesh nodes is still about 400,000, which will lead to a huge
computational cost. This is a disadvantage of finite element modeling.
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Figure 7. Reactor mesh generation.

The simulation parameters are shown in Table 4, which adopt the SI International
System of Units. Here, subscripts w, e and p represent windings, insulation and magnetic
core, respectively.

Table 4. Finite element simulation parameters.

Item V f σw Cp ρw T0

Value 550 20,000 5.998 × 107 385 8940 293.15

Item σc µ c σe ρc ρe ε
Value 526 800 0.004 8600 1393 1

Item kc kw ke Cw Ce
Value 152 400 0.8 386 0.27

The finite element simulation results are shown in Figure 8. Here, the maximum flux
density is 0.35 T, and the flux density fastens to the magnetic core. This strong magnetic
field will have an impact on the measurement accuracy of some sensors with weak anti-
interference. According to the results of the temperature field, the temperature distribution
of the winding is low in the middle and high in the upper and lower, which is related to
the uneven distribution of the winding voltage caused by the fast-rising edge and falling
edge. Moreover, the temperature hot spots of the magnetic core focus on the center of the
left and right magnetic core columns because of the short magnetic circuit at this position
and the poor heat dissipation under the winding.
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4. Experimental Verification
4.1. Construction of Experimental Platform

In order to verify the proposed thermal network model, a corresponding experimental
platform was built based on the studied reactor. The experimental circuit is shown in
Figure 9.
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The established experimental platform is shown in Figure 10. Here, the important
components are labeled.
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Figure 10. Experimental facility.

Due to the effect of the strong magnetic field inside the reactor, the traditional ther-
mocouple temperature measurement will produce eddy current in the probe, which will
affect the measurement accuracy. Therefore, the optical fiber sensor is utilized for higher
precision, which does not need an electrical connection between the sensor and the re-
ceiving part. The designment, weakening the influence of the strong electromagnetic
interference, can measure the temperature accurately. Note that according to the finite
element simulation results and the thermal network model, the optical fiber temperature
sensor is implanted into the corresponding temperature hot spot of the reactor to achieve a
more accurate temperature measurement.

4.2. Experimental Analysis

Under the condition of ±550 V, ±750 V and ±1050 V square wave with frequency
of 20 kHz and ambient temperature of 20 ◦C, we measured the stable temperature of the
reactor. According to Equations (10) and (11), the corresponding trend of core loss and
winding loss with voltage change are shown in Figure 11. Fiber optic sensor probes are
implanted in nodes 2, 4, 5, 10, 11 and 12 of the reactor, respectively. The temperatures of
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nodes 1, 3, 6, 7, 8 and 9 are indirectly calculated by the corresponding thermal network
model. In addition to the application of the optical fiber sensor, this paper also uses
an infrared thermal imager to measure the reactor temperature, as shown in Figure 12.
The infrared thermal imager can measure the external three-dimensional temperature
distribution of the reactor, but it cannot directly measure the internal temperature of the
reactor. Figure 13 displays the comparisons of temperature measurement and the thermal
network model and finite element model.

From the experimental results, we can see that the thermal network model has the
highest accuracy. When the voltage is ±550 V, ±750 V and ±1050 V, the error is 3.8%, 3.1%
and 2.4%, respectively. The error decreases as the temperature increases. It is shown that
this method is an effective method for overtemperature protection of the reactor. The finite
element model has high accuracy, and its result is very close to the experimental results,
but it requires a significant amount of calculation time.

Figure 14 shows the comparison among the proposed model, the model without
high-frequency thermal resistance, the model without three-dimensional thermal resistance
and the experiment result when the voltage is ±1050 V. When the high-frequency thermal
resistance is ignored, the temperature of each node will be lower than the experimental
result, and the degree of temperature inequality is more evident. When three-dimensional
thermal resistance is disregarded, the temperature of each node obtained by the thermal
network model is larger than the experimental result due to the neglect of the three-
dimensional geometric cooling effect of the reactor. It is obvious that the proposed model
has a higher accuracy and considers the influence of different factors on heat transfer.
Therefore, under the premise of convenient calculation, the proposed model is more
suitable for temperature prediction of the reactor.
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Figure 14. The comparison among the proposed model, the model without high-frequency thermal
resistance, the model without three-dimensional thermal resistance and the experimental result under
the voltage of ±1050 V.

Figure 15 shows the temperature variation of node 2 and node 4 with time under
the voltage of 750 V. The experimental results show that the heat capacity model has
the excellent ability of determining temperature rise, and the average error between the
temperature rise curve calculated by the heat capacity model and the actual measurement
is about 2.2%.
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From the above analysis, both the thermal network model and the finite element
model can be used for thermal analyses of the reactor. The finite element model has
a higher accuracy; nevertheless, the finite element modeling is complex and requires a
significant amount of calculation time. The calculation time of the above finite element
model is about 44 h when the degree of freedom is 40,000, and the computer parameters
are Intel Core i7-8750H, NVIDIA GTX10606G GDDR5 and 16 GB DDR4. Additionally,
the thermal network model can quickly calculate the stable temperature of each reactor
node, which is a very practical method for both initial thermal design and analysis of heat
transfer characteristics.

5. Conclusions

This paper has focused on building an improved thermal network model for reactors
under high-frequency and high-power conditions. According to the different heat transfer
mechanisms, we obtained the corresponding heat transfer resistances. The thermal model
of the reactor was divided into multiple nodes, and a suitable thermal network model of
the reactor was built. Compared with the traditional equivalent model, this method can
calculate the temperature of different nodes in the reactor more accurately and quickly.
In addition, the lumped heat capacity model is used to analyze the transient heat of the
reactor for obtaining its temperature variation with time. Finite element modeling and
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experimental tests are carried out to verify the validation of the proposed model. The
simulation results and experimental results show that the thermal network model has a high
accuracy, the error of results between the experimental and the model being about 3%, and
the accuracy increases with the rise of temperature. Through the application of this model,
the internal temperature hot spot can be calculated by measuring the external temperature
of the reactor. Therefore, it is an effective method to obtain the reactor temperature hot
spot.

Consequently, the main advantages of the proposed thermal network model include
a low computational time and high effectiveness and accuracy for both steady-state and
transient thermal analyses.
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