An Active and Passive Reputation Method for Secure Wideband Spectrum Sensing Based on Blockchain
Abstract
:1. Introduction
1.1. Related Work and Motivation
1.2. Our Contributions
1.3. Paper Organization
2. System Model and Proposed Methods
2.1. System Model
2.2. The Proposed System Scheme
2.2.1. CSS Process Based on Blockchain
2.2.2. Blockchain Transaction Model
2.2.3. The APR_SWSS Algorithm
Historical Reputation
Recent Correction
Algorithm 1. The APR_SWSS. |
Input: , , , , , |
1. Determine the critical value by though OTSU method. |
2. Calculate ASR: |
3. Obtain the median R0.5 from the token balance of the nodes participating in the task. |
4. Calculate PSR: |
5. Calculate the recent reputation correction: |
6. Get the final node weight: |
Output: Node weight |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitola, J.; Maguire, G.Q. Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, K.R. Advances in cognitive radio networks: A survey. IEEE J. Sel. Top. Signal Process. 2010, 5, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Hamouda, W. Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Commun. Surv. Tutor. 2016, 19, 1277–1304. [Google Scholar]
- Yucek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 2009, 11, 116–130. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, M.; Wu, G.; Alam, M.; Liang, Y.C.; Li, S. A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wirel. Commun. 2017, 24, 44–51. [Google Scholar] [CrossRef]
- Hu, Z.; Bai, Y.; Zhao, Y.; Shen, C.; Xie, M. Adaptive and blind wideband spectrum sensing scheme using singular value decomposition. Wirel. Commun. Mob. Comput. 2017, 2017, 3279452. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Nallanathan, A.; Cui, S.; Wang, C.X. Cooperative wideband spectrum sensing over fading channels. IEEE Trans. Veh. Technol. 2015, 65, 1382–1394. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Bai, Y.; Huang, M.; Xie, M.; Zhao, Y. A self-adaptive progressive support selection scheme for collaborative wideband spectrum sensing. Sensors 2018, 18, 3011. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Gao, Y.; Plumbley, M.D.; Parini, C.G. Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes. IEEE Trans. Signal Process. 2015, 64, 3106–3117. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.J.; Chien, T.H.; Lu, C.S. Theoretical stopping criteria guided greedy algorithm for compressive cooperative spectrum sensing. Comput. Commun. 2017, 111, 165–175. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Li, S. An adaptive cooperative spectrum sensing scheme based on the optimal data fusion rule. In Proceedings of the 2007 4th International Symposium on Wireless Communication Systems, Trondheim, Norway, 17–19 October 2007; pp. 582–586. [Google Scholar]
- Li, J.; Li, B.; Liu, M. Performance analysis of cooperative spectrum sensing over large and small scale fading channels. AEU Int. J. Electron. Commun. 2017, 78, 90–97. [Google Scholar] [CrossRef]
- Qin, Z.; Gao, Y.; Plumbley, M.D. Malicious user detection based on low-rank matrix completion in wideband spectrum sensing. IEEE Trans. Signal Process. 2017, 66, 5–17. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, G.; Wu, Q.; Zou, Y.; Han, Z.; Wang, J. Byzantine attack and defense in cognitive radio networks: A survey. IEEE Commun. Surv. Tutor. 2015, 17, 1342–1363. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Song, M.; Xin, C.; Alam, M. A robust malicious user detection scheme in cooperative spectrum sensing. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 4856–4861. [Google Scholar]
- Gul, N.; Khan, M.S.; Kim, S.M.; Kim, J.; Elahi, A.; Khalil, Z. Boosted Trees Algorithm as Reliable Spectrum Sensing Scheme in the Presence of Malicious Users. Electronics 2020, 9, 1038. [Google Scholar] [CrossRef]
- Gray, M.L.; Suri, S.; Ali, S.S.; Kulkarni, D. The crowd is a collaborative network. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, San Francisco, CA, USA, 27 February–2 March 2016; pp. 134–147. [Google Scholar]
- Zhang, B.; Hu, K.; Zhu, Y. Spectrum allocation in cognitive radio networks using swarm intelligence. In Proceedings of the 2010 Second International Conference on Communication Software and Networks, Singapore, 26–28 February 2010; pp. 8–12. [Google Scholar]
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Manubot 2019. Available online: https://git.dhimmel.com/bitcoin-whitepaper/ (accessed on 6 May 2021).
- Battah, A.; Iraqi, Y.; Damiani, E. Blockchain-Based Reputation Systems: Implementation Challenges and Mitigation. Electronics 2021, 10, 289. [Google Scholar] [CrossRef]
- Fernández-Caramès, T.M.; Fraga-Lamas, P. Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks. IEEE Access 2020, 8, 21091–21116. [Google Scholar] [CrossRef]
- Kearney, J.J.; Perez-Delgado, C.A. Vulnerability of Blockchain Technologies to Quantum Attacks. Array 2021, 10, 100065. [Google Scholar] [CrossRef]
- Ikeda, K. Security and privacy of blockchain and quantum computation. Adv. Comput. 2018, 111, 199–228. [Google Scholar]
- Ikeda, K. qBitcoin: A peer-to-peer quantum cash system. In Science and Information Conference; Springer: Cham, Switzerland, 2018; pp. 763–771. [Google Scholar]
- Gao, Y.L.; Chen, X.B.; Xu, G.; Yuan, K.G.; Liu, W.; Yang, Y.X. A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Inf. Process. 2020, 19, 1–15. [Google Scholar] [CrossRef]
- Kiktenko, E.O.; Pozhar, N.O.; Anufriev, M.N.; Trushechkin, A.S.; Yunusov, R.R.; Kurochkin, Y.V.; Lvovsky, A.I.; Fedorov, A.K. Quantum-secured blockchain. Quantum Sci. Technol. 2018, 3, 035004. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.A.; Júnior, J.F.R.; do Amaral, A.R. Social tagging for e-learning: An approach based on the triplet of learners, learning objects and tags. In International Workshop on Learning Technology for Education in Cloud; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Chaer, A.; Salah, K.; Lima, C.; Ray, P.P.; Sheltami, T. Blockchain for 5G: Opportunities and challenges. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Manogaran, G.; Rawal, B.S.; Saravanan, V.; Kumar, P.M.; Martínez, O.S.; Crespo, R.G.; Montenegro-Marin, C.E.; Krishnamoorthy, S. Blockchain based integrated security measure for reliable service delegation in 6G communication environment. Comput. Commun. 2020, 161, 248–256. [Google Scholar] [CrossRef]
- Xu, H.; Klaine, P.V.; Onireti, O.; Cao, B.; Imran, M.; Zhang, L. Blockchain-enabled resource management and sharing for 6G communications. Digit. Commun. Netw. 2020, 6, 261–269. [Google Scholar] [CrossRef]
- Bayhan, S.; Zubow, A.; Wolisz, A. Spass: Spectrum sensing as a service via smart contracts. In Proceedings of the 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Korea, 22–25 October 2018; pp. 1–10. [Google Scholar]
- Zhou, Z.; Chen, X.; Zhang, Y.; Mumtaz, S. Blockchain-empowered secure spectrum sharing for 5G heterogeneous networks. IEEE Netw. 2020, 34, 24–31. [Google Scholar] [CrossRef]
- Lv, P.; Zhao, H.; Zhang, J. Blockchain Based Spectrum Sensing: A Game-Driven Behavior Strategy. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; Volume 9, pp. 899–904. [Google Scholar]
- Ariyarathna, T.; Harankahadeniya, P.; Isthikar, S.; Pathirana, N.; Bandara, H.D.; Madanayake, A. Dynamic spectrum access via smart contracts on blockchain. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Kotobi, K.; Bilén, S.G. Blockchain-enabled spectrum access in cognitive radio networks. In Proceedings of the 2017 Wireless Telecommunications Symposium (WTS), Chicago, IL, USA, 26–28 April 2017; pp. 1–6. [Google Scholar]
- Kotobi, K.; Bilen, S.G. Secure blockchains for dynamic spectrum access: A decentralized database in moving cognitive radio networks enhances security and user access. IEEE Veh. Technol. Mag. 2018, 13, 32–39. [Google Scholar] [CrossRef]
- Rawat, D.B.; Alshaikhi, A. Leveraging distributed blockchain-based scheme for wireless network virtualization with security and QoS constraints. In Proceedings of the 2018 International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 332–336. [Google Scholar]
- Careem, M.A.A.; Dutta, A. Sensechain: Blockchain based reputation system for distributed spectrum enforcement. In Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, 11–14 November 2019; pp. 1–10. [Google Scholar]
- Bayhan, S.; Zubow, A.; Gawłowicz, P.; Wolisz, A. Smart contracts for spectrum sensing as a service. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 648–660. [Google Scholar] [CrossRef]
- Pei, Q.; Ma, L.; Li, H.; Li, Z.; Yan, D.; Li, Z. Reputation-based coalitional games for spectrum allocation in distributed cognitive radio networks. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 7269–7274. [Google Scholar]
- Ye, F.; Zhang, X.; Li, Y. Comprehensive reputation-based security mechanism against dynamic SSDF attack in cognitive radio networks. Symmetry 2016, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Hu, S.; Zhong, F.; Niyato, D.; Liang, Y.C. Blockchain-enabled dynamic spectrum access: Cooperative spectrum sensing, access and mining. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Patnaik, M.; Prabhu, G.; Rebeiro, C.; Matyas, V.; Veezhinathan, K. ProBLeSS: A proactive blockchain based spectrum sharing protocol against SSDF attacks in cognitive radio IoBT networks. IEEE Netw. Lett. 2020, 2, 67–70. [Google Scholar] [CrossRef]
- Zhang, G. Research on Cognitive Radio Spectrum Sensing Security Mechanism Based on Blockchain. J. Phys. Conf. Ser. 2020, 1578, 012045. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, Z. Dynamic Double Threshold Spectrum Sensing Algorithm Based on Block Chain. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019. [Google Scholar]
- Tangsen, H.; Li, X.; Ying, X. A Blockchain-Based Node Selection Algorithm in Cognitive Wireless Networks. IEEE Access 2020, 8, 207156–207166. [Google Scholar] [CrossRef]
- Hu, Z.; Bai, Y.; Cao, L.; Huang, M.; Xie, M. A sequential compressed spectrum sensing algorithm against SSDH attack in cognitive radio networks. J. Electr. Comput. Eng. 2018, 2018, 4782718. [Google Scholar] [CrossRef] [Green Version]
- Bai, P.; Zhang, X.; Ye, F. Reputation-based Beta reputation system against SSDF attack in cognitive radio networks. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017; pp. 792–799. [Google Scholar]
Symbol | Description |
---|---|
SNR | Signal to noise ratio |
M | Sampling dimension of local compressed measurement |
N | Signal dimension |
m | No. of sensing users |
h | No. of malicious nodes |
Detection probability | |
False alarm probability | |
L | No. of recent check of history |
Memory weight | |
Decision parameter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Hu, Z.; Chen, M.; Zhao, Y.; Bai, Y. An Active and Passive Reputation Method for Secure Wideband Spectrum Sensing Based on Blockchain. Electronics 2021, 10, 1346. https://doi.org/10.3390/electronics10111346
Xie X, Hu Z, Chen M, Zhao Y, Bai Y. An Active and Passive Reputation Method for Secure Wideband Spectrum Sensing Based on Blockchain. Electronics. 2021; 10(11):1346. https://doi.org/10.3390/electronics10111346
Chicago/Turabian StyleXie, Xinyu, Zhuhua Hu, Min Chen, Yaochi Zhao, and Yong Bai. 2021. "An Active and Passive Reputation Method for Secure Wideband Spectrum Sensing Based on Blockchain" Electronics 10, no. 11: 1346. https://doi.org/10.3390/electronics10111346
APA StyleXie, X., Hu, Z., Chen, M., Zhao, Y., & Bai, Y. (2021). An Active and Passive Reputation Method for Secure Wideband Spectrum Sensing Based on Blockchain. Electronics, 10(11), 1346. https://doi.org/10.3390/electronics10111346