
electronics

Article

Multi-Agent System Observer: Intelligent Support for
Engaged E-Learning

Igor Vuković 1 , Kristijan Kuk 2, Petar Čisar 2, Miloš Band̄ur 3, Ðoko Band̄ur 3 , Nenad Milić 4 and
Brankica Popović 2,*

����������
�������

Citation: Vuković, I.; Kuk, K.; Čisar,

P.; Band̄ur, M.; Band̄ur, Ð.; Milić, N.;

Popović, B. Multi-Agent System

Observer: Intelligent Support for

Engaged E-Learning. Electronics 2021,

10, 1370. https://doi.org/10.3390/

electronics10121370

Academic Editors: Imre J. Rudas and

György Eigner

Received: 16 May 2021

Accepted: 5 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Ministry of the Interior of the Republic of Serbia, 11080 Belgrade, Serbia; igor.vukovic@mup.gov.rs
2 Department of Informatics and Computer Sciences, University of Criminal Investigation and Police Studies,

11080 Belgrade, Serbia; kristijan.kuk@kpu.edu.rs (K.K.); petar.cisar@kpu.edu.rs (P.Č.)
3 Faculty of Technical Sciences, University of Pristina in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;

milos.bandjur@pr.ac.rs (M.B.); djoko.bandjur@pr.ac.rs (Ð.B.)
4 Department of Criminalistics, University of Criminal Investigation and Police Studies, 11080 Belgrade, Serbia;

nenad.milic@kpu.edu.rs
* Correspondence: brankica.popovic@kpu.edu.rs

Abstract: Moodle is a widely deployed distance learning platform that provides numerous oppor-
tunities to enhance the learning process. Moodle’s importance in maintaining the continuity of
education in states of emergency and other circumstances has been particularly demonstrated in the
context of the COVID-19 virus’ rapid spread. However, there is a problem with personalizing the
learning and monitoring of students’ work. There is room for upgrading the system by applying
data mining and different machine-learning methods. The multi-agent Observer system proposed in
our paper supports students engaged in learning by monitoring their work and making suggestions
based on the prediction of their final course success, using indicators of engagement and machine-
learning algorithms. A novelty is that Observer collects data independently of the Moodle database,
autonomously creates a training set, and learns from gathered data. Since the data are anonymized,
researchers and lecturers can freely use them for purposes broader than that specified for Observer.
The paper shows how the methodology, technologies, and techniques used in Observer provide an
autonomous system of personalized assistance for students within Moodle platforms.

Keywords: educational data mining; engaged learning; intelligent tutoring systems; Moodle; multi-
agent system

1. Introduction

With the implementation of new technologies in educational systems, the goal is to
increase the quality of teaching, that is, to improve the process of students’ acquisition
of knowledge [1]. Most educational institutions today use the internet in the learning
process [2], and virtual teaching is becoming part of the program, even of institutions
known for a long, campus-based tradition [3]. On the other hand, the current example
of the rapid spread of the COVID-19 virus puts into focus the significant advantage of
the application of distance learning, which is the continuity of the teaching process in
different emergencies.

Contemporary distance learning has, above all, enabled students to access teaching
content on their plan, independently deciding on the schedule and how much time they
will spend learning [4]. The most common way that teaching is provided to students via the
internet and other computer networks is learning management systems (LMSs) [2]. LMSs
offer lecturers the opportunity to distribute information to students, produce teaching
materials, prepare assignments and tests, initiate discussions, manage distance learning
classes, and facilitate learning through collaboration through forums [5].

Modular Object-Oriented Dynamic Learning Environment, abbreviated as Moodle, is
the most used and widespread LMS solution [4]. Although LMS Moodle has many features

Electronics 2021, 10, 1370. https://doi.org/10.3390/electronics10121370 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3416-2895
https://orcid.org/0000-0001-9034-6854
https://orcid.org/0000-0002-8276-1481
https://doi.org/10.3390/electronics10121370
https://doi.org/10.3390/electronics10121370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10121370
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10121370?type=check_update&version=1

Electronics 2021, 10, 1370 2 of 13

that help lecturers create and manage courses available through a computer network, it
does not meet students’ individual needs [6]. Artificial intelligence support for lecturers
and students could provide what Moodle lacks [7]. Learning is a cognitive activity that
varies from student to student, and tailoring e-learning to students requires modeling
their cognitive characteristics, especially learning styles, as the most explored cognitive
traits [8]. Data learning techniques can be applied in distance learning systems [9], aiming
to study user behavior, perform behavioral assessment and improve the system to support
the user [5].

The Observer system presented in this paper is a multi-agent system that enhances the
Moodle platform into intelligent tutoring systems (ITS). Such systems try to understand
the process of individual learning. They are tasked with building an appropriate data
structure to represent the student’s cognitive characteristics as realistically as possible [1].
The Observer system is somewhat different because it focuses on a single learning style,
and it is an engaged learning style. It monitors engaged learning indicators continuously,
drawing students’ attention to whether they are on track to complete the course successfully
or need additional effort.

Engaged learning can be implemented without the use of technology, but technology
facilitates engagement in a way that is difficult to achieve otherwise [10]. Research related
to engaging learning is focused on the student’s activities, his/her involvement, and
his/her efforts in achieving academic success [3]. A specific study presented in [2], which
compared 17 blended courses using Moodle LMS, showed that the number of clicks, time
spent in interaction with distributed teaching material, and an overall number of visited
pages significantly increased the positive effect to the final grade in the exam. Having
that in mind, the idea behind the implementation of the Observer system was to provide
information to students about their progress and current level of engagement by comparing
previous measurements with current ones, as well as with the indicators of measurement
of other students in the same course.

What sets Observer apart from most LMS learning support systems is the data source.
Although Moodle keeps detailed logs regarding the use of systems to track what materials
a student has accessed [5], the Observer system uses data that it collects, anonymizes,
and stores on its own. In this way, a large amount of information is provided that can
extend the system’s purpose shown in this paper. Additionally, Observer enables the
creation of a centralized system that can connect an arbitrary number of Moodle platforms
of different organizations, thereby enhancing its data learning capabilities as well as third-
party analytic capabilities.

The rest of the paper is organized as follows: A brief overview of related work is
presented in Section 2, emphasizing the difference between them and our approach. In
Section 3, we discuss engaged learning from the perspective of the basis for ITS develop-
ment. Section 4 presents the proposed multiagent system Observer, while in Section 5, we
describe the technologies used to develop it. Finally, in Sections 6 and 7, we summarize
our findings, draw some conclusions, and state directions for future work.

2. Related Work

MIMLE is a learning system presented in [1] that uses one of the diagnostic techniques
of an ITS system called model tracing. It offers students theorems and definitions through
a help window to help solve a given problem. The applicable agent uses the Markov
process of deciding whether or not a help window should appear to minimize disruption
to the student. It is a reflex agent that makes decisions based on counting correct and
incorrect answers and measuring a student’s reaction time. The Observer system tries to
be less disruptive to the student but with a different approach than MIMLE, choosing the
particular Moodle interface item called a block.

One of the solutions implemented using the Moodle system is presented in [7]; it is a
multi-agent system based on the Java Agent Development Environment (JADE). Based on
the information collected from the Moodle databases, the system provides information to

Electronics 2021, 10, 1370 3 of 13

students and lecturers about student activity. For example, the number of posts on each
student’s forum, whether there are students who have not posted yet, whether there are
any disagreements and similar activities. The Observer system’s most significant difference
is the data source for analysis since Observer itself collects them and is not connected to
the Moodle database.

Predicta presented in [4] is a Java desktop tool for tracking students based on Moodle
database records. It selects tables according to user needs and prepares data for analysis
in WEKA data learning software, displaying results in the dedicated module. The second
component of the system predicts student success, that is, whether there is a risk of failure.
Predicta uses the Moodle database, but concerning the LMS, it is the external solution itself
as well as Observer. The difference is that with Observer, the filtering of data is done by
lecturers or course creators who choose teaching material or Moodle pages from which
information is gathered.

In [6], a nonagent-based example, such as Predicta, is presented, but it supports a
specific learning style, as is the case with the Observer system. It is a solution that supports
self-regulated learning across all three stages. The planning phase is supported here by
choosing a predefined learning profile after which the system offers links to access the
learning recommendations in the main menu of the Moodle plug-in. The learning phase
provides a service that recommends learning materials (various content, exercises, and
tests) that are neither too easy nor too difficult for a particular student. At this stage,
self-regulation is based on the student’s free choice among the learning material offered.
The reflection process system supports two different tools: the progress rating tool and
the visualization tool. Although always present, or to the extent determined by the course
creator, the Observer system in the student learning process, using the LMS, participates
only in measuring its engagement. Observer predicts the course’s outcome by processing
the measuring and gives suggestions while trying to stay unobtrusive.

In order to achieve as little disruption as possible, the Observer system uses a novel
approach of agents interacting with students, using the Moodle block. The application of
the block itself is innovative since it is used to implement the agent. The application of
the block allows the data to be filtered by the creators of the course themselves, choosing
positions in the learning material where the block will be placed. The Observer system
improves the individual work of students, offering them the opportunity to be informed of,
based on indicators of this engaged learning style, whether their activities are within the
group of students with a chance for success or they need to invest additional effort. As an
additional contribution, the Observer system provides an anonymized dataset for further
analysis with a potential connection of an external entity via a web service or creating an
analytical solution within the system itself.

3. Theoretical Background

Engaged learning theory represents a fundamental basis for the development of
Observer. It is an active student’s cognitive process and involves creating, reasoning,
problem-solving, decision making, and evaluating what has been achieved. The theory
behind this learning style is based on the idea of creating successful, collaborative teams
engaged in ambitious projects whose significance goes beyond classroom frameworks [10].
Before broader acceptance of LMS, student engagement was most often measured by
attendance, which is a raw measure of participation because it does not measure quality
but has proven to be an essential variable in determining student success [3]. The time that
students spend on a particular task, called engagement time, is of great importance for our
research also.

Student engagement refers to the degree of attention, interest, and commitment
when learning or in class. Students committed to improving their skills and knowledge
will undoubtedly be active within the virtual learning environment, such as Moodle, so
engagement can be estimated using such systems logs [11]. The Observer system measures
learning engagement in a virtual environment based on the number of clicks, time spent

Electronics 2021, 10, 1370 4 of 13

on the teaching material, and the number of reviews, all of which have proved to be an
important indicator of success [2]. After measurement completion, the system provides
suggestions to the student regarding his/her engagement by comparing it with their
previous engagement and the engagement of other students.

Concerning engagement indicators, one should note the research [3] conducted on a
large sample of students—91,284 who used Blackboard LMS and 1515 who used Moodle—
which is considered to be statistically significant. The study found a general correlation
between student engagement indicated by clicks and academic performance indicated by
grades. However, there is a limitation related to the number of clicks as an indicator of
engagement. Although a link to a student’s final success in a particular course exists, its
importance to success is not determined.

In applying the indicator, portability is essential, which is related to the question of
whether there is a universal set of variables for predicting student success. Studies have
shown that the portability of prediction models is not high between different courses.
However, a prediction is successful when it comes to a particular course, while grouping
data at the student level makes it easier to find portability between different courses [2]. For
this reason, during indicators processing, Observer considers all data related to a particular
student, i.e., the system user, and the data of other students who work with the same
course’s teaching material.

4. Observer ITS System

The Observer system is a multi-agent system that assists students in engaging in
learning by using LMS Moodle. The system independently collects student activity data,
anonymizes and stores it in its database, prepares to extract engagement learning indicators,
creates a training set and data-learning set, and implements two different machine learning
algorithms for passing on suggestions to students. It can be used with a specific Moodle
platform by educational or other institutions, or it can be the focal point of multiple
Moodle platforms.

Software agents can be defined as programs that act on behalf of human beings,
resolving inconsistencies, finding and integrating information from different sources,
filtering out irrelevant or unwanted information, and adapting them to human needs [7].
Pedagogical agents are autonomous software entities that support the learning process
through interaction with students, lecturers, and other participants and in collaboration
with other similar agents [12]. The Observer system uses the following: tutoring agents; an
agent who collects data, stores them in the system’s internal database, and informs tutoring
agents about student suggestions from the system; a data preparation agent; and an agent
who learns from the data and forwards the results (as shown in Figure 1).

Agents communicate through a WebSocket protocol that enables two-way communica-
tion and has already been used to develop multi-agent environments for this purpose [13].
Different from the usual purpose of communication channels between agents, in the
Observer system, instead of conversation using some of the agent languages, only a lim-
ited set of data are exchanged through messages, due to the potentially high dynamics
in communication.

Electronics 2021, 10, 1370 5 of 13
Electronics 2021, 10, x FOR PEER REVIEW 5 of 13

Figure 1. Model of the multi-agent Observer system.

4.1. Tutoring Agents
The Observer ITS tutoring agent is dedicated to monitor the student’s work, record

his/her interaction with the teaching material, and inform students how the system val-
ues their efforts. For that purpose, the LMS Moodle elements named blocks are used to
implement the agent. The blocks are graphical interface elements added to the left, right,
or center column of the Moodle Page. Blocks are placed by the Moodle administrator or
course creator on each specific page of teaching material where they deem it necessary or
binds the presentation to the block setting’s context, allowing blocks to be placed on
multiple pages at once. For an example of the Observer block placed on the LMS Moodle
page, see Figure 2.

Figure 2. The layout of the Observer block added to the quiz page.

It should be noticed that some activity modules (e.g., quiz modules) do not allow
blocks to be displayed by default. Administrator or course creator could solve the prob-
lem in the setup of the quiz module.

Block Observer performs three essential functions from the perspective of the sys-
tem. The first function is to retrieve the username and email address from the Moodle
database and generate hash values, using the MD5 algorithm to obtain the user (student)
identification number. This number is linked to all subsequently collected data, which
makes them anonymous. Figure 3 shows a section of the block’s PHP and JavaScript
program code that provides an identification number and creates a hidden component of
an HTML document whose value is student identification. Figure 4 contains the JavaS-
cript code for the module.js file that creates and runs an agent.

Figure 1. Model of the multi-agent Observer system.

4.1. Tutoring Agents

The Observer ITS tutoring agent is dedicated to monitor the student’s work, record
his/her interaction with the teaching material, and inform students how the system val-
ues their efforts. For that purpose, the LMS Moodle elements named blocks are used to
implement the agent. The blocks are graphical interface elements added to the left, right,
or center column of the Moodle Page. Blocks are placed by the Moodle administrator or
course creator on each specific page of teaching material where they deem it necessary
or binds the presentation to the block setting’s context, allowing blocks to be placed on
multiple pages at once. For an example of the Observer block placed on the LMS Moodle
page, see Figure 2.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 13

Figure 1. Model of the multi-agent Observer system.

4.1. Tutoring Agents
The Observer ITS tutoring agent is dedicated to monitor the student’s work, record

his/her interaction with the teaching material, and inform students how the system val-
ues their efforts. For that purpose, the LMS Moodle elements named blocks are used to
implement the agent. The blocks are graphical interface elements added to the left, right,
or center column of the Moodle Page. Blocks are placed by the Moodle administrator or
course creator on each specific page of teaching material where they deem it necessary or
binds the presentation to the block setting’s context, allowing blocks to be placed on
multiple pages at once. For an example of the Observer block placed on the LMS Moodle
page, see Figure 2.

Figure 2. The layout of the Observer block added to the quiz page.

It should be noticed that some activity modules (e.g., quiz modules) do not allow
blocks to be displayed by default. Administrator or course creator could solve the prob-
lem in the setup of the quiz module.

Block Observer performs three essential functions from the perspective of the sys-
tem. The first function is to retrieve the username and email address from the Moodle
database and generate hash values, using the MD5 algorithm to obtain the user (student)
identification number. This number is linked to all subsequently collected data, which
makes them anonymous. Figure 3 shows a section of the block’s PHP and JavaScript
program code that provides an identification number and creates a hidden component of
an HTML document whose value is student identification. Figure 4 contains the JavaS-
cript code for the module.js file that creates and runs an agent.

Figure 2. The layout of the Observer block added to the quiz page.

It should be noticed that some activity modules (e.g., quiz modules) do not allow
blocks to be displayed by default. Administrator or course creator could solve the problem
in the setup of the quiz module.

Block Observer performs three essential functions from the perspective of the system.
The first function is to retrieve the username and email address from the Moodle database
and generate hash values, using the MD5 algorithm to obtain the user (student) identi-
fication number. This number is linked to all subsequently collected data, which makes
them anonymous. Figure 3 shows a section of the block’s PHP and JavaScript program
code that provides an identification number and creates a hidden component of an HTML

Electronics 2021, 10, 1370 6 of 13

document whose value is student identification. Figure 4 contains the JavaScript code for
the module.js file that creates and runs an agent.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 13

Figure 3. Observer block PHP program code.

Figure 4. JavaScript code of the Observer block.

The space in the created block, shown in Figure 2, is used by an agent to display the
Observer system suggestion. Offering suggestions to the student is another crucial role of
the Observer block for the system's functioning. The third function is to implement agent
code and include the agent in the Moodle environment. Opening each new Moodle page
that houses the Observer block creates an agent class object.

After creation, the agent starts to collect information, including identification num-
ber, the course title, and HTML document title, as well as the time that the agent is cre-
ated, and sends a message to the agent for data collection and information. In response,
the tutoring agent receives a current Observer system suggestion, which then displays
via the block. On the creation, the tutoring agent also starts to register students clicks on
the Moodle page. After each click, the agent sends a message to the data collection and
information agent in the form of a JSON object.

Algorithm 1 shows the process of data collection by a tutoring agent.

Algorithm 1 Data collection by a Tutoring Agent.
Input: The text content of the clicked HTML element
Output: Collected data in JSON format

function createTutoringAgent(t)
type ←”open”
uID←getUserId(”observer user”)

Figure 3. Observer block PHP program code.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 13

Figure 3. Observer block PHP program code.

Figure 4. JavaScript code of the Observer block.

The space in the created block, shown in Figure 2, is used by an agent to display the
Observer system suggestion. Offering suggestions to the student is another crucial role of
the Observer block for the system's functioning. The third function is to implement agent
code and include the agent in the Moodle environment. Opening each new Moodle page
that houses the Observer block creates an agent class object.

After creation, the agent starts to collect information, including identification num-
ber, the course title, and HTML document title, as well as the time that the agent is cre-
ated, and sends a message to the agent for data collection and information. In response,
the tutoring agent receives a current Observer system suggestion, which then displays
via the block. On the creation, the tutoring agent also starts to register students clicks on
the Moodle page. After each click, the agent sends a message to the data collection and
information agent in the form of a JSON object.

Algorithm 1 shows the process of data collection by a tutoring agent.

Algorithm 1 Data collection by a Tutoring Agent.
Input: The text content of the clicked HTML element
Output: Collected data in JSON format

function createTutoringAgent(t)
type ←”open”
uID←getUserId(”observer user”)

Figure 4. JavaScript code of the Observer block.

The space in the created block, shown in Figure 2, is used by an agent to display the
Observer system suggestion. Offering suggestions to the student is another crucial role of
the Observer block for the system’s functioning. The third function is to implement agent
code and include the agent in the Moodle environment. Opening each new Moodle page
that houses the Observer block creates an agent class object.

After creation, the agent starts to collect information, including identification number,
the course title, and HTML document title, as well as the time that the agent is created, and
sends a message to the agent for data collection and information. In response, the tutoring
agent receives a current Observer system suggestion, which then displays via the block.
On the creation, the tutoring agent also starts to register students clicks on the Moodle
page. After each click, the agent sends a message to the data collection and information
agent in the form of a JSON object.

Algorithm 1 shows the process of data collection by a tutoring agent.

Electronics 2021, 10, 1370 7 of 13

Algorithm 1 Data collection by a Tutoring Agent.

Input: The text content of the clicked HTML element
Output: Collected data in JSON format

function createTutoringAgent(t)
type←“open”
uID←getUserId(“observer user”)
pTitle←getTitleFromPage()
sendToDataCollect&InfoAgent(type,t,uID,pTitle)
addClickListener()

end function
function onClick(tText,t)

type←“click”
uID←getUserId(“observer user”)
pageTitle←getTitleFromPage()
sendMessageToDataColl&InfoAgent(type,t,uID,pTitle,tText)

end function
if Course page is open then

createTutoringAgent()
end if
if Click registered then

onClick(targetText, currentTime)
end if

4.2. Data Collection and Information Agent

There are three agents on the server-side of the system and they have the highest
workload in processing the collected information. The first is a data collection and infor-
mation agent who communicates with the tutoring agents, receives new information from
them, and sends suggestions from the system. The message received from the tutoring
agent is parsed, after which the JSON object is created.

Agents use objects when storing the collected data in the database. Among the data
obtained from the JSON object is time. The timestamp accuracy depends on the settings
on the client device itself, which the data collection and information agent could unify by
downloading time from the server. The purpose of the time information is not to determine
when something happened but decide how long the student stays on a particular page;
therefore, accuracy is not necessary.

In addition to storing data, the agent checks in the database for system suggestions
intended for the student for whom the particular tutoring agent works. The agent translates
the results of machine learning from a numerical value into a human-readable message.
The agent also adds information about how old the suggestion is, and both pieces of
information are sent back to the tutoring agent.

4.3. Data Preparation Agent

Preparing data for mining involves extracting student engagement indicators based
on the information gathered by the tutoring agent. The preparation agent is activated every
10 min and prepares, up to that point, unprocessed data. Figures 5 and 6 show the raw
data from the Observer system repository and the data after processing and extracting the
engaged learning indicator from the raw data.

For the data preparation process, the relevant information is a raw data record type.
The type ”open” suggests opening the page whereby the tutoring agent is created and
counting this kind of record system, extracts the first indicator—the number of views. The
“click” type marks the data collected after registering the student click and gives another
indicator. For the third indicator, the agent uses recorded times. Except for engagement
indicators, the agent includes the username, name of the course, and process start time in
a prepared set. The information added to the indicators is later used in the data mining
process and as references for gaining insight into the results, i.e., informing.

Electronics 2021, 10, 1370 8 of 13Electronics 2021, 10, x FOR PEER REVIEW 8 of 13

Figure 5. Raw data obtained from a tutoring agent.

Figure 6. Extracted indicators of engaged learning.

Upon completing the data preparation, the agent forwards a message to the data
mining agent containing information about the processing’s start time. The process of
data preparation is shown in Algorithm 2.

Algorithm 2 Extraction of student learning indicators by the Data Prep. Agent.
Input: list ← (uID1, t1, type1), (uID2, t2, type2), ...(uIDn, tn, typen)
- List of collected data filtered by student uID
Output: Indicators of engaged learning - clicks, time, views

clicks ← 0, views ← 0
for (i ← 0; i < list.length) do

if I = 0 then
tstart ← list [0][2]
user ← list [i][0]

end if
if list[i][3] = “open” then

views++
end if
if list[i][3] = ”click” then

clicks++
end if
tend ← list [i][2]

Figure 5. Raw data obtained from a tutoring agent.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 13

Figure 5. Raw data obtained from a tutoring agent.

Figure 6. Extracted indicators of engaged learning.

Upon completing the data preparation, the agent forwards a message to the data
mining agent containing information about the processing’s start time. The process of
data preparation is shown in Algorithm 2.

Algorithm 2 Extraction of student learning indicators by the Data Prep. Agent.
Input: list ← (uID1, t1, type1), (uID2, t2, type2), ...(uIDn, tn, typen)
- List of collected data filtered by student uID
Output: Indicators of engaged learning - clicks, time, views

clicks ← 0, views ← 0
for (i ← 0; i < list.length) do

if I = 0 then
tstart ← list [0][2]
user ← list [i][0]

end if
if list[i][3] = “open” then

views++
end if
if list[i][3] = ”click” then

clicks++
end if
tend ← list [i][2]

Figure 6. Extracted indicators of engaged learning.

Upon completing the data preparation, the agent forwards a message to the data
mining agent containing information about the processing’s start time. The process of data
preparation is shown in Algorithm 2.

Algorithm 2 Extraction of student learning indicators by the Data Prep. Agent.

Input: list← (uID1, t1, type1), (uID2, t2, type2), . . . (uIDn, tn, typen)
- List of collected data filtered by student uID
Output: Indicators of engaged learning - clicks, time, views

clicks← 0, views← 0
for (i← 0; i < list.length) do

if I = 0 then
tstart ← list [0][2]
user← list [i][0]

end if
if list[i][3] = “open” then

views++
end if
if list[i][3] = “click” then

clicks++
end if
tend ← list [i][2]

end for
time← (tend − tstart)
saveIndicatorsForStudent(user, clicks, time, view)

Electronics 2021, 10, 1370 9 of 13

4.4. Data Mining Agent

The work of a data mining agent starts with the message that it receives from the
data processing agent. Based on the information about the start of the preparation process
contained in the message, the agent recognizes new data and creates a query to the database.
The result of the query is a multidimensional array with prepared data and references. Due
to the disproportionate value of the indicators in the prepared set (the number of views
and clicks can be significantly less than the number of seconds spent using the course
material), Observer normalizes the data by the minimum and maximum values method.
The agent uses the k-nearest neighbors (k-NN) algorithm to classify the data by calculating
the approximate distance between different points on the input vectors and then assigns to
the unmarked point the class of its k nearest neighbors. The distance D(i,j) between the
samples we determined by calculating the Euclidean distance.

The last activity of a data mining agent is to determine the direction of regression. The
purpose of the regression direction, which is determined using the least-squares method, is
to include the time-flow component as a vital factor of engaged learning, especially in the
case of making too many multi-day breaks between the use of teaching materials distributed
through the LMS Moodle. The system uses the implemented regression method’s results
to supplement the suggestion with information about the student’s overall engagement.
Figure 7 shows the result of the data mining agent’s work, where the current suggestion is
obtained with the k-NN algorithm and overall with linear regression.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 13

end for
time ← (tend − tstart)
saveIndicatorsForStudent(user, clicks, time, view)

4.4. Data Mining Agent
The work of a data mining agent starts with the message that it receives from the

data processing agent. Based on the information about the start of the preparation pro-
cess contained in the message, the agent recognizes new data and creates a query to the
database. The result of the query is a multidimensional array with prepared data and
references. Due to the disproportionate value of the indicators in the prepared set (the
number of views and clicks can be significantly less than the number of seconds spent
using the course material), Observer normalizes the data by the minimum and maximum
values method. The agent uses the k-nearest neighbors (k-NN) algorithm to classify the
data by calculating the approximate distance between different points on the input vec-
tors and then assigns to the unmarked point the class of its k nearest neighbors. The dis-
tance D(i,j) between the samples we determined by calculating the Euclidean distance.

The last activity of a data mining agent is to determine the direction of regression.
The purpose of the regression direction, which is determined using the least-squares
method, is to include the time-flow component as a vital factor of engaged learning, es-
pecially in the case of making too many multi-day breaks between the use of teaching
materials distributed through the LMS Moodle. The system uses the implemented re-
gression method’s results to supplement the suggestion with information about the stu-
dent’s overall engagement. Figure 7 shows the result of the data mining agent’s work,
where the current suggestion is obtained with the k-NN algorithm and overall with lin-
ear regression.

Figure 7. Example of Observer block suggestion.

Algorithm 3 presents the process of forming a suggestion intended for a specific
student.

Algorithm 3 Forming a suggestion for a student by Data Mining Agent.
Input: list ← (uID1, clicks1, time1, views1), ...(uIDn, clicksn, timen, viewsn)
- obtaining learning indicators of all users in the last ten minutes
Output: A suggestion for a student

allClicks←getClicksSortByNum()
allTimes←getTimesSortByDuration()
allViews←getViewsSortByNum()
(Cnorm, Tnorm, Vnorm) ←minMaxNormalization(allClicks, allTimes, allViews)
trainingSet←getKnnTrainingSet(Cnorm, Tnorm, Vnorm)
for (i← 0; i<list.length) do

Figure 7. Example of Observer block suggestion.

Algorithm 3 presents the process of forming a suggestion intended for a specific student.

Algorithm 3 Forming a suggestion for a student by Data Mining Agent.

Input: list← (uID1, clicks1, time1, views1), . . . (uIDn, clicksn, timen, viewsn)
- obtaining learning indicators of all users in the last ten minutes
Output: A suggestion for a student

allClicks←getClicksSortByNum()
allTimes←getTimesSortByDuration()
allViews←getViewsSortByNum()
(Cnorm, Tnorm, Vnorm)←minMaxNormalization(allClicks, allTimes, allViews)
trainingSet←getKnnTrainingSet(Cnorm, Tnorm, Vnorm)
for (i← 0; i < list.length) do

currentSugestion←applyKnnlAgorithm(list[i], trainingSet)
prevResults←getPreviousStudentSugestions(list[i][0])
overallSugestion←applyLinearRegression(currentSugestion, prevResults)
createMessageForStudent(currentSugestion, overallSugestion)

end for

Electronics 2021, 10, 1370 10 of 13

5. Implementation of Observer System

For developing the multi-agent Observer, we use JavaScript programming language.
The principal reason for choosing JavaScript is related to the concept of monitoring students’
work, which is based on their interaction with the teaching material. Since everything rele-
vant for the Observer system is happening on the Moodle platform’s client-side, JavaScript
is the logical solution. JavaScript is the leading scripting language for internet browsers, a
de facto standard when it comes to the client-side, and essential for the development of
modern web applications [13]. The implementation of the Node.js software environment
allows JavaScript to be used on the server-side as well. It is an open-source software based
on Google’s V8 core and event-driven architecture that enables asynchronous I/O, as well
as creating extensible server applications without using threads [14]. It is efficient and
allows the development of web applications that work intensively with real-time data [15].
Unlike traditional, multi-threaded software models, where the thread has to wait for the
demanding I/O operation to finish, Node.js can delegate such activities as asynchronous
operations, thus not degrading performance [16]. However, the Observer works inside
environments with large numbers of students or connecting multiple Moodle platforms.
In that case, there could be a blockage of the only thread used by Node.js (looper thread),
primarily during the execution of a data preparation agent and a mining agent code.

Agents need to be run as child processes to avoid blocking due to processing large
amounts of data [17]. The multi-agent approach in itself has the potential to expand the
system by adding new agent centers, which, through distributed processing, ensures load
balancing but also avoiding the existence of a single point of failure of the entire system,
enabling the execution of computer-intensive tasks [17].

The NoSQL ArangoDB database is the core of the system in which agents store
all collected data, whether raw, prepared, or data representing learning results. What
distinguishes NoSQL databases is their horizontal extensibility, storing different data
structures with less demanding hardware [18]. ArangoDB is a multi-model database
supporting various data models, storing key-value pairs, documents, and graphs; all
data can be accessed in the same ArangoDB Query Language (AQL). Compared to other
similar databases that specialize in graphing, Arangodb leads in performance, but its main
advantage is its multi-model architecture [19].

6. Results and Discussion

Agents in the Observer system are designed to meet a minimum set of fundamental
traits that characterize software agents, such as being autonomous, capable of operating
as a standalone process and performing actions without user intervention [20]. We create
agents according to the reactive or executive agents’ model, representing the type of agents
that can only directly follow the basic program (task-oriented model of agents versus
goal-oriented model). They are considered primitive, not applying reasoning for the causes
or effects of their action. We use this model in the research because of its main characteristic:
efficiency based on simplicity [21]. As they are executed within browsers, tutoring agents
must not significantly affect resources and interfere with the work of the Moodle platform.
On the other hand, agents that accept and process data are oriented toward reactivity due
to the projected large amount of data.

To evaluate the system’s operation, we experimented with actual university Moodle
LMSs during distance learning due to COVID-19. The experiment with the Observer
system was performed on two different courses, undergraduate and master studies, which
were attended by a total of 36 participants.

Over three months, the system collected a total of 4913 records from tutoring agents.
Table 1 shows a preview of the results of the work of the data preparation agent. The
table contains the learning indicators collected by Observer after normalization as part of
the preparation for the application of data mining algorithms and performed by the data
mining agent.

Electronics 2021, 10, 1370 11 of 13

Table 1. Learning indicators extracted and normalized.

Student ID Visits Clicks Time

04a7aa6645b28f848253ec5132290ae1 0.04348 0.01117 0.07731
268046f034b2e014dabf73ba8e780cf9 0.02174 0.00559 0.00000
34c01e64351a8f1e0176d90d32b0a99a 0.39130 0.39665 0.55339
3acb0baab491ea28de32247da3e9a992 0.08696 0.05028 0.14701
5d781e010054aeeebf26d029664d6618 0.34783 0.46369 0.26440

...

Figure 8 shows the result of applying the final kNN classifications to the data col-
lected at the end of the course, shown in Table 1, on which the predicted exam outcomes
are performed.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 13

system was performed on two different courses, undergraduate and master studies,
which were attended by a total of 36 participants.

Over three months, the system collected a total of 4913 records from tutoring agents.
Table 1 shows a preview of the results of the work of the data preparation agent. The ta-
ble contains the learning indicators collected by Observer after normalization as part of
the preparation for the application of data mining algorithms and performed by the data
mining agent.

Table 1. Learning indicators extracted and normalized.

Student ID Visits Clicks Time
04a7aa6645b28f848253ec5132290ae1 0.04348 0.01117 0.07731
268046f034b2e014dabf73ba8e780cf9 0.02174 0.00559 0.00000
34c01e64351a8f1e0176d90d32b0a99a 0.39130 0.39665 0.55339
3acb0baab491ea28de32247da3e9a992 0.08696 0.05028 0.14701
5d781e010054aeeebf26d029664d6618 0.34783 0.46369 0.26440

...

Figure 8 shows the result of applying the final kNN classifications to the data col-
lected at the end of the course, shown in Table 1, on which the predicted exam outcomes
are performed.

Figure 8. Result of k-NN classifications base on collected data.

After the end of the course, 31 students took the exam. Based on students' data
known to the creator of the courses, we created hash values and compared the results of
the system prediction with the actual results on the exam. The system achieved an accu-
racy of 0.742, or related to the confusion matrix, we observed eight true positives, fifteen
true negatives, two false positives, and six false negatives.

At this point, we have to address some limitations we had regarding objective
evaluation of proposed system effectiveness. Although it was implemented in the uni-

Figure 8. Result of k-NN classifications base on collected data.

After the end of the course, 31 students took the exam. Based on students’ data known
to the creator of the courses, we created hash values and compared the results of the system
prediction with the actual results on the exam. The system achieved an accuracy of 0.742,
or related to the confusion matrix, we observed eight true positives, fifteen true negatives,
two false positives, and six false negatives.

At this point, we have to address some limitations we had regarding objective evalu-
ation of proposed system effectiveness. Although it was implemented in the university
Moodle LMS for distance learning due to COVID-19, we were not able to communicate
directly with students in order to get their feedback regarding the Observer utilization.
At this point, we do not have information about their experience with the Observer sys-
tem and whether the suggestions they received from it affected, in any way, their further
engagement. We could measure and evaluate only the parameters of their engagement
and consequently, produced predictions of their success on exams, for which the system
achieved a reasonable accuracy score (0.742). Our plans are to address this issue in the
experiment we are going to perform in the next semester in autumn.

Electronics 2021, 10, 1370 12 of 13

7. Conclusions

In this paper, we introduced Observer—the multi-agent system for intelligent support
for engaged students. It combines two different machine learning methods that, based on
the student engagement indicators, predict success at the end of the course and then make
suggestions based on that prediction. The primary measures of engagement, teaching
attendance and additional indicators previously found to be related to the student’s final
success in the course, are utilized in the Observer system. They include the number of
clicks, number of views that are, access to various pages, and the time that the student
spends using the Moodle Course’s teaching content. Although there are limitations to
the use of indicators, such as the fact that click counting cannot determine the learning
process’s quality, it should be noted that neither can the grade itself. It only indicates
that the assessment criteria are met, which may or may not be a measure of learning
effectiveness [3].

The goal of the proposed system is to support the student but not to interfere with
his/her work. The element of the Moodle interface called block is selected for communi-
cation with students because it occupies a small portion of the Moodle page. Observer
block contains only a brief suggestion and information on how old the suggestion is. In
addition, the Observer system is devoid of redundant functionality, designed to be mostly
autonomous, which is why we choose the agent architecture. Other used technologies pro-
vide a reasonable basis for upgrading the role of the Observer system in distance learning.
Node.js is designed to build a real-time system, and the multi-model ArangoDB database
can handle a wide variety of datasets, most notably enabling the use of graphs that allow
new dimensions to analyze and learn from data.

This paper has shown that through the application of data mining, an intelligent and
mostly autonomous system can be developed to support students in engaged learning,
while not neglecting the critical role of lecturers and course creators. Lecturers who provide
teaching material distributed through the Moodle platform by selecting the appropriate
Observer block location give significance to any data collected and analyzed. The database
containing anonymized data allows their use much more widely than Observer’s primary
purpose. Analysis can be directed toward evaluating existing courses, comparing them, and
other research since free access to data without compromising student privacy is provided.

Further research will focus on considering the possibility of supporting other learning
styles, especially for self-regulating students.

Author Contributions: Conceptualization, I.V. and K.K.; methodology, I.V., K.K. and B.P.; software,
I.V.; validation, B.P., P.Č., M.B., Ð.B. and N.M.; formal analysis, K.K. and B.P.; investigation, I.V.,
M.B., Ð.B. and N.M.; resources, all authors; writing—original draft preparation, I.V., K.K. and B.P.;
writing—review and editing, I.V., B.P., P.Č., M.B. and N.M.; visualization, I.V.; supervision, B.P.,
P.Č. and K.K.; project administration, B.P., P.Č. and M.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kuk, K.; Milentijević, I.; Rančić, D.; Spalević, P. Pedagogical agent in Multimedia Interactive Modules for Learning–MIMLE.

Expert Syst. Appl. 2012, 39, 8051–8058. [CrossRef]
2. Conijn, R.; Snijders, C.; Kleingeld, A.; Matzat, U. Predicting student performance from LMS data. IEEE Trans. Learn. Technol. 2017,

10, 17–29. [CrossRef]
3. Beer, C.; Clark, K.; Jones, D. Indicators of engagement. Curric. Technol. Transform. Unkn. Future 2010, 2010, 75–86.
4. Felix, I.; Ambrosio, M.A.P.; Neve, P.S.; Siqueira, J.; Brancher, J.D. Moodle Predicta: A data mining tool for student follow up. In

Proceedings of the 9th International Conference on Computer Supported Education, Porto, Portugal, 21–23 April 2017; Volume 1,
pp. 339–346.

http://doi.org/10.1016/j.eswa.2012.01.138
http://doi.org/10.1109/TLT.2016.2616312

Electronics 2021, 10, 1370 13 of 13

5. Romero, C.; Ventura, S.; Garcıa, E. Data mining in course management systems: Moodle case study and tutorial. Comput. Educ.
2018, 51, 368–384. [CrossRef]

6. Kopeinik, S.; Nussbaumer, A.; Winter, L.C.; Albert, D.; Dimache, A.; Roche, T. Combining self-regulation and competence-based
guidance to personalise the learning experience in moodle. In Proceedings of the IEEE 14th International Conference on Advanced
Learning Technologies, Athens, Greece, 7–10 July 2014; pp. 62–64.

7. Scutelnicu, A.; Kinshuk, F.L.; McGreal, R.; Liu, T.; Graf, S. Integrating JADE agents into moodle. In Proceedings of the 5th
International Conference on Computers in Education, Hiroshima, Japan, 10–12 January 2007; pp. 1–6.

8. Despotović-Zrakić, M.; Marković, A.; Bogdanović, Z.; Barać, D.; Krco, S. Providing adaptivity in moodle LMS courses. Educ.
Technol. Soc. 2012, 15, 326–338.

9. Pradana, C.; Kusumawardani, S.S.; Permanasari, A.E. Comparison clustering performance based on moodle log mining. IOP
Conf. Ser. Mater. Sci. Eng. 2020, 722, 1–11. [CrossRef]

10. Kearsley, G.; Shneiderman, B. Engagement theory: A framework for technology based teaching and learning. Educ. Technol. 1998,
38, 20–23.

11. Naika, V.; Kamat, V. Predicting engagement using machine learning techniques. In Proceedings of the 26th International
Conference on Computers in Education, Manila, Philppines, 26–30 November 2018; pp. 17–20.

12. Kuk, K.; Rančić, D.; Pronić-Rančič, O.; Rand̄elović, D. Intelligent agents and game-based learning modules in a learning
management system. Smart Innov. Syst. Technol. 2016, 58, 233–245.

13. Jensen, S.H.; Møller, A.; Thiemann, P. Type analysis for javascript. In Proceedings of the 16th International Symposium on Static
Analysis; Springer: Los Angeles, CA, USA, 2009; pp. 238–255.

14. Wang, J.; Dou, W.; Gao, Y.; Gao, C.; Qin, F.; Kang, Y.; Jun, W. A comprehensive study on real world concurrency bugs in
Node.js. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, Urbana, IL, USA,
30 October–3 November 2017; pp. 520–531.

15. Lei, K.; Ma, Y.; Tan, Z. Performance comparison and evaluation of web development technologies in PHP, python, and
node.js. In Proceedings of the IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China,
19–21 December 2014; pp. 661–668.

16. Chang, X.; Dou, W.; Gao, Y.; Wang, J.; Wei, J.; Huang, T. Detecting atomicity violations for event-driven node.js applications. In
Proceedings of the IEEE/ACM 41st International Conference on Software Engineering, Montreal, QC, Canada, 25–31 May 2019;
pp. 631–642.

17. Lukić, A.; Luburić, N.; Vidaković, M.; Holbl, M. Development of multi-agent framework in JavaScript. In Proceedings of the
ICIST 2017 Proceedings, Druskininkai, Lithuania, 12–14 October 2017; pp. 261–265.

18. Corbellini, A.; Mateos, C.; Zunino, A.; Godoy, D.; Schiaffino, S. Persisting big-data: The NoSQL landscape. Inf. Syst. 2017, 63,
1–23. [CrossRef]

19. Fernandes, D.; Bernardino, J. Graph databases comparison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB. In
Proceedings of the 7th International Conference on Data Science, Technology and Applications, Porto, Portugal, 26–28 July 2018;
pp. 373–380.

20. Abar, S.; Theodoropoulos, G.K.; Lemarinier, P.; O’Hare, G. Agent based modelling and simulation tools: A review of the
state-of-art software. Comput. Sci. Rev. 2017, 24, 13–33. [CrossRef]

21. Mostafa, S.A.; Ahmad, M.; Mustapha, A.; Mohammed, M.A. A Concise overview of software agent research, modeling, and
development. Softw. Eng. 2017, 5, 8–25.

http://doi.org/10.1016/j.compedu.2007.05.016
http://doi.org/10.1088/1757-899X/722/1/012012
http://doi.org/10.1016/j.is.2016.07.009
http://doi.org/10.1016/j.cosrev.2017.03.001

	Introduction
	Related Work
	Theoretical Background
	Observer ITS System
	Tutoring Agents
	Data Collection and Information Agent
	Data Preparation Agent
	Data Mining Agent

	Implementation of Observer System
	Results and Discussion
	Conclusions
	References

