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Abstract: In the smart mariculture, batch testing of breeding traits is a key issue in the breeding of
improved fish varieties. The body length (BL), body width (BW) and body area (BA) features of
fish are important indicators. They are of great significance in breeding, feeding and classification.
To accurately and intelligently obtain the morphological characteristic sizes of fish in actual scenes,
data augmentation is first used to greatly expand the published fish dataset, thereby ensuring
the robustness of the training model. Then, an improved U-net segmentation and measurement
algorithm is proposed, which uses a dilated convolution with a dilation rate 2 and a convolution
to partially replace the convolution in the original U-net. This operation can enlarge the partial
convolution receptive field and achieve more accurate segmentation for large targets in the scene.
Finally, a line fitting method based on the least squares method is proposed, which is combined
with the body shape features of fish and can accurately measure the BL and BW of inclined fish.
Experimental results show that the Mean Intersection over Union (mIoU) is 97.6% and the average
relative error of the area is 0.69%. Compared with the unimproved U-net, the average relative error
of the area is reduced to about half. Moreover, with the improved U-net and the line fitting method,
the average relative error of BL and the average relative error of BW of inclined fish decrease to 0.37%
and 0.61%, respectively.

Keywords: U-net; image segmentation; intelligent measurement; precision agriculture; smart mariculture

1. Introduction

Nowadays, artificial intelligence technology is widely used in traditional agricultural
production [1,2]. In recent years, precision aquaculture based on artificial intelligence
and image processing technology has developed rapidly [3,4]. The production mode of
aquaculture has been transformed from an extensive model to an ecological, precise and
intensive model. Accurate, automatic and intelligent aquaculture can greatly improve fish-
ery productivity, resource utilization, and is conducive to the protection of the aquaculture
ecological environment. Therefore, it is of great significance to accelerate the digitalization,
precision and intelligence of fishery [5,6].

In precision aquaculture, deep learning methods have been widely used. Wageeh, Y. et al.
used image enhancement technology and the YOLO model to extract the number and
behavior trajectories of fish through underwater cameras [7]. Hu, J. et al. used YOLO-v3-
Lite network with a novel backbone structure to recognize fish behavior [8]. Wu, H. et al.
constructed a deep network with YOLO architecture to detect the bounding boxes of fishes
and extract the edges of fishes from the bounding boxes. Then, the authors used the SGBM
method to estimate the length and width of the fishes [9]. Liu, S. et al. realized online
underwater fish detection and tracking by using YOLO-v3 detection algorithm and parallel
correlation filter [10]. These methods used the schemes based on YOLO model to detect
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fish body and track fish behavior. However, YOLO is not an instance segmentation model.
Therefore, these methods can only roughly estimate the BL and BW.

Particularly, in China’s Hainan Province, mariculture production activities play an
important role in the national economy. In the smart mariculture, fish size information
is an important parameter. The measurement of size information mainly includes the
measurement of BL, BW and the measurement of the area (the weight of the fish can be
estimated from the area) [11]. Collecting the size information of fish features is of great
significance for fish breeders to make management decisions. The breeders can not only
judge the growth status of fish according to the feature information, but also use it as an
important reference for genetic breeding, feeding, catching and classification [12].

At present, some achievements have been made in the field of fish feature segmenta-
tion and measurement. Yu et al. [13] calculated the BL and BW of fish by using traditional
machine vision methods, and the average relative error of measurement was only 0.28%.
Hu et al. [14,15] realized the intelligent measurement of fisheyes and pupils by using
weight constraint AdaBoost and improved Hough circle transformation. In addition, the
team also achieved accurate measurement of caudal peduncle length through corner detec-
tion and least square line fitting. Yao et al. [16] proposed an improved k-means clustering
algorithm for fish segmentation, which has a higher accuracy when compared with tradi-
tional segmentation algorithms such as Otsu. The above research efforts on fish features
are mainly based on the traditional machine learning methods. Although some algorithms
can achieve a high accuracy, these methods require the selection of appropriate parameters
for each fish image. When the individual images have great differences, parameters need
to be adjusted manually multiple times, which is a great waste of manpower and material
resources. Moreover, the subjective factors may play an important role in the adjustment
operation. Cook et al. [17] used sonar imaging technology to measure the BL of fish under
high turbidity and low light conditions. This method has a large error since the relative
error was between 0.3% and 9.6%. Yu et al. [18] segmented and measured the fish features
using Mask RCNN. Under a pure background, the average relative errors of fish BL and BW
are is 0.6% and 0.8%, respectively. However, the samples in the experiment are in a nearly
horizontal state, and the length and width of the object were measured indirectly by the
pixel values of the length and width of the detection box. When the object is in an inclined
state, a large calculation error will occur. Tseng et al. [19] developed a CNN classifier
to detect the fish head and tail fork area. Then, the snout and fork points were obtained
through image processing. Finally, the distance between the two points is calculated to
detect the BL of the inclined fish. However, the average relative error of this scheme is as
high as 4.26%.

To address the above challenges, we propose a scheme of segmenting and measur-
ing the features of inclined fish using a U-net with increased receptive field in the actual
shooting environment. This scheme can realize automatic, batch and high precision seg-
mentation of horizontal and inclined fish, and accurately obtain their BL, BW and area, as
shown in Figure 1, In order to better display the experimental results, the detected area is
cropped and some obvious segmentation differences are presented with blue frames. The
contributions of this paper are as follows.

format to be trained as a labelled image. 

4.2 Evaluation indicators 

In the experiment, to evaluate the effect of network segmentation, a better analysis of the
network performance and the needs of actual production are considered. mIOU [40], average 
accuracy rate, average recall rate [41], and average area relative error are used as evaluation 
indicators. To evaluate the measurement of body length and body width of fish, the average
relative error is used as the evaluation indicator.

4.3 Improved U-net performance verification 

In order to initially verify the performance of the improved U-net network structure, no rotation 
transformation is performed on the original data set. The experimental results of segmentation by 
using U-net and improved U-net are shown in Fig. 13. In order to better display the experimental 
results, the detected area is cropped and some obvious segmentation differences are presented with
blue frames. 

(a)             (b)                         (c) 

Fig. 9 Comparison of segmentation effects of two algorithms when the fish body is not tilted. 

From Fig. 13, the improved U-net has a better segmentation effect on the edge of the fish. The 
line chart of IOU, accuracy rate, recall rate and area relative error of 50 test images by two
networks is shown in Fig 14. 

(a) IOU     (b) accuracy rate

Figure 1. Comparison of segmentation results using U-net and improved U-net, respectively.
(a) Original image; (b) The segmentation effect on the edge of the fish using U-net; (c) The seg-
mentation effect using the improved U-net. Obviously, the latter has a better effect.
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1. The operation of contrast transformation and rotation are used to simulate the actual
shooting environment, and a large number of training samples are generated for
training by appropriate translation and scaling transformations;

2. According to the characteristics of the experimental dataset, the U-net network struc-
ture is improved by using a 3 × 3 dilated convolution with a dilation rate 2 and a
1 × 1 convolution to partially replace the 3 × 3 convolution in the original network,
the partial convolution receptive field can be expanded to achieve a more accurate
segmentation effect;

3. Combined with the characteristics of fish body shape, the least squares line fitting
method is adopted. The solution realizes accurate measurement of the BL and BW of
the inclined fish.

The remainder of this paper is organized as follows: Section 2 briefly introduces
the data acquisition and the scheme proposed in this article. Section 3 gives a detailed
introduction to the process of data augmentation, improvement of U-net network structure,
and least squares line fitting to obtain BL and width. Section 4 describes the process of the
experiment in detail and analyzes the results of the experiment. Section 5 summarizes this
paper and discusses future directions. The main abbreviations and symbols used are listed
in Table 1.

Table 1. Abbreviations and symbols.

Abbreviations and Symbols Initial Explanation

mIoU Mean Intersection over Union
IoU Intersection over Union
BL Body Length
BW Body Width
BA Body Area

YOLO You Only Look Once
F Receptive field

Out f eature Output feature size
In f eature Input feature size

2. Materials and Brief Description of Proposed Method
2.1. Data Acquisition

Currently, there are few publicly available large-scale fish image datasets. The samples
of oval squid (Latin name: Trachinotus ovatus) used in the experiment were collected from
the carp farm in Hainan Lingshui Autonomous County, China (Hainan University Marine
College Aquaculture Professional Production and Research Base). There are 350 original
experimental images, of which 300 are used as the training set and 50 are used as the test
set. The fish are placed close to the level to take pictures. The resolution of the collected
images is 4608 × 3456. Considering that the excessive resolution leads to a sharp increase
in the hardware configuration required for network training. In the experiment, the length
and width are reduced by 4 times to 1152 × 684.

In order to achieve fast, accurate and stable acquisition of fish images, this paper uses
a home-made image acquisition device [20]. As shown in Figure 2, the device consists of a
standard measuring plate (bottom length 560 mm, width 400 mm) and a mechanical arm.
The process of collecting the fish body image is as follows. First, the acquisition camera
(OLYMPUS TG-4, f/2.0, focal length: 4 mm, self-contained lens distortion correction) is
installed at the end of the execution of the mechanical arm, and then connects it to the
computer via a data cable. Next, the position of the camera is set by adjusting the robot
arm so that the photographing screen can cover the bottom length of the platform, and the
camera lens is parallel to the platform. Finally, we place the fish on the measuring plate
and keep the camera directly over the fish body, quickly capture the image, collect the
image data of the fish body, and then transmit it to the computer through the data cable.
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5
4

3
21

Figure 2. Image acquisition device. “1” is the standard measuring plate, “2” is the fixing clamp,
“3” is the knob, “4” is the mechanical arm, and “5” is the end-effector.

2.2. Proposed Scheme

The gray-filled modules in Figure 3 are the main work of this paper. From Figure 3,
the flow chart is proposed for the segmentation and measurement of inclined fish features
by U-net with increased receptive field. First, the original image is acquired through the
image acquisition device. Due to the ideal environment when the image is collected, the
contrast of the image does not change significantly and the fish body is placed nearly
horizontally. In order to better simulate the actual environment, contrast transformation,
rotation transformation, translation transformation and scaling transformation are per-
formed on the training set, and contrast transformation and rotation transformation are
performed on the test set. The main purpose of the translation and scaling transformations
on the training set is to generate more training samples. Second, the expanded training
set is input to the improved U-net network for training, and a trained model is obtained.
Then, the test samples after image processing are input into the trained model to obtain
the accurately segmented binary images [21]. Next, the outer contour acquisition and
linear fitting operation based on the least square are performed to obtain the set of contour
points of the fish and the fitted line [22–24]. Subsequently, the values of BL and BW are
obtained by mathematical derivation. Finally, comparing the obtained data with the actual
morphological data and the binary image labeled on the test set, we can obtain various
indicators for evaluating the performance of the scheme.

Image acquisition

Training samples Test samples

Data augmentation 

and processing

Data processing in 

simulated real 

environment

Improved U-net

Trained model

 Binary images after 

segmentation

Outer contour 

acquisition
Line fitting

Manually annotate the 

binary image of the test set

Perform mathematical calculations

The relative error 

of body length

The relative error 

of the body width

The relative error 

of the area

Actual body length and 

body width of the test set

Figure 3. The system flow chart of the proposed measurement method.
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3. Detailed Description of Proposed Measurement Method
3.1. Data Augmentation

In order to better simulate the actual processing environment and generate more
images for deep learning network learning, data augmentation [25–27] is adopted to
address the issue of small dataset. The contrast transformation [28] and the rotation
transformation are used to simulate the change of light and the incomplete horizontal
phenomenon of fish in actual processing, respectively. In the meantime, the translation
transformation and the scaling transformation are used to simulate positional differences
in the image where the fish is located and individual differences in the fish, respectively.

3.1.1. Contrast Transformation

Contrast transformation is an image processing method that changes the contrast
of image pixels by changing the brightness value of image pixels, thereby improving
the image quality. In the experiment, the contrast transformation is used to simulate
the light transformation in the actual environment. Figure 4 shows the effect of contrast
transformation. The value of the contrast transformation used in the experiment is set
randomly in the interval of [0.5, 1.5].

transformation are used to simulate positional differences in the image where the fish is located 
and individual differences in the fish, respectively. 

3.1.1 Contrast transformation 

Contrast transformation is an image processing method that changes the contrast of image 
pixels by changing the brightness value of image pixels, thereby improving the image quality. In
the experiment, the contrast transformation is used to simulate the light transformation in the 
actual environment. Fig. 3 shows the effect of contrast transformation. The value of the contrast
transformation used in the experiment is set randomly in the interval of [0.5, 1.5].

(a) Original image (b) Contrast enhancement (c) Contrast reduction

Fig. 3. Effect of the contrast transformation. 

3.1.2 Rotation transformation 

Rotation transformation is a transformation that rotates the image and fills the vacant part after 
rotation with adjacent values. The rotation transformation of the fish is used to simulate the
phenomenon that the fish is not level in the actual processing environment. Fig. 4 shows the effect
of rotation transformation. The value of the rotation transformation used in this experiment is set 
randomly in the interval of [-45°, 45°]. 

(a) Original     (b) Clockwise rotation   (c) Anticlockwise rotation 
Fig. 4. Effect of the rotation transformation.

3.1.3 Translation transformation 

Translation transformation is to translate the image horizontally and vertically, but the
resolution of the image is unchanged. For the vacant part after translation, adjacent values will be 
used for padding. The translation transformation can be used to solve the differences in the
position of the fish in the image and to produce a large number of training images. In order to 
better display the translation effect, a slightly larger translation ratio column is selected for 
presentation, and the transformation effect is shown in Fig. 5. In the experiment, the ratio of 
horizontal or vertical translation length to picture length is within [0, 0.02].

Figure 4. Data augmentation by contrast transformation.

3.1.2. Rotation Transformation

Rotation transformation is a transformation that rotates the image and fills the vacant
part after rotation with adjacent values. The rotation transformation of the fish is used
to simulate the phenomenon that the fish is not level in the actual processing environ-
ment. Figure 5 shows the effect of rotation transformation. The value of the rotation
transformation used in this experiment is set randomly in the interval of [−45◦, 45◦].

transformation are used to simulate positional differences in the image where the fish is located 
and individual differences in the fish, respectively. 

3.1.1 Contrast transformation 

Contrast transformation is an image processing method that changes the contrast of image 
pixels by changing the brightness value of image pixels, thereby improving the image quality. In
the experiment, the contrast transformation is used to simulate the light transformation in the 
actual environment. Fig. 3 shows the effect of contrast transformation. The value of the contrast
transformation used in the experiment is set randomly in the interval of [0.5, 1.5].

(a)Original       (b) Contrast enhancement          (c) Contrast reduction 

Fig. 3. Effect of the contrast transformation. 

3.1.2 Rotation transformation 

Rotation transformation is a transformation that rotates the image and fills the vacant part after 
rotation with adjacent values. The rotation transformation of the fish is used to simulate the
phenomenon that the fish is not level in the actual processing environment. Fig. 4 shows the effect
of rotation transformation. The value of the rotation transformation used in this experiment is set 
randomly in the interval of [-45°, 45°]. 

(a) Original image (b) Clockwise rotation (c) Anticlockwise rotation

Fig. 4. Effect of the rotation transformation. 

3.1.3 Translation transformation 

Translation transformation is to translate the image horizontally and vertically, but the
resolution of the image is unchanged. For the vacant part after translation, adjacent values will be 
used for padding. The translation transformation can be used to solve the differences in the
position of the fish in the image and to produce a large number of training images. In order to 
better display the translation effect, a slightly larger translation ratio column is selected for 
presentation, and the transformation effect is shown in Fig. 5. In the experiment, the ratio of 
horizontal or vertical translation length to picture length is within [0, 0.02].

Figure 5. Data augmentation by rotation transformation.

3.1.3. Translation Transformation

Translation transformation is to translate the image horizontally and vertically, but
the resolution of the image is unchanged. For the vacant part after translation, adjacent
values will be used for padding. The translation transformation can be used to solve the
differences in the position of the fish in the image and to produce a large number of training
images. In order to better display the translation effect, a slightly larger translation ratio
column is selected for presentation, and the transformation effect is shown in Figure 6. In
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the experiment, the ratio of horizontal or vertical translation length to picture length is
within [0, 0.02].

(a) Original image (b) Right translation (c) Left translation

Fig. 5. Effect of the translation transformation. 

3.1.4 Scaling transformation 

Scaling transformation is to randomly scale the length and width of the image, but the
resolution of the image does not change. The enlarged image is intercepted and the reduced image
is filled with neighboring values. The scaling transformation can be used to generate a large 
number of samples of different fish sizes for the network to learn from. In order to better display 
the scaling effect, a slightly larger scaling ratio is used for presentation. Fig. 6 shows the effect of 
scaling transformation. In the experiment, the ratio of scaling transformation to the image is within 
[0, 0.01].

(a) Original      (b) Shrink      (c) Stretch 

Fig. 6. Effect of the scaling transformation. 

3.2 Improved U-net network structure 

U-net [25] is a classic network for segmentation tasks [26], which adopts the encoder-decoder 
structure and channel dimension splicing to integrate the multi-scale features. The network is
widely used due to its advantages of supporting a small amount of data to train the model, simple
structure, high segmentation accuracy and fast segmentation speed. According to the 
characteristics of the experimental data set as well as the large proportion of fish in the image, the 
U-net network structure is improved to provide a larger receptive field for the partial convolution. 
The improved U-net uses a 3 × 3 dilated convolution [27-29] with a dilation rate of 2 and one 
3 × 3 convolution to partially replace the 3 × 3 convolution in the original network. The partial
replacement is to avoid too many dilated convolution leading to gridding effect [30].

The improved U-net network is shown in Fig. 7, in which the red virtual box is the main part of 
the improvement. 

Figure 6. Data augmentation by translation transformation.

3.1.4. Scaling Transformation

Scaling transformation randomly scales the length and width of the image, but the
resolution of the image does not change. The enlarged image is intercepted and the reduced
image is filled with neighboring values. The scaling transformation can be used to generate
a large number of samples of different fish sizes for the network to learn from. In order
to better display the scaling effect, a slightly larger scaling ratio is used for presentation.
Figure 7 shows the effect of scaling transformation. In the experiment, the ratio of scaling
transformation to the image is within [0, 0.01].

(a) Original        (b) Right translation        (c) Left translation 

Fig. 5. Effect of the translation transformation. 

3.1.4 Scaling transformation 

Scaling transformation is to randomly scale the length and width of the image, but the
resolution of the image does not change. The enlarged image is intercepted and the reduced image
is filled with neighboring values. The scaling transformation can be used to generate a large 
number of samples of different fish sizes for the network to learn from. In order to better display 
the scaling effect, a slightly larger scaling ratio is used for presentation. Fig. 6 shows the effect of 
scaling transformation. In the experiment, the ratio of scaling transformation to the image is within 
[0, 0.01].

(a) Original image (b) Shrinking (c) Stretching 

Fig. 6. Effect of the scaling transformation. 

3.2 Improved U-net network structure 

U-net [25] is a classic network for segmentation tasks [26], which adopts the encoder-decoder 
structure and channel dimension splicing to integrate the multi-scale features. The network is
widely used due to its advantages of supporting a small amount of data to train the model, simple
structure, high segmentation accuracy and fast segmentation speed. According to the 
characteristics of the experimental data set as well as the large proportion of fish in the image, the 
U-net network structure is improved to provide a larger receptive field for the partial convolution. 
The improved U-net uses a 3 × 3 dilated convolution [27-29] with a dilation rate of 2 and one 
3 × 3 convolution to partially replace the 3 × 3 convolution in the original network. The partial
replacement is to avoid too many dilated convolution leading to gridding effect [30].

The improved U-net network is shown in Fig. 7, in which the red virtual box is the main part of 
the improvement. 

Figure 7. Data augmentation by scaling transformation.

3.2. Improved U-Net Network Structure

U-net [29] is a classic network for segmentation tasks [30], which adopts the encoder-
decoder structure and channel dimension splicing to integrate the multi-scale features [31].
The network is widely used due to its advantage, supporting a small amount of data
to train the model, simple structure, high segmentation accuracy and fast segmentation
speed. According to the characteristics of the experimental data set as well as the large
proportion of fish in the image, the U-net network structure is improved to provide a
larger receptive field for the partial convolution. The improved U-net uses a 3 × 3 dilated
convolution [32–34] with a dilation rate of 2 and one 1 × 1 convolution to partially replace
the 3 × 3 convolution in the original network. The partial replacement is to avoid too many
dilated convolution leading to gridding effect [35].

The improved U-net network is shown in Figure 8, in which the red virtual box is the
main part of the improvement.
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Figure 8. Structure of improved U-net model.

The role of dilated convolution in the improved U-net structure is to expand the
receptive field [36]. The schematic diagram of its work is shown in Figure 9b. In Figure 9,
the stride of convolution is 1 and no padding operation is performed. It can be seen from
Figure 9 that by using dilated convolution with a 3 × 3 kernel and a dilation rate of 2,
the receptive field of each convolution is amplified from 3 × 3 to 5 × 5. In this way, each
convolution output contains a large range of information of the original feature map, and
appropriately compensates for some feature loss caused by the pooling operation in the
U-net network [37].

For the dilated convolution, calculation formula of receptive field is:

F = (2× dilation− 1)× (kernel − 1) + kernel; (1)

and the calculation formula of output feature size is:

out f eature =
in f eature − F + 2× padding

stride
+ 1. (2)
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Fig .7 Structure of improved U-net. 

The role of dilated convolution in the improved U-net structure is to expand the receptive field 
[30]. The schematic diagram of its work is shown in Fig. 8(b). In Fig. 8, the stride of convolution 
is 1 and no padding operation is performed. It can be seen from Fig. 8 that by using dilated 
convolution with a 3 × 3 kernel and a dilation rate of 2, the receptive field of each convolution is 
amplified from 3 × 3 to 5 × 5. In this way, each convolution output contains a large range of 
information of the original feature map, and appropriately compensates for some feature loss 
caused by the pooling operation in the U-net network [31].  

        
(a) Convolution with a 3 × 3 kernel     (b) Dilated Convolution with a 3 × 3 kernel and dilation rate 2 

Fig. 8 Working diagram of ordinary convolution and dilated convolution. 

Fig. 9(a) shows the working diagram of a 1 × 1  convolution when both input and output 
channels are 1, where the value in the filter is the weight value to be learned. Fig. 9(b) shows the 
working diagram for input channels with N and output channel as 1. Therefore, 1 × 1 
convolution in the improved U-net network is equivalent to adding an auto-learnable coefficient 
on the basis of each dilated convolution, and then combining multi-dimensional information [32]. 
This operation has the effect of enhancing cross-group information exchange and non-linearity, 
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Figure 10a shows the working diagram of a 1 × 1 convolution when both input and
output channels are 1, where the value in the filter is the weight value to be learned.
Figure 10b shows the working diagram for input channels with N and output channel as 1.
Therefore, 1 × 1 convolution in the improved U-net network is equivalent to adding an
auto-learnable coefficient on the basis of each dilated convolution, and then combining
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multi-dimensional information [38]. This operation has the effect of enhancing cross-group
information exchange and non-linearity, thereby achieving a certain degree of adaptive
optimization and adjustment effect on the features collected after expanding the receptive
field [39,40].

This operation has the effect of enhancing cross-group information exchange and non-linearity, 
thereby achieving a certain degree of adaptive optimization and adjustment effect on the features 
collection after expanding the receptive field [33, 34]. 
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In Figures 11 and 12, the fish bodies are all in a horizontal state. When the fish
bodies are no longer close to the horizontal state, an accurately judge the angle of the
fish inclination becomes a challenge. By combining the characteristics of the fish body
shape and the improved U-net to obtain a precise binary segmentation image, the idea
of microscopicizing the fish body into multiple pixels is proposed. The least squares
method [42,43] is used to fit the point set in a straight line, and the angle of the straight line
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can be regarded as the angle of the fish. At the same time, the method also conforms to the
judgment logic of human judging the tilt direction of fish.

Figure 13 shows a working diagram of the body length and width of the inclined
fish calculated by combining the outer contour detection of fish and line fitting. All the
intersecting lines in Figure 13 are vertical. First, the contour point set of the segmented
binary image is obtained by using outer contour detection, and the linear equation of MN
(y = kx + b) was obtained by using the line fitting. Second, the contour point set

Q = [(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn)] (3)

is divided into two parts by the straight line of MN. For each point set, the shortest distance
d from each point to line MN was calculated [44],

d =
|kxi = yi + b|√

k2 + 1
(4)

and the longest distance of all distances (AE, BF) and the point that reached the longest
distance (point A, point B) were selected. The length of the line segments AE(l1) and BF(l2)
is the BW of the fish.

BW = l1 ± l2. (5)
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Figure 13. Working diagram of contour detection and line fitting.

Then, since the line AE is perpendicular to MN, the slope of the line AE (k1 = − 1
k ) is

obtained according to the slope of the line MN. Based on the known coordinates of point
A, the equation of the straight line AE (y = k1x+b1) can be obtained. Next, taking the same
operation as above, the straight line AE divides the contour point set into two parts. The
coordinates of the points C and D and the lengths of the line segments CH (l3) and DG (l4)
are obtained, respectively. The sum of the lengths of the line segments CH and DG is the
BL of the fish.

BL = l3 ± l4. (6)

Finally, four straight lines are drawn according to the known points A, B, C, D and
the corresponding slope of the tangent line for a more intuitive display. The pseudo code
description of the line fitting scheme is shown in Algorithm 1.
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Algorithm 1 Pseudo code description of the line fitting scheme.

Input: Contour point set is Q = [(x1, y1), (x2, y2), · · · , (xi, yi), · · · , (xn, yn)];
Fitting Linear MN Equation by Least Square Method is y = kx + b.

Output: body_width, body_length, α.
Algorithm f low :
Step 1: Obtain the body_width.

1: for I in Q do
2: if (I[1] > kl[0] + b) then
3: dis = |kl[0]+b−I[1]|√

k2+1
; #Shortest distance from point to straight line

4:
5: if then(l1 <= dis );
6: l1 = dis ;
7: A = (I[0], I[1]);
8: else
9: continue;

10: end if
11: else
12: Follow the steps above to find the length of l2 and the coordinates of point B;
13: end if
14: end for

BW = l1 + l2.
Step 2: Obtain the body_length.
Pass point A to make AE perpendicular to MN, and drop foot to point E;
Let k1 = − 1

k , b1 = I[1]+I[0]
k ; the equation o f the straight line AE : y = k1x +

b1
15: for J in Q do
16: if (J[0] > J[1]−b1

k1
) then

17: dis = |kJ[0]+b1−J1]|√
k2

1+1
;

18:
19: if then(l3 <= dis );
20: l3 = dis;
21: C = (J[0], J[1]);
22: else
23: continue;
24: end if
25: else
26: Follow the steps above to find the length of l4 and the coordinates of point D;
27: end if
28: end for

BL = l3 + l4.
Step 3: Obtain the tile angle.
According to point A, pint B, point C, point D and related slopes, the four tangent lines
corresponding to the inclined fish can be obtained. Fish tilt angle is α = arctank.

4. Experimental Results and Analysis
4.1. Experimental Environment and Parameter Settings

The experimental environment is the ubuntu18.04.1 operating system, Tesla v100 GPU,
keras platform and python3. To ensure the reliability of the experiment and the adequacy
of the network training, we set the batch size to 2, the learning rate to 5 × 10−6, the epoch
to 50, and the number of iterations per round to 600. For the label of the data set, labelme
software [45] is used to obtain the mask image in the experiment. Then the mask image is
converted into a binary image in uint8 format to be trained as a labeled image. For the data
set and code used in the experiment, please see the link in Supplementary Materials.



Electronics 2021, 10, 1426 11 of 17

4.2. Evaluation Indicators

In the experiment, to evaluate the effect of network segmentation, a better analysis of
the network performance and the needs of actual production are considered. mIoU [46],
average accuracy rate, average recall rate [47], and average area relative error are used
as evaluation indicators. To evaluate the measurement of BL and BW of fish, the average
relative error is used as the evaluation indicator.

4.3. Improved U-Net Performance Verification

In order to initially verify the performance of the improved U-net network structure,
no rotation transformation is performed on the original data set. The line chart of IoU,
accuracy rate, recall rate and area relative error of 50 test images by two networks is shown
in Figure 14.

(a) IoU (b) Accuracy rate

(c) Recall rate (d) Area relative error

Figure 14. Comparison of performance on four metrics when the fish body is not tilted.

From Table 2, the results of mIoU, average accuracy rate, average recall rate and
average area relative error are calculated. It can be seen from the data that the improved
network is better than that of U-net in terms of performance, and the average relative error
is reduced to about a half.

Table 2. Numerical comparison of two networks on four metrics when the fish are placed horizontally.

Indicators mIoU (%) Average Accuracy
Rate (%)

Average Recall
Rate (%)

Average Area Relative
Error (%)

U-net 97.56 99.73 98.14 1.29
Improved U-net 97.66 99.74 98.55 0.72

4.4. Feature Measurement for Tilted Fish

To simulate the actual production environment, the fish may be tilted when placed on
a conveyor belt or on a fish measuring plate. The environment is simulated by randomly
rotating the training and test sets within an angle of [−45◦, 45◦]. To further verify the
applicability of the improved U-net network, two models are generated using original
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and improved network training, and 50 test images are tested. The experimental results
of segmentation by using U-net and improved U-net are shown in Figure 15, where the
detected area is cropped and some obvious segmentation differences are represented by
blue frames for better display.

   

(c) recall rate                          (d) area relative error 

Fig.10 The line charts of the two networks on the four indicators when the fish is placed 
horizontally. 
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Table 2 Numerical comparison of two networks on four indicators when the fish are placed 
horizontally. 
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rate 

average recall 
rate 

average area relative 
error 

U-net 0.9756 0.9973 0.9814 0.0129 

Improved U-net 0.9766 0.9974 0.9855 0.0072 

4.4 Feature measurement for tilted fish 

To simulate the actual production environment, the fish may be tilted when placed on a 
conveyor belt or on a fish measuring plate. The environment is simulated by randomly rotating the 
training and test sets within an angle of [-45°, 45°]. To further verify the applicability of the 
improved U-net network, two models are generated using original and improved network training, 
and 50 test images are tested. The experimental results of segmentation by using U-net and 
improved U-net are shown in Fig. 15, where the detected area is cropped and some obvious 
segmentation differences are represented by blue frames for better display. 
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Fig. 11 Comparison of segmentation effects of two algorithms when the fish body is tilted. 

From Fig. 15, the improved U-net has a better segmentation effect on the edge of the fish, and 
the improved U-net can accurately segment the requested inclined fish body area. The line chart of 

Figure 15. Comparison of segmentation effects of two algorithms when the fish body is tilted.

From Figure 15, the improved U-net has a better segmentation effect on the edge of
the fish, and the improved U-net can accurately segment the requested inclined fish BA.
The line chart of IoU, accuracy rate, recall rate and area relative error of 50 test images by
two networks is shown in Figure 16.

(a) IoU (b) Accuracy rate

(c) Recall rate (d) Area relative error

Figure 16. Comparison of performance on four metrics when the fish body is tilted.

As shown in Table 3, the results of mIoU, average accuracy rate, average recall rate and
average area relative error are calculated. According to the data in Table 3, the improved
U-net is still better than U-net with mIoU as high as 97.6%. Compared with U-net, the
average relative error of the area is still reduced to about a half.
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Table 3. Numerical comparison of two networks on four metrics when the fish are tilted.

Indicators mIoU (%) Average Accuracy
Rate (%)

Average Recall
Rate (%)

Average Area Relative
Error (%)

U-net 97.35 99.71 98.08 1.20
Improved U-net 97.57 99.73 98.54 0.69

To measure fish BL and BW, the line fitting scheme in this paper is also compared
with the commonly used circumscribed rectangle [48] and the smallest circumscribed
rectangle [49] method in the experiment. In order to ensure the accuracy of the experiment,
the true length and width of the test fish are expressed by the number of pixels in the
picture occupied by the BL and BW. The average value of three manual measurements is
used as the standard value. The test result images are shown in Figure 17.

  
(a) Fish tilt down                        (b) Fish tilt up 

  
(c) Fish close to horizontal                (d) Fish close to horizontal 

Fig. 13 Comparison of the effects of three measurement schemes.  

As shown in Fig. 17, the yellow line represents the result of the line fitting scheme, the red box 
represents the result of the smallest circumscribed rectangle scheme, and the green box represents 
the result of using the circumscribed rectangle scheme. From Fig. 17 (c) and (d), when the fish is 
close to horizontal, the smallest circumscribed rectangle is still inclined at a certain angle. This 
will lead to a large error. 

   
(a) Relative error of fish body length           (b) Relative error of fish body width 

Fig. 14 Comparison of relative measurement errors using U-net combined with three measurement 
methods. 

  
(a) Fish tilt down                        (b) Fish tilt up 

  
(c) Fish close to horizontal                (d) Fish close to horizontal 

Fig. 13 Comparison of the effects of three measurement schemes.  

As shown in Fig. 17, the yellow line represents the result of the line fitting scheme, the red box 
represents the result of the smallest circumscribed rectangle scheme, and the green box represents 
the result of using the circumscribed rectangle scheme. From Fig. 17 (c) and (d), when the fish is 
close to horizontal, the smallest circumscribed rectangle is still inclined at a certain angle. This 
will lead to a large error. 

   
(a) Relative error of fish body length           (b) Relative error of fish body width 

Fig. 14 Comparison of relative measurement errors using U-net combined with three measurement 
methods. 

Figure 17. Comparison of the effects of three measurement methods. Circumscribed rectangle is
marked with a green line; Smallest circumscribed rectangle is marked with a red line; Line fitting
rectangle is marked with a yellow line.

As shown in Figure 17, the yellow line represents the result of the line fitting scheme,
the red box represents the result of the smallest circumscribed rectangle scheme, and
the green box represents the result of using the circumscribed rectangle scheme. From
Figure 17c,d, when the fish is close to horizontal, the smallest circumscribed rectangle is
still inclined at a certain angle. This will lead to a large error.

To observe the performance differences in measurement by using different measure-
ment schemes more intuitively, line charts are drawn with the relative error as the indicator.
From Figures 18–20, the line fitting scheme proposed in this paper is superior to the circum-
scribed rectangle and the smallest circumscribed rectangle. The improved U-net network
is better than the previous network.
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(a) Relative error of fish BL (b) Relative error of fish BW

Figure 18. Comparison of relative measurement errors using U-net combined with three measure-
ment methods.

(a) Relative error of fish BL (b) Relative error of fish BW

Figure 19. Comparison of relative measurement errors using improved U-net combined with three
measurement methods.

(a) Relative error of fish BL (b) Relative error of fish BW

Figure 20. Comparison of relative measurement errors using two networks combined with
line fitting.

It can be seen from Table 4 that the comprehensive scheme of improved U-net and
line fitting can accurately measure the BL and BW of inclined fish. At this time, the relative
errors of BL and BW are 0.37% and 0.61%, respectively. Because the line fitting method
is used, the specific tilt angle of the fish body can be obtained from the slope of the fitted
straight line. The angle parameter is also of great significance for object grabbing [50].
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Table 4. Average relative errors of various schemes.

Schemes
U-Net Improved U-Net

Average Relative
Error of BL (%)

Average Relative
Error of BW (%)

Average Relative
Error of BL (%)

Average Relative
Error of BW (%)

Circumscribed
rectangle 5.56 39.91 5.56 40.08

Smallest
circumscribed

rectangle
2.07 1.09 1.99 1.07

Line fitting 0.49 0.81 0.37 0.61

5. Conclusions and Future Work

Obviously, the accurately measured morphological characteristic data can be used as
an important reference for feeding, fishing, classification and genetic breeding in aquacul-
ture research. This paper proposes an accurate method for measuring the actual size for the
length, width and area of the fish body. This method is especially effective for measuring
the characteristics of the fish body in a tilted state. The proposed method mainly includes
a data set expansion module, a segmentation module using improved U-net model, and
the least square linear fitting module, which can achieve the segmentation of a tilted fish
body in the images and accurate measurement of various characteristics. The experimental
comparison results of various metrics show that the performance of the measurement
system is indeed improved. Specifically, the mIoU of the improved U-net model can reach
97.6%. The average relative error of the fish BA can be reduced to 0.69%. The average
relative error of the BL and width can be reduced to 0.37% and 0.61%, respectively. In
conclusion, the proposed method can achieve the purpose of accurate measurement of fish
body morphological characteristics in practical applications. In addition, the inclination
angle of the fish body obtained in the calculation process can also be used as a useful
parameter for realizing the automatic capture of the fish.

The research of this paper divides the fish body segmentation, the pixel size calculation,
and the conversion from pixel size to actual size into three different steps. In our future
research, we will consider combining segmentation, pixel size prediction and actual size
conversion into one network model in one step. This can greatly improve the efficiency of
the measurement process.

Supplementary Materials: Supplementary data associated with this article can be found, in the on-
line version, at https://github.com/huzhuhua/supplementary-data-of-new-manuscript (accessed
on 1 May 2021).
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