
electronics

Article

Communication-Induced Checkpointing with Message Logging
beyond the Piecewise Deterministic (PWD) Model for
Distributed Systems

Jinho Ahn †

����������
�������

Citation: Ahn, J.

Communication-Induced

Checkpointing with Message

Logging beyond the PWD Model for

Distributed Systems. Electronics 2021,

10, 1428. https://doi.org/10.3390/

electronics10121428

Academic Editors: Padmanabhan

Balasubramanian and Costas

Psychalinos

Received: 4 May 2021

Accepted: 11 June 2021

Published: 14 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of AI Computer Science and Engineering, Kyonggi University, Suwon 16227, Gyeonggi, Korea;
jhahn@kgu.ac.kr; Tel.: +82-31-249-9674

Abstract: This paper introduces an effective communication-induced checkpointing protocol using
message logging to enable the number of extra checkpoints to be far lower than the previous
number. Even if a situation occurs in which it is decided that a process receiving a message has
to perform forced checkpointing, our protocol allows the process to skip the forced checkpointing
action if it recognizes that the state of its sender right before the receipt of the message is recoverable.
Additionally, the communication-induced checkpointing protocol is thus not required to assume the
piecewise deterministic model, despite being combined with message logging. This protocol can
maintain these features by piggybacking a one-bit variable and an n-size vector on each message
sent. Our simulation results verify our claim that the presented protocol performs much better than
the representative optimized protocol with respect to the forced checkpointing frequency, regardless
of the communication pattern.

Keywords: distributed systems; fault tolerance; checkpointing; message logging

1. Introduction

As parallel algorithms perform many operations on a cluster of independent com-
puting nodes, even a single node crash can cause the execution of an algorithm to halt [1].
This undesirable property may make large-scale distributed systems more vulnerable to
failures [2]. For this reason, effective fault-tolerance techniques are essentially needed in
such systems. Rollback recovery is one such technique that enables the current erroneous
state of a distributed system to be restored to a previous failure-free state from the stable
storage [3,4]. To achieve this goal, the system recovery information must be occasionally
saved to the storage for normal operations [5].

Among the techniques used for rollback recovery, checkpoint-based recovery depends
solely upon local states of processes maintained in the stable storage—called checkpoints—
to support fault tolerance [5]. In the case of a failure, the system state is recovered by using
the most recent consistent global checkpoint kept in the storage. According to when and
how consistent sets of checkpoints are formed, checkpoint-based recovery protocols are
categorized into coordinated, independent, and communication-induced checkpointing [5].
In order to balance trade-offs between independent and coordinated checkpointing in an
effective manner, communication-induced checkpointing (CIC) is used to preclude any
local checkpoint that have already been taken from becoming useless by performing forced
checkpointing while attempting to increase the degree of checkpointing independence as
much as possible [6–15]. The CIC protocols include HMNR [8], which uses this feature to
enable the number of extra checkpoints to be much lower by effectively using the control
information contained in each sent message. Next, an improved HMNR protocol [12],
LazyHMNR, attempts to use a lazy indexing strategy [13] to alleviate the problem of high
frequencies of forced checkpointing that may occur in some particular cases. Next, two
protocols, FINE [9] and LazyFINE [10], were designed to try to generate fewer forced

Electronics 2021, 10, 1428. https://doi.org/10.3390/electronics10121428 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8776-5185
https://doi.org/10.3390/electronics10121428
https://doi.org/10.3390/electronics10121428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10121428
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10121428?type=check_update&version=1


Electronics 2021, 10, 1428 2 of 16

checkpoints than HMNR and LazyHMNR with the same numbers of variables that they
hold. However, they cannot ensure the property of never having useless checkpoints [7].
Then, an adaptive CIC protocol [11] was developed in an attempt to delay taking forced
checkpointing actions as long as possible by evaluating some safety predicates. One of the
most recent CIC protocols [14] utilizes the effectiveness of the one-to-many transmission
of broadcasting links, which is widely used to lower the number of extra checkpoints.
However, this may greatly degrade the applicability of the CIC. Lastly, several recent
works [6,15] exploited one or more protocols mentioned above to raise the dependability
of the systems to a higher level in the fields of distributed database management systems
and web services.

Generally, checkpointing-based recovery, including CIC, is not subject to the piecewise
deterministic (PWD) model; thus, it is less restrictive and more realistic for application in
distributed systems than in message-logging-based recovery [16–18]. However, the for-
mer may not ensure the recovery of the system to its pre-failure state, which generally
makes the rollback distance of each process much longer than that in the latter [5]. Thus,
hybrid protocols that combine the two techniques were proposed to compensate for the
drawbacks of the first [5]. However, these protocols cannot be freed from the PWD as-
sumption. For this reason, none of the existing CIC protocols—including a family of
HMNR protocols [6,8–15]—developed so far can utilize the benefits of message logging
on real-world distributed systems without assuming the PWD model. Whenever each
process receives a message, the protocols cause the process to perform forced checkpointing
if they decide that one or more checkpoints that have already been taken may become
useless. Due to this inherent shortcoming, even the HMNR protocols force each process to
take extra checkpoints—more than twice the number of basic checkpoints [7]. However,
the property of never having useless checkpoints is ensured without performing the forced
checkpointing action if the process can know precisely that the current state of the sender
of the message can be deterministically restored by replaying logged messages from the
stable storage in the case of a failure of the sender. We found that this observation may
be an important way to drive a large reduction in the number of forced extra checkpoints
that all of the previous CIC protocols can incur. This paper introduces a CIC protocol,
S-CIC, with message logging that is not subject to the PWD model in order to address
the aforementioned observation. The protocol can achieve this goal by only carrying a
one-bit variable and an n-size vector into every message transmitted. In the checkpointing
and communication patterns where the existing CIC protocols—including the family of
HMNR protocols—force the receiver of a message to take extra checkpoints, if the infor-
mation of the message sender piggybacked on it indicates that the sender’s state right
before sending is recoverable, the proposed protocol allows the receiver not to perform
forced checkpointing.

2. Background
2.1. Fundamentals

In this paper, we assume a distributed system with no global clock or memory and
immunity to network partition [5]. Every process can crash according to the fail-stop failure
model [19], and the processes collaborate with others only by making reliable message
exchanges through an asynchronous transmission channel [5,8]. Each process p begins an
execution from its first state and performs a combination of internal, message-sending,
and message-delivering events [5]. Here, internal events are produced to perform their
individual computations with no interactions with others. All of the event processes that
are incurred for normal operations are sequenced according to Lamport’s “happened
before” relation [20].

Cki
p represents the ith local checkpoint of p, and Cki

p.lc is the local timestamp assigned
to Cki

p when it is taken. Assume that each process p records the first checkpoint, Ck0
p, on the

storage containing its initial state when it begins its own computation. A global checkpoint
means a set of local checkpoints that hold only one per process in the system [5,7]. A pair



Electronics 2021, 10, 1428 3 of 16

of local checkpoints (Cki
p,Ckj

q) is named mutually consistent if and only if there is no case

in which m is delivered before Ckj
q, but is sent after Cki

p. A global checkpoint is consistent
if and only if every couple of local checkpoints belonging to the first always satisfies the
mutual consistency condition [21]. The concept of the Z-path [22] is exploited to check
if the condition of mutual consistency is satisfied on an ordered pair of checkpoints by
finding causal sub-paths, as well as non-causal (NC) sub-paths, where the two checkpoints
can be connected to each other. A Z-path that includes a cycle from a local checkpoint Cki

p
to itself is called a Z-cycle [22].

Theorem 1. For any pair of checkpoints Cki
p and Ckj

q, if a Z-path begins with Cki
p and terminates

with Ckj
q and Cki

p.lc is lower than Ckj
q.lc, then no Z-cycle can form [22].

2.2. Related Work

HMNR is an optimized protocol that aims to have no local checkpoints that are useless
while decreasing the number of extra checkpoints. To keep this feature in HMNR, each
process p should always have the following five state variables [8]: lcp is a non-negative
integer variable that has the present value of p’s local timestamp. send_top is a vector in
which send_top[q] keeps a boolean value to detect a non-causal path to q from p. ckptp is a
vector in which ckptp[q] contains the total number of checkpoints that q has recorded in
the stable storage from its initial execution that p currently recognizes. takenp is a vector
where takenp[q] keeps the boolean value for q to indicate the existence of at least one causal
Z-path from the latest checkpoint of q that p perceives to the subsequent checkpoint for
p. greaterp is a vector where greaterp[q] has the boolean value for q, and this indicates
whether p’s current timestamp lcp is greater than the most recent timestamp of q perceived
by p (=true) or not (=false).

This protocol includes a checkpoint-timestamping mechanism that uses Lamport’s
logical clock [21] to satisfy Theorem 1, implying that increasing the timestamp flow along
any Z-path always ensures that no checkpoint becomes useless. The mechanism is sufficient
for ensuring that no causal Z-path includes a Z-cycle formation [8,22].

However, two kinds of non-causal (NC) Z-paths [8,22], as shown in Figure 1, can
violate the theorem, even if the timestamping mechanism is used. To prevent Z-cycles from
forming in these cases, HMNR forces each process p after receiving a message m to save an
additional checkpoint if the following condition CHMNR is satisfied.

• CHMNR ≡ C1 ∨ C2
• C1 ≡ ∃j(1≤j≤n):sent_top[j]∧m.greater[j]∧(m.lc>lcp)
• C2 ≡ (ckptp[p] = m.ckpt[p]) ∧ m.taken[p]

The first case is an NC Z-path pattern connecting two checkpoints, Cki
p and Ckk+1

r ,
as shown in Figure 1a. In this example, three processes, p, q, and r, are exchanging
messages: m1, m2, and m3. As Cki

p.lc = Ckk+1
r .lc, the path violates the theorem. When

q sends m2 to r, sent_toq[r] becomes true. However, p can get lcr before Ckk+1
r through

m3, m3.lc(=lcr) < lcp. Thus, greaterp[r] still remains true. Then, it is brought to q when
receiving m1, so m1.greater[r] = true and m1.lc(=lcp) > lcq. As the first sub-condition of

CHMNR, C1, is satisfied, HMNR forces q to record an extra checkpoint Ckj+1
q in the storage

before conveying m1 to the target application.
The second case is another NC Z-path pattern with Cki

p and Ckk+1
r , as shown in

Figure 1b. In the figure, the path incurs a Z-cycle involving Ckk+1
r because r sends m3 to p

after Ckk+1
r , and then q receives m1, depending on m3, from p. In this case, as m3 is trans-

mitted to p from r, greaterp[r](← greaterp[r] ∧ m3.greater[r]) becomes false as m3.lc(=lcr) =
lcp and m3.greater[r] = false. As m1.greater[r] = false when q receives m1, C1 is not sufficient
for detecting the violation. Therefore, the second sub-condition of CHMNR, C2, needs to be
checked. When taking Ckk+1

r , takenr[q] changes to true while the value of ckptr[q] is still
the same as the number of checkpoints associated with Ckj

q. Then, the two values can be



Electronics 2021, 10, 1428 4 of 16

brought to q through a causal Z-path composed of m3 and m1 in order. As m1.ckpt[q] =
ckptq[q] and m1.taken[q] = true, C2 is satisfied.

Figure 1. Preventing uselessness of local checkpoints in HMNR.



Electronics 2021, 10, 1428 5 of 16

However, in both examples, if p’s state right before sending m1 is recoverable and q
knows this, q does not need to take Ckj+1

q before delivering m1, even though CHMNR is
satisfied. In other words, when q recognizes that both m2 and m3 can always be replayed
in case of failure and that p’s internal execution before sending m1 is deterministic, Ckk+1

r

will not be a useless checkpoint, even though Ckj+1
q is taken after delivering m1. Based on

this new observation, we present a low-overhead CIC protocol, S-CIC, that uses message
logging to detect this type of recoverability in an efficient manner without assuming the
PWD constraint.

The enhanced version of HMNR [12], LazyHMNR, attempts to lessen the forced
checkpointing frequency in unconventional cases that may take place due to asymmetries
in the rates of increase of logical timestamps. It fulfills this requirement by delaying the
swift growth of the logical timestamps of some processes—which is caused by repeated
checkpointing actions on them—as long as possible.

Another CIC protocol [9], FINE, attempts to intensify the optimality of the consistency
predicate of HMNR with only its mandatory state variables in order to ensure the property
of never having useless checkpoints. The advanced version of FINE [10], LazyFINE, was
designed to incorporate the laziness of logical timestamp increases into FINE. However, it
was proved that the two protocols can create useless checkpoints because the Z-consistent
timestamping rule cannot be enforced [7].

A delayed CIC protocol [11], DCFI, was introduced to lower the forced checkpointing
frequency by applying several safety rules that enabled the postponement of checkpointing
enforcements. This feature may have a much lower total number of checkpoints that are
taken in the system. However, the protocol does not incorporate a method for significantly
lowering the frequency of extra checkpointing actions by exploiting the rollback distance
reduction benefit of message logging.

Another CIC protocol [14], BN-FI, was recently presented in order to curtail the num-
ber of extra checkpoints by exploiting the functional strength that broadcasting networks
generally hold, which is called one-to-many transmission effectiveness. This special ca-
pability of lightweight group dissemination can speed up the updating of the last logical
timestamp of each transmitter for the others on the network. This behavioral property en-
ables each process to precisely detect if the ongoing Z-path has at least one checkpoint that
has become useless much earlier than in the previous protocols. However, the performance
gain of the protocol limits its applicability to network environments.

One of the most recent CIC algorithms [15] was developed in order to maintain
a globally consistent state of each transaction in a distributed database management
system while making the delay in failure-free transaction execution as short as possible.
The algorithm attempts to enhance the recoverability of the system states with a far lower
number of extra checkpoints by recording only the states of the completely committed
transactions in the stable storage. However, the algorithm has the same shortcomings as
those of the original HMNR protocol mentioned above.

The authors of [6] proposed an adaptive checkpoint generation algorithm in order
to decrease the frequency of forced checkpointing actions by considering the system’s
behavior in comparison with the static algorithm, which did not reflect the environmental
changes onto web services being operated. The algorithm made decisions on whether
forced checkpoints should be taken based on the quality of the service parameters and the
policies currently applied to their corresponding web services. In order to improve the
dependability of the web services, three kinds of CIC protocols were exploited: HMNR [8],
DCFI [11], and FINE [9]. Among them, HMNR and DCFI performed better than FINE on
the system in terms of the number of forced checkpoints. However, the system still bore
the respective limitations of the three CIC protocols stated above.

However, as all of the CIC protocols mentioned above attempt to use message logging
to shorten the rollback distance of each process during recovery as much as they can, they
must be applied only to deterministic services and systems, resulting in a large contraction



Electronics 2021, 10, 1428 6 of 16

of the scope of the application areas. Table 1 shows a summary of a comparison of some
primary features of the CIC representatives.

Table 1. Comparison with the other CIC representatives (* non-deterministic).

Feature S-CIC HMNR FINE DCFI BN-FI

No useless checkpoint existence Yes Yes No Yes Yes
Broadcast network only No No No No Yes

Model assumed if message logging used ND * PWD PWD PWD PWD

3. The Proposed Protocol

S-CIC was devised to maintain the following three behavioral properties.

• Similarly to HMNR, each process attaches the state information related to other
processes, as well as to itself, to every outgoing message so that the number of extra
checkpoints decreases as much as possible.

• Even if either of the two cases where a process should perform a forced checkpointing
before delivery of a message in HMNR occurs, S-CIC does not have the process
perform the task if it knows that the same message can be replayed in spite of any
future failures.

• Although pessimistic message logging is used to satisfy the second requirement, S-CIC
is not subject to the PWD model.

Initially, each process deterministically performs its computation in a certain interval
and, if a non-deterministic (ND) event occurs in this interval, the process begins its ND
execution interval. In this research field, ND events can be classified into two types of
events. The first type includes loggable ND events, of which there is sufficient support
for forcing the replay at the same point in case of failure. Message receipt is one type
of loggable ND event that most message-logging protocols detect and save in the stable
storage for recovery. Aside from this, there are other types of loggable ND events, such as
software interrupts or signals, which some other works [2] attempted to detect in order
to make it possible to replay them in case of failure. This effort may raise the rate of the
deterministic (DM) execution intervals. The second type comprises unloggable ND events,
for which there is no support for taking action to enable a form of repeatable execution in
case of failure.

To hold all of them in S-CIC, each process p should always have the following addi-
tional state information:

• SSNmVp: A vector that saves an element composed of two variables, ssn and ND,
for each process q. SSNmVp[q].ssn keeps the value of the ssn of the latest message
m that q has transmitted and is known by p. SSNmVp[q].ND is a boolean value that
indicates whether at least one internal unloggable ND event q has been executed
before m since q’s latest checkpoint. The two variables are initialized to (0,false).
As a message m is transmitted from p, SSNmVp[p].ssn increments by one and the
vector is attached to m. If p takes a local checkpoint, SSNmVp[p].ND comes back to
false. If a message m is transmitted to p, SSNmVp[q] is updated to m.SSNmV[q] if
m.SSNmV[q].ssn > SSNmVp[q].ssn.

• ND-modep: A boolean variable for detecting whether it there is at least one internal
unloggable ND event that any process including p has executed since its latest check-
point. It is initialized to false and, when a message m is transmitted, it is attached to
m. As p performs the receipt of a message or takes a checkpoint, ND-modep comes
back to false if ND-modep = true and ∀q(1≤q≤n): SSNmVp[q].ND = false.

• rsnp: A non-negative integer variable that has the same sequence number as that of
the most recent message that p has received.

First, we aimed to understand how to identify the recoverable state of each process
with checkpointing and message logging without assuming the use of the PWD model.



Electronics 2021, 10, 1428 7 of 16

For this purpose, an execution mode detection method was introduced in order to consider
three typical cases that can occur in CIC, as shown in Figure 2. As shown in Figure 2a,
the first case is that a process performs its computation without any communication with
others. In this example, a process p first executes with its internal DM or loggable ND
events in a certain interval from its checkpointed state Cki

p(SSNmVp[p].ND = false), which
is called the DM mode (ND-modep = false). Then, if any first internal unloggable ND
event occurs (SSNmVp[p].ND = true), p’s ND interval begins and changes its execution
mode to non-deterministic (ND-modep = true). When taking its next checkpoint Cki+1

p , p’s
state becomes recoverable (SSNmVp[p].ND = false); thus, its execution mode returns to
being deterministic (ND-modep = false). Then, it performs its computation in a similar way.
Therefore, in this case, if p fails at a certain execution point after Cki+1

p , it can restart from
the latest checkpoint and recover to the state right before any first unloggable ND event
after Cki+1

p without considering any dependency relation with others.

Figure 2. Three cases where the process execution mode changes.



Electronics 2021, 10, 1428 8 of 16

As shown in Figure 2b, the second case is that an execution of a process q that is
affected by messages transmitted from another single process. In this case, q first executes
in its DM mode from its checkpointed state Ckj

q(SSNmVq[q].ND = false,ND-modeq = false).
When receiving a message mx from p, whose current mode is ND (mx.SSNmV[p].ND =
true, mx.ND-mode = true), q’s execution mode also changes to ND (ND-modeq = true).
Then, q can execute with its internal unloggable ND events, although this is not shown
in this figure (SSNmVq[q].ND = true). However, even if q takes its local checkpoint Ckj+1

q
(SSNmVq[q].ND = false), its execution mode still remains ND because q does not know
that p’s current state is recoverable (SSNmVp[p].ND = false, ND-modep = false). When
receiving my from p, q can recognize that p’s current mode is DM due to the information
piggybacked on my(my.SSNmV[p].ND = false, my.ND-mode = false). Then, q’s mode
becomes DM(ND-modeq = false).

As shown in Figure 2c, the third case is that a process q fulfills its computation depend-
ing on messages received from more than one process, p and r, which execute with internal
unloggable ND events. In this case, q first executes in its DM mode from its checkpointed
state Ckj

q, and then in its ND mode with an unloggable ND event (SSNmVq[q].ND = true,
ND-modeq = true). Next, it receives two messages, mx and mz, from p and r, which are
currently both in ND mode (mz.SSNmV[r].ND = true,mz.ND-mode = true). When taking
its next checkpoint Ckj+1

q (SSNmVq[q].ND = false), it still executes in ND mode even if
the current modes of the two processes are both DM after their latest checkpoints. This
unawareness can be resolved after q has received my and mw(mw.SSNmV[r].ND = false,
mw.ND-mode = false).

Let us examine how, by using the mode detection method, S-CIC can have its number
of extra checkpoints lowered in the two types of NC Z-path patterns in comparison with
HMNR, as shown in Figure 3. An example of the first pattern of NC paths is illustrated
in Figure 3a, which violates the theorem in HMNR. Let the ssns of p, q, and r be α, β, and
γ for Cki

p, Ckj
q, and Ckk

r , respectively. When q sends m2 to r, its mode is DM(ND-modeq
= false) and its ssn is (β + 1)(SSNmVq[q] = (β + 1,false)). The two pieces of information
are piggybacked on m2. On receiving m2, r is in the DM mode (SSNmVr[r] = (γ,false),ND-
moder = false). Then, it increments its rsn, rsnr, and saves a log element whose form
is e (sender’s identifier, receiver’s identifier, ssn, rsn, data) in the stable storage—for
example, e (q, r, (β + 1), rsnr, m2.data) for m2. Afterwards, it updates its mode-detection-
related information as follows: ND-moder←m2.ND-mode∨ND-moder = false, SSNmVr =
{(0,false),(β + 1,false), (γ,false)}. After receiving m3, whose ssn is (γ + 1) from r, and logging
it, p’s mode remains DM, as r and p are both in DM mode (ND-modep←m3.ND-mode∨ND-
modep = false), and its ssn vector SSNmVp is updated to {(α,false), (β + 1,false),(γ + 1,false)}.
When q receives m1 from p and it is logged, it is in ND mode (SSNmVq[q]=(β + 1,true),ND-
modeq = true), and CHMNR becomes true, as sent_toq[r], m.greater[r], and m.lc > lcq are all
true. However, q does not need to take any forced checkpoints (m1.ND-mode∧CHMNR =
false) because it knows p’s state, including the fact that sending m1 is recoverable (m1.ND-
mode = false); thus, m1 can always be regenerated even if p crashes. When taking its next
checkpoint Ckj+1

q , q’s mode changes to DM and its vector SSNmVq is updated to {(α +
1,false),(β + 1,false),(γ + 1,false)}. Therefore, in this example, p’s recoverable state until
sending m1 after Cki

p, Ckj+1
q , and Ckk+1

r comprises a globally consistent state.
Figure 3b illustrates an example of the second pattern of NC paths that violate

the theorem in HMNR. After r receives m2 from q, whose mode is DM (m2.ND-mode
= false,m2.SSNmV = {(0,false),(β + 1, false),(0,false)}), and logging it, its mode is ND(
m2.ND-mode ∨ ND-moder = true) because of its internal unloggable ND event (SSNmVr[r]
=(γ,true), ND-moder = true). However, when taking a checkpoint Ckk+1

r (SSNmVr[r]=
(γ,false)), r’s mode changes to DM; thus, m3 can always be replayed (m3.ND-mode = false).
On m3’s receipt and logging, p keeps its DM mode and updates its variables as follows: ND-
modep ← m3.ND-mode ∨ ND-modep = false, and SSNmVp = {(α,false),(β + 1,false),(γ + 1,
false)}. When q receives m1 from p and logs it, CHMNR becomes true, as m1.ckpt[q]=ckptq[q]



Electronics 2021, 10, 1428 9 of 16

and m1.taken[q] are all true. However, q does not need to take any forced checkpoints
(m1.ND-mode ∧ CHMNR = false) because r and p can deterministically reproduce and send
m3 and m1 in order, respectively, even in case of p’s failure (m1.ND-mode = false). Therefore,
Ckj+1

q , which is taken after delivering m1(ND-modeq = false, SSNmVq[q]=(β + 1,false)), is
consistent with the states of the others right after sending m1 and m3.

Figure 3. How S-CIC avoids forced checkpointing, unlike HMNR.

Figure 4 presents the concrete algorithmic description of S-CIC.



Electronics 2021, 10, 1428 10 of 16

Module INITIALIZE()
lcp ← 0; rsnp ← 0; ND-modep ← false;
takenp[p]← false; greaterp[p]← false;
∀r(1≤r≤n): ckptp[r]← 0; SSNmVp[r].ssn← 0;

SSNmVp[r].mode← false;
// Take the first checkpoint of p. //

invoke Module Local-Checkpointing();
return; // The end of this module. //

Module TRANSMIT-MSG(receiver,data)
if(send_top[receiver] = false) then send_top[receiver]← true;
increment SSNmVp[p].ssn by one;
send m(lcp,ND-modep,SSNmVp,greaterp,ckptp,takenp,data) to receiver;
return; // The end of this module. //

Module RECV-MSG(m(lc,ND-mode,SSNmV,greater, ckpt,taken,data)) FROM s
if(m.SSNmV[s].ssn > SSNmVp[s].ssn) then

// Update mode information of the other processes. //
for all r(1≤r≤n) st r 6= p do

if(m.SSNmV[r].ssn > SSNmVp[r].ssn) then
SSNmVp[r].ssn← m.SSNmV[r].ssn;
SSNmVp[r].mode← m.SSNmV[r].mode;

// Check if the state of s on sending m is recoverable. //
if(ND-modep = true ∧ m.ND-mode = false) then

if(∀r(1≤r≤n,r 6=p): SSNmVp[r].mode = false) then
ND-modep ← false;

// Check if p has to perform a forced checkpointing before delivering m. //
CHMNR ← (∃r(1≤r≤n): send_top[r] ∧ m.greater[r]

∧ (m.lc > lcp)) ∨ ((ckptp[p] = m.ckpt[p]) ∧ m.taken[p]);
FCTaken← m.ND-mode ∧ CHMNR;
ND-modep ← ND-modep ∨ m.ND-mode;
if(FCTaken = true) then

invoke Module Local-Checkpointing();
increment rsnp by one ;
save a log element e(s,p,m.SSNmV[s].ssn,rsnp, m.data)

on the stable storage;
have m.data delivered to the destination application;

// Update its local timestamp and Z-cycle detection variables. //
if(m.lc > lcp) then

greaterp[p]← false; lcp ← m.lc;
∀r(1≤r≤n, r 6= p): greaterp[r]← m.greater[r];

else if(m.lc = lcp) then
∀r(1≤r≤n): greaterp[r]← greaterp[r] ∧ m.greater[r];

for all r(1≤r≤n) st r 6= p do
if(m.ckpt[r] > ckptp[r]) then

ckptp[r]← m.ckpt[r]; takenp[r]← m.taken[r];
else if(m.ckpt[r] = ckptp[r]) then

takenp[r]← takenp[r] ∧ m.taken[r];
return; // The end of this module. //

Figure 4. Cont.



Electronics 2021, 10, 1428 11 of 16

Module EXEC-NDEVENT(event)
if(there is no support for forcing the replay of event

at the same point in case of failure) then
ND-modep ← true; SSNmVp[p].mode← true;

else
take action to enable a form of repeatable execution of event;

return; // The end of this module. //

Module LOCAL-CHECKPOINTING()
increment lcp and ckptp[p] by one respectively;
SSNmVp[p].mode← false;
∀r(1≤r≤n): send_top[r]← false;
∀r(1≤r≤n, r 6= p): takenp[r]← true; greaterp[r]← true;
if(ND-modep = true ∧ ∀r(1≤r≤n): SSNmVp[r].mode = false) then

ND-modep ← false;
take its local checkpoint with (lcp,rsnp,ND-modep, SSNmVp,ckptp);
return; // The end of this module. //

Figure 4. Modules of p for S-CIC.

Definition 1. Zrk+1
pi is an arbitrary Z-path from Cki

p to Ckk+1
r .

Definition 2. NC-Z-PATH(Zrk+1
pi ) is a variable-length non-causal sub-Z-path of Zrk+1

pi .

Lemma 1. If, in NC-Z-PATH(Zrk+1
pi ), Cki

p.lc ≮ Ckk+1
r , but p’s state immediately before sending

m to another process q(q 6= r) is recoverable, no forced checkpointing is required to ensure that no
useless local checkpoints exist.

Proof. The correctness of the theorem is proved through contradiction. Assume that when
m arrives at q, q has to perform a forced checkpoint action to enforce the safety condition,
as q recognizes Cki

p.lc ≮ Ckk+1
r . Afterwards, if p crashes, it can recover to hold up to

the state right after sending m. The state is always consistent with q’s state immediately
after receiving m. Thus, the forced checkpoint is not needed to preclude Ckk+1

r from
being useless.

Therefore, if Cki
p.lc ≮ Ckk+1

r , but p’s state immediately before sending m is recover-
able, the property of not having any useless checkpoints can be kept without q’s forced
checkpointing before delivering m. This contradicts the hypothesis.

Theorem 2. S-CIC ensures that no checkpoint is useless.

Proof. S-CIC includes a checkpoint-timestamping mechanism that uses Lamport’s logical
clock, as in HMNR. This feature ensures that any variable-length causal sub-Z-path in Zrk+1

pi
includes no Z-cycles. Therefore, we only have to prove that the protocol prevents NC-Z-
PATH(Zrk+1

pi ) from containing any Z-cycle formations. The proof goes on by induction on
its length, denoted by LENGTH(NC-Z-PATH(Zrk+1

pi )).
[Base case] In this case, Zrk+1

pi is an NC Z-path with two messages, m1 and m2, where Cki
p is

the latest checkpoint before transmitting m1 from p and Ckk+1
r is the most recent checkpoint

after m2 is received by r. Suppose that q takes a checkpoint Ckj
q, sends m2 to r, and then

receives m1 from p before its next checkpoint. At this point, two cases must be checked.
Case 1: m1.ND-mode = false.
q knows p’s state, including that sending m1 is recoverable. Based on Lemma 1, even if q
takes no forced checkpoints, Ckk+1

r is always useful.
Case 2: m1.ND-mode = true
If m1.lc ≤ m2.lc, Cki

p.lc ≤ m1.lc ≤ m2.lc < Ckk+1
r . Thus, Zrk+1

pi includes no Z-cycles. Other-
wise, two sub-cases must be checked.
Case 2.1: No causal sub-paths are generated from r to p or q between after r receives m2



Electronics 2021, 10, 1428 12 of 16

and before p sends m1 or q receives it.
In this case, before p sends m1 to q, greaterp[r] is true because p knows that lcp > lcr. When
q receives m1, it has to perform a forced checkpointing action before delivery of m1 because
C1 is satisfied.
Case 2.2: A causal sub-path, u, from r to p or q exists between after r received m2 and
before p sends m1 or q receives it.
At this point, two sub-cases must be checked.
Case 2.2.1: u occurs at r before Ckk+1

r .
If lcp ≤ u.lc, Cki

p.lc < Ckk+1
r .lc and Ckk+1

r never becomes a useless checkpoint, regardless
of whether u’s destination is p or q. If p receives u, it updates greaterp[r](=m1.greater[r]) as
false. If u goes to q, lcq is updated with u.lc and is greater than or equal to m1.lc. In both
cases, S-CIC can recognize that C1 is not satisfied, and q does not perform a forced check-
pointing action.
Otherwise, Cki

p.lc ≮ Ckk+1
r and Ckk+1

r may become useless in both cases. If p receives u,
this condition causes greaterp[r](=m1.greater[r]) to remain unchanged (true). In addition,
when m1 is transmitted to q, m1.lc > lcq, as u.lc ≥ lcq. If u goes to q, m1.greater[r] is true
and m1.lc > lcq. In both cases, S-CIC can recognize that C1 is satisfied and causes q to
perform a forced checkpointing action before delivering m.
Case 2.2.2: u occurs at r after Ckk+1

r .
On receiving m2, r can keep the value of the latest checkpoint index of q in ckptr[q]. As it
takes Ckk+1

r , takenr[q] is set to true. When r sends u, ckptr[q] and takenr[q] are eventually
brought to q by a directed path—either <u> or <u, m1>. In both cases, S-CIC can recognize
C2 is satisfied and causes q to perform a forced checkpointing action before the delivery of
the message received by q, as in HMNR.
[Induction hypothesis] It is assumed that the theorem is true for Zrk+1

pi if LENGTH(NC-Z-
PATH(Zrk+1

pi )) = l.
[Induction step] By the induction hypothesis, every checkpoint in NC-Z-PATH(Zrk+1

pi )
incurs no Z-cycle formations. Therefore, if a new non-causal path forms with NC-Z-
PATH(Zrk+1

pi ), mz (which is considered as one message in the induction hypothesis), and
the (l + 1)-th message ml+1 together, the theorem is true for Zrk+1

pi if LENGTH(NC-Z-
PATH(Zrk+1

pi )) = l + 1. The following case is similar to the base case that was mentioned earlier.
Through induction, our protocol ensures that no checkpoint becomes useless.

4. Performance Evaluation

Let us examine our extensive simulations to make a comparison of the performance
of the two protocols, LazyHMNR and S-CIC, with a discrete-event simulation language,
PARSEC [23]. LazyHMNR is one of the most recently developed versions of HMNR,
which is intended to decrease the high frequency of forced checkpointing [7]. S-CIC is
our improved version of LazyHMNR with the advantageous features mentioned in the
previous sections.

In this comparison, we precisely examine one important performance index, NOFC.
The index indicates the total number of forced checkpoints taken in each protocol. The sim-
ulated system is a cluster of N computers on a broadcast network. All processes running on
each computer begin and finish their individual execution together. As a process transmits
an application message, the message is destined to a single recipient at all times. The link
capacity and propagation delay of the simulated network are 100 Mbps and 1 ms, respec-
tively. Every process performs a basic local checkpointing task in a certain checkpoint
interval according to an exponential distribution with a mean CIbc = 5 min. In addition,
among N processes, one is selected at random and transfers a message in every timed
interval according to an exponential distribution with a mean of TIsend = 3 s. Furthermore,
to measure the communication pattern sensitivity of the two protocols, more complex
experiments were conducted by splitting applications into four groups: serial, circular,
hierarchical, and irregular [24].



Electronics 2021, 10, 1428 13 of 16

Figures 5–8 show the NOFC for both LazyHMNR and S-CIC with changes in the
numbers of processes—denoted by NOP—scaling from 6 to 12 when the percentage of
internal unloggable ND events in each process (UND) was 20%, 40%, 60%, and 80% for
the four different communication patterns, respectively. In these figures, UND never
changed the NOFC of LazyHMNR because, unlike S-CIC, LazyHMNR has no method for
skipping forced checkpointing actions if the state of the sender of each message right before
the receipt of the message is recoverable. As NOP increased, the ratio of the NOFC of
LazyHMNR to that of S-CIC increased for all four patterns according to the change in UND,
which ranged from 1.3 to 6.5. The main reason is that there was an increased possibility
of forming the two kinds of NC Z-path patterns and inducing forced checkpointing in
LazyHMNR when C1 or C2 was satisfied. In addition, the occurrence of fewer unloggable
ND events per process (i.e., decreasing UND) led to a significant decrease in the forced
checkpointing overhead of LazyHMNR due to the advantageous features of S-CIC. These
results indicate that S-CIC frequently skips actions to take forced checkpoints for each
process by checking the recoverability of the dependent states of other processes, unlike
LazyHMNR. In addition, the features have the effect of a large reduction in the number
of forced checkpoints, regardless of the communication patterns. However, the degree of
their effectiveness may fluctuate in the irregular pattern because its irregularity can cause
the formation of Z-cycles and can cause the first type of NC Z-path to differ in every run.
From the results, we can see that, with these features, S-CIC can alleviate the shortcomings
of the family of HMNR protocols, including LazyHMNR.

Figure 5. NOFC for the serial pattern.



Electronics 2021, 10, 1428 14 of 16

Figure 6. NOFC for the circular pattern.

Figure 7. NOFC for the hierarchical pattern.



Electronics 2021, 10, 1428 15 of 16

Figure 8. NOFC for the irregular pattern.

5. Conclusions

The proposed protocol, S-CIC, was developed in order to incorporate the following
advantageous features. First, though situations can occur in which HMNR or LazyHMNR
decides that, on receiving a message, a process has to perform forced checkpointing, S-CIC
does not cause the process to perform this action when it recognizes that the state of its
sender right before the receipt of the message is recoverable, leading to large reduction in
the number of forced checkpoints compared with the family of HMNR protocols. Therefore,
S-CIC is also not required to assume the PWD model, despite being combined with message
logging. This goal can be realized by piggybacking the sender’s recoverability status and a
vector containing the last send sequence number and unloggable event occurrence status
of every process onto each sent message. Our simulation results verified that the protocol
outperforms the representative optimized protocol, LazyHMNR, with respect to the forced
checkpointing frequency, regardless of the communication pattern used.

Funding: This research was funded by Kyonggi University, grant number 2018-033.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, J.A., upon reasonable request.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Nakamura, J.; Kim, Y.; Katayama, Y.; Masuzawa, T. A cooperative partial snapshot algorithm for checkpoint-rollback recovery of

large-scale and dynamic distributed systems and experimental evaluations. arXiv 2021, arXiv:2103.15285v1.
2. Lion, R.; Thibault, S. From tasks graphs to asynchronous distributed checkpointing with local restart. In Proceedings of the

IEEE/ACM 10th Workshop on Fault Tolerance for HPC at eXtreme Scale, Atlanta, GA, USA, 11 November 2020; pp. 31–40.



Electronics 2021, 10, 1428 16 of 16

3. Estahbanati, M.G.; Schintke, F. Multilevel checkpoint/restart for large computational jobs on distributed computing resources. In
Proceedings of the 38th Symposium on Reliable Distributed Systems (SRDS), Lyon, France, 1–4 October 2019; pp. 143–152.

4. Mansouri, H.; Pathan, A. Checkpointing distributed computing systems: An optimisation approach. Int. J. High Perform. Comput.
Appl. 2019, 15, 202–209.

5. Elnozahy, E.; Alvisi, L.; Wang, Y.; Johnson, D. A survey of rollback-recovery protocols in message-passing systems. ACM Comput
Surv. 2002, 34, 375–408. [CrossRef]

6. Vargas-Santiago, M.; Morales-Rosales, L.; Monroy, R.; Pomares-Hernandez, S.; Drira, K. Autonomic web services based on
different adaptive quasi-asynchronous checkpointing techniques. Appl. Sci. 2020, 10, 2495. [CrossRef]

7. Garcia, I.C.; Vieira, G.M.D.; Buzato, L.E. A rollback in the history of communication-induced checkpointing. arXiv 2019,
arXiv:1702.06167v2.

8. Helary, J.-M.; Mostefaoui, A.; Netzer, R.H.B.; Raynal, M. Communication-based prevention of useless checkpoints in distributed
computations. Distrib. Comput. 2000, 13, 29–43. [CrossRef]

9. Luo, Y.; Manivannan, D. FINE: A Fully Informed aNd Efficient communication-induced checkpointing protocol for distributed
systems. J. Parallel Distrib. Comput. 2009, 69, 153–167. [CrossRef]

10. Luo, Y.; Manivannan, D. Theoretical and experimental evaluation of communication-induced checkpointing protocols in FE and
FLazy−E. Perform. Eval. 2011, 68, 429–445. [CrossRef]

11. Simón, A.; Hernandez, S.; Cruz, J.; Halima, R.; Kacem, H. Self-healing in autonomic distributed systems based on delayed
communication-induced checkpointing. Int. J. Auton. Adapt. Comm. Syst. 2016, 9, 183–200. [CrossRef]

12. Tsai, J. Applying the fully-informed checkpointing protocol to the lazy indexing strategy. J. Inf. Sci. Eng. 2007, 23, 1611–1621.
13. Vieira, G.M.; Garcia, I.C.; Buzato, L.E. Systematic analysis of index-based checkpointing algorithms using simulation. In

Proceedings of the IX Brazilian Symposium on Fault-Tolerant Computing, Florianapolis, Brazil, 5–7 March 2001; pp. 31–42.
14. Ahn, J. Efficient communication induced checkpointing protocol for broadcast network-based distributed systems. Parallel Process.

Lett. 2019, 29, 1–12. [CrossRef]
15. Mansouri, H.; Pathan, A.S.K. A communication-induced checkpointing algorithm for consistent-transaction in distributed

database systems. In Proceedings of the International Symposium on Security in Computing and Communication, Chennai,
India, 14–17 October 2020; pp. 21–32.

16. Aung, T.; Min, Y.H.; Maw, A.H. Enhancement of fault tolerance in Kafka pipeline architecture. In Proceedings of the 11th
International Conference on Advances in Information Technology, Bangkok, Thailand, 1–3 July 2020; pp. 1–8.

17. Ahn, J. Scalable sender-based message logging protocol with little communication overhead for distributed systems. Parallel
Process. Lett. 2019, 29, 1–10. [CrossRef]

18. Meyer, H.; Rexachs, D.; Luque, E. Hybrid message pessimistic logging. improving current pessimistic message logging protocols.
J Parallel. Distrib. Comput. 2017, 104, 206–222. [CrossRef]

19. Schlichting, R.D.; Schneider, F.B. Fail-stop processors: An approach to designing fault-tolerant distributed computing systems.
ACM Trans. Comput. Syst. 1985, 1, 222–238. [CrossRef]

20. Lamport, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 1978, 21, 558–565. [CrossRef]
21. Chandy, K.M.; Lamport, L. Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst.

1985, 3, 63–75. [CrossRef]
22. Netzer, R.H.B.; Xu, J. Necessary and sufficient conditions for consistent global snapshots. IEEE Trans. Parallel Distrib. Syst. 1995, 6,

165–169. [CrossRef]
23. Bagrodia, R.; Meyer, R.; Takai, M.; Chen, Y.; Zeng, X.; Martin, J.; Song, H.Y. Parsec: A parallel simulation environments for

complex systems. Comput J. 1998, 31, 77–85. [CrossRef]
24. Andrews, G.R. Paradigms for process interaction in distributed programs. ACM Comput. Surv. 1991, 23, 49–90. [CrossRef]

http://doi.org/10.1145/568522.568525
http://dx.doi.org/10.3390/app10072495
http://dx.doi.org/10.1007/s004460050003
http://dx.doi.org/10.1016/j.jpdc.2008.07.012
http://dx.doi.org/10.1016/j.peva.2011.01.005
http://dx.doi.org/10.1504/IJAACS.2016.079621
http://dx.doi.org/10.1142/S012962641950004X
http://dx.doi.org/10.1142/S0129626419500051
http://dx.doi.org/10.1016/j.jpdc.2017.02.003
http://dx.doi.org/10.1145/357369.357371
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1109/71.342127
http://dx.doi.org/10.1109/2.722293
http://dx.doi.org/10.1145/103162.103164

	Introduction
	Background
	Fundamentals
	Related Work

	The Proposed Protocol
	Performance Evaluation
	Conclusions
	References

