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Abstract: Data are important and ever growing in data-intensive scientific environments. Such
research data growth requires data storage systems that play pivotal roles in data management and
analysis for scientific discoveries. Redundant Array of Independent Disks (RAID), a well-known
storage technology combining multiple disks into a single large logical volume, has been widely
used for the purpose of data redundancy and performance improvement. However, this requires
RAID-capable hardware or software to build up a RAID-enabled disk array. In addition, it is difficult
to scale up the RAID-based storage. In order to mitigate such a problem, many distributed file
systems have been developed and are being actively used in various environments, especially in
data-intensive computing facilities, where a tremendous amount of data have to be handled. In this
study, we investigated and benchmarked various distributed file systems, such as Ceph, GlusterFS,
Lustre and EOS for data-intensive environments. In our experiment, we configured the distributed
file systems under a Reliable Array of Independent Nodes (RAIN) structure and a Filesystem in
Userspace (FUSE) environment. Our results identify the characteristics of each file system that affect
the read and write performance depending on the features of data, which have to be considered in
data-intensive computing environments.

Keywords: data-intensive computing; distributed file system; RAIN; FUSE; Ceph; EOS; GlusterFS;
Lustre

1. Introduction

As the amount of computing data increases, the importance of data storage is emerging.
Research from IDC and Seagate predicted that the size of the global data sphere was only
a few ZB in 2010, but it would increase to 175 ZB by 2025 [1]. CERN, one of the largest
physics research groups in the world, produces 125 petabytes of data per year from LHC
experiments [2]. Due to the tremendous amount of experimental data produced, data
storage is one of key factors in scientific computing. In such a computing environment,
the capacity and stability of storage systems are important because the speed of data
generation is high, and it is almost impossible to reproduce the data. Although there are
many approaches to handling such big data, RAID has been commonly used to store large
amounts of data because of its reliability and safety. However, RAID requires specific
hardware and software to configure or modify storage systems. Moreover, it is difficult
to expand with additional storage capacity if it is predefined. In addition, rebuilding a
RAID is likely to affect the stability of the RAID system, which may result in total data
loss. To overcome these drawbacks, many distributed file systems have been developed
and deployed at many computing facilities for data-intensive research institutes. The
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distributed file system provides horizontal scalability compared to RAID, which uses
vertical scalability. Additionally, some distributed file systems provide geo-replication,
allowing data to be geographically replicated throughout the sites. Due to these features,
distributed file systems provide more redundancy than RAID storage systems. Distributed
file systems are widely deployed at many data-intensive computing facilities. EOS, one
of the distributed file systems, was developed by CERN in 2010. It is currently deployed
for storing approximately 340 petabytes, consisting of 6 billion files [3]. Many national
laboratories and supercomputing centers, like Oak Ridge National Laboratory, use Lustre
for their storage for high-performance computing [4]. In this study, we deployed and
evaluated numerous distributed file systems using a small cluster with inexpensive server
hardware and analyzed the performance characteristics for each file system. We configured
a RAID 6-like RAIN data storing system and distributed data storing systems and measured
the performance of file systems by accessing data using a FUSE client rather than using
vendor-specific APIs and benchmarking tools. Our approach can allow us to distinguish
the main performance differences of distributed file systems in userspace which are directly
affecting user experiences. Our experimental results show that the performance impacts
depend on the scientific data analysis scenarios. Therefore, it is expected that the outcomes
of our research can provide valuable insights which can help scientists when deploying
distributed file systems in their data-intensive computing environments, considering the
characteristics of their data.

The rest of this paper is organized as follows: In Section 2, we describe which technolo-
gies and distributed file systems were used for our evaluation. In Section 3, we describe
previous studies relevant to our research. In Section 4, we describe our evaluation environ-
ment and configuration of hardware and software which were used for our evaluation. In
Sections 5 and 6, we cover the results of our evaluation. Finally, Section 7 describes our
conclusions about the results and future plans.

2. Backgrounds
In this section, we discuss the background knowledge related to our work, such as RAIN.

2.1. RAIN

Reliable Array of Independent Nodes (RAIN) is a collaboration project from the
Caltech Parallel and Distributed Computing Group and Jet Propulsion Laboratory from
NASA [5]. The purpose of this project was to create a reliable parallel computing cluster
using commodity hardware and storage with multiple network connections. RAIN im-
plements redundancy using multiple computing nodes and storage nodes which consist
of heterogeneous clusters. RAIN features scalability, dynamic reconfiguration and high
availability. RAIN can handle failures using four main techniques, described below:

¢ Implement multiple network interfaces at nodes.

*  Single point of failure prevention using network monitoring.

¢ Cluster monitoring using grouping.

e  Storage node redundancy using error-correcting code such as RAID.

2.2. FUSE

Filesystem in Userspace (FUSE) [6] is an interface library that passes a file system to
a Linux kernel from the userspace program included in most Linux distributions. Imple-
menting a file system directly through the Linux kernel is very difficult, but using the FUSE
library allows a file system to be configured without manipulating the kernel directly. FUSE
provides high-level and low-level API, and supports various platforms like Linux, BSD
and MacOS. Due to these characteristics, hundreds of file systems have been implemented
using the FUSE library [7].
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2.3. Ceph

Ceph [8] is an open-source distributed file system developed by the University of
California and maintained by the Ceph Foundation. This file system provides object,
block and file storage in a unified system. In addition, it uses the Reliable Autonomous
Distributed Object Store (RADOS) to provide reliable and high-performance storage that
can scale up from petabyte to exabyte capacity. RADOS consists of a monitor (MON),
manager (MGR), object storage daemon (OSD) and metadata server (MDS). MON maintains
a master copy of the cluster map, which contains the topology of the cluster. MGR runs
with MON, which provides an additional monitoring interface for external monitoring and
management systems. OSD interacts with logical disk and handles data read, write and
replicate operations on actual physical disk drives. MDS provides metadata to CephFS for
serving file services. Ceph stores data using the Controlled Replication Under Scalable
Hashing (CRUSH) algorithm, which can place and locate data using the hash algorithm [9].
Figure 1 shows the structure of Ceph.

‘ CLIENT
RADOS RADOS
GATEWAY BLOCK DEVICE
Ceph FS
‘ LIBRADOS ‘
RADOS CLUSTER
’ MGR#1 H MGR#2 H MGR#3 H MGR#4 ‘
‘ MON#1 H MON#2 H MON#3 H MON#4 ‘
’ MDS#1 H MDS#2 H MDS#3 H MDS#4 ‘ MDS#n
’ 0SD#1 H 0SD#2 H 0SD#3 H 0SD#4 ‘

Figure 1. Structure of Ceph.

2.4. EOS

EOS [10] is an open-source disk-based distributed storage developed by CERN. It
is used to store LHC experiment data and user data at CERN. EOS natively supports
the XRootD protocol, but also supports various other protocols, such as HITTP, WebDAYV,
GridFTP and FUSE. EOS consists of three components: MGM, FST and MQ. Figure 2 shows
the structure of EOS. MGM is a management server that manages the namespace, file
system quota and file placement and location. FST is a file storage server that stores data
and metadata. MQ is a message queue that provides asynchronous messaging between
MGM and FST. EOS uses the “layout” to store data [11]. The layout determines how data
can be stored on the file system. Some layouts can support duplication or erasure coding
which can prevent data loss and accidents. The layouts are shown in Table 1.
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Figure 2. Structure of EOS.
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Table 1. EOS layouts [11].

Name Redundancy Algorithm

plain None Stores data on one file system

replica N Create N replicas and stores on N file systems
raid5 N+1 Single parity RAID
raiddp 442 Dual parity RAID

raid6 N+2 Erasure code (Jerasure Library)
archive N+3 Erasure code (Jerasure Library)

qrain N+4 Erasure code (Jerasure Library)

2.5. GlusterFS

GlusterFS is an open-source distributed file system that is developed and supported
by RedHat [12]. This file system binds multiple server disk resources into a single global
namespace using the network. GlusterFS can be scaled up to several petabytes and can be
used with commodity hardware to create storage. GlusterFS provides replication, quotas,
geo-replication, snapshots and bit rot detection. Unlike other distributed file systems,
GlusterFS has no central management node or metadata node. GlusterFS can be accessed
not only with the GlusterFS native client, but can also be accessed with various protocols,
such as a network file system (NFS), service message block (SMB) and common interest file
system (CIFS). Figure 3 shows the architecture of GlusterFS.

‘ CLIENT ‘

‘ NFS, CIFS, FUSE ‘

GLUSTER FS VOLUME

SERVER#0 SERVER#2 SERVER#3 SERVER#n
[ etusterrp || [ GLusTERRD |

GLUSTERRD |

GLUSTERRD |

BRICK#0 BRICK#0 BRICK#0 BRICK#0

[ osk# | [ ok ]

oisk#1 |

oisk#1 |

[ ok | [ osk#2 ]

Disk#2 |

Disk#2 |

[ oskn ] I

Diskén |

Diskin |

Figure 3. Structure of GlusterFS.

GlusterFS stores data in a place called a volume that consists of multiple bricks, which
can be a single disk or a just a bunch of disks (JBOD) enclosure [13]. The volume supports
different types of stored data, and some types of volume support duplication or erasure
coding. Table 2 shows the types of volume used in GlusterFS.

Table 2. GlusterFS volumes.

Name Redundancy Algorithm
Distributed None Stores data on one file system
Replicated N Create N replicas and stores on N bricks
Distributed Replicated N*Count Distributed across replicated sets of volumes
Dispersed N+K Erasure coding with K redundancy
2.6. Lustre

Lustre is an open-source distributed file system designed for high-performance com-
puting [4]. Lustre started from Carnegie Mellon University’s project and it is currently
used in many high-performance computing clusters. It uses distributed object storage ar-
chitecture [14], which consists of a management server, metadata server and object storage
server. The management server (MGS) manages all Lustre servers and clients. In addition,
it stores the server configuration. The metadata server (MDS) stores metadata information.
Multiple metadata servers can be deployed to scale up metadata storage and provide more
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redundancy. The object storage server (OSS) provides the storage for data. It uses striping
to maximize performance and storage capacity. Figure 4 shows the architecture of Lustre.

0SS#0 OST#n
DISK#1

DISK#2

CLIENT

0SS#1 DISK#n

0SS#n O0ST#n
[vesro | [veser | [woswo | [woser | [_ossm _f—f ==

DISK#2

MGT MDS

Figure 4. Structure of Lustre.

3. Related Work

There are several studies which have been conducted to evaluate the performance of
distributed file systems.

Diana et al. [15] implemented Ceph using commodity servers to provide multi-use,
highly available and performance-efficient file storage for a variety of applications, from
shared home directories to the scratch directories of high-performance computing. They
evaluated scalability for Ceph by increasing the object storage server, number of clients and
object size to understand which factors affect file system performance. They benchmarked
Ceph using rados bench and RADOS block device with fio. In their experiment, cluster
network performance was measured using netcat and iperf while the individual data disk
performance was measured using osd tell to make a baseline for file system performance.

Zhang et al. [16] virtually deployed a Ceph cluster in an OpenStack environment to
evaluate the performance of Ceph deployed in the virtual environment. They benchmarked
the cluster’s network performance using netcat and iperf. They used rados bench and
RADOS block device with bonnie++ to measure the performance.

Kumar [17] configured GlusterFS in a software-defined network (SDN) environment
with six remote servers and analyzed how GlusterFS performs in large-scale scientific ap-
plications. Through the environment, they evaluated GlusterFS and network performance.
With the evaluation result, they proposed which kind of quality of service (QoS) policy has
to provide for certain users for servicing GlusterFS in federated cloud environments.

Luca et al. [18] presented different distributed file systems used in modern cloud
services, including HDFS, Ceph, GlusterFS and XtremeFS. They focused on writing perfor-
mance, fault tolerance and re-balancing ability for each file system. They also evaluated
deployment time for each distributed file system.

In addition, several benchmark tools designed to evaluate distributed file systems have
also been introduced. Xin Li et al. [19] developed the LZpack benchmark for distributed
file systems that can test metadata and file I/O performance and evaluated file system
performance using Lustre and NFS.

Jaemyoun Lee et al. [20] proposed a large-scale object storage benchmark based on
the Yahoo! Cloud Serving Benchmark (YCSB) [21]. They developed a YCSB client for Ceph
RADOS, which can communicate between Ceph and YCSB to evaluate the performance of
Ceph storage using the YCSB.

Although there are many methods to evaluate the distributed file system performance,
two approaches are mainly used when evaluating the performance of file systems. The first
is using the file system’s own tool, for example, rados bench of Ceph [22] and TestDFSIO of
Hadoop [23]. The second is mounting the file system using the FUSE client and benchmark
using various tools such as dd [24], bonnie++ [25], iozone [26] and fio [27]. The first
method can verify performance under specific file systems, but the other file systems
cannot use the file system’s API or tools to find performance differences using file system-
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specific or biased tools. However, if we use FUSE clients from each file system, we can
mount the file systems in same Linux userspace and verify performance using the same
tools with the same parameters. Therefore, it is possible to evaluate the distributed file
systems with the same conditions, resulting in fair performance comparisons, which can
give valuable insights to scientists when adapting distributed file systems in their data-
intensive computing environments.

We can find various studies [15-17] which have measured the performance of file sys-
tems using various tools. Other papers [19,20] also describe their own tools to benchmark
the file system. However, it is not easy to find research papers describing FUSE clients to
evaluate the performance of distributed file systems.

In this study, we evaluated the storage performance using FUSE clients provided by
each distributed file system with the FIO benchmark. We selected this method because
using FUSE clients can evaluate file systems with identical parameters, which is important
for a fair comparison among file systems.

4. The Experimental Setup

In this section, we describe the environment setup for our experiment and the way we
evaluated the performance for each file system.

4.1. Hardware

To benchmark the distributed file system, we configured a small cluster environment
for simulating a small distributed system. Our testing cluster environment had four servers
for deploying and testing the distributed file system. We configured the master server to
act as a management node to test the file systems. We also set up three slave servers to
act as storage for the distributed file systems. The detailed specifications for all servers
are listed in Table 3. All slave servers were configured identically to minimize variables
during the evaluation. For OS, we installed CentOS 7.8.2003 Minimal on all servers. Then
we separated the boot disk and data disk of all servers to prevent interference between OS
and storage for the distributed file systems.

Table 3. Server specification.

Master Server Slave Server
Chassis HP ProLiant ML350 G9 HP ProLiant ML350 G6
CPU E5-2609v3 1.90 GHz E5606 2.13 GHz
RAM 40 GB 4GB
Disk 120 GB SSD (Boot) 500 GB HDD (Boot)
2 *1 TB HDD (Data) 2*1 TB HDD (Data)
Network 3 Gbit (1 Gbit * 3) 1 Gbit

4.2. Network

Figure 5 shows the overall network configuration for our cluster. We used network
bonding using nmtui to bond three 1 Gbit network interfaces to create a single 3 Gbit logical
interface in the master server. In this way, we could minimize the bottleneck between the
three slave servers.

Slave servers were configured with a single 1 Gbit network interface and connected
to the same router as the master server. To evaluate the network configuration, iperf
benchmark was performed simultaneously between slave servers and the master server.
Table 4 shows the iperf results from our cluster.
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Figure 5. Cluster network configuration.

Table 4. iperf benchmark between slave servers and master server.

Bandwidth Slavel Slave2 Slave3
Mbit/s 910 914 913

The bandwidth result of each slave server was about 910 Mbit/s due to the router’s
internal hardware traffic limit, summed up as 2730 Mbit/s.

4.3. Distributed File System

We set up each distributed file system on the cluster as we described in the “Hardware”
subsection. After evaluating each distributed file system, we re-initialized all the boot and
data disks in order to prevent the next evaluation from being affected by an unflushed
cache and data from the previous test. Therefore, all experiments were conducted under
the same conditions. All file systems were mounted on the system via provided FUSE
clients to evaluate the performance.

7

4.3.1. Environment 1: Ceph

We installed Ceph Mimic 13.2.10 on all servers. MGR and MON services were installed
on the master server to manage and monitor the Ceph cluster. The data disks of slave
servers were initialized with a default Bluestore storage backend to configure Ceph storage.
We configured CephFS with metadata and data pools and mounted it on the master server
using FUSE clients. Figure 6 shows our configured environment for Ceph, where MON
and MGR services are configured and running on the master server, and 6 OSD services
are configured on slave servers.

~1# ceph -s

1d: ffead4fa-6226-47e8-9024-8bedblad6das
health: HEALTH_OK

services:
mon: 1 daemons, quorum master
mgr: master.dclablactive)
osd: 6 osds: 6 up, 6 1n

data:

Figure 6. Ceph cluster status.

4.3.2. Environment 2: EOS

We installed EOS 4.7.5 on all servers. On the master server, MGM and MQ services
were installed to manage metadata and asynchronous messaging between MGM and FST.
The data disks of slave servers were initialized to the XFS file system and mounted on
the system. From the master server, we registered data disks from slave servers to create
default space for EOS storage. The created default space was mounted on the master using
FUSE clients. Figure 7 shows our environment status on the EOS console. The console
shows registered data disks and servers for EOS storage.
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Figure 7. EOS console.

4.3.3. Environment 3: GlusterFS

GlusterFS 7.6 was installed on all servers. Data disks on slave servers were initialized
to the XFS file system and mounted on the system as a brick. We created a GlusterFS
volume with initialized disks and the volume was mounted with the FUSE client on the
master server. Figure 8 shows our GlusterFS volume status with registered data disks.

~1# gluster volume status
glusterfs
TCP Port RDMA Port Online Pid

here are no a

Figure 8. Gluster volume status.

4.3.4. Environment 4: Lustre

Lustre 2.13.0 and a Lustre-specific kernel was installed on all servers. For managing
the Lustre cluster, management target (MGT) and metadata target (MDT) services were
configured on the master server. The data disks of slave servers were initialized to object
storage target (OST). Finally, all disks were mounted on the system to start the Lustre file
system. The configured Lustre file system was mounted on the master server. Figure 9
shows our configured Lustre cluster where configured MDT and OST data disks are
initialized and registered on the Lustre file system.

[root@master ~1# 1fs df -h
Available Use% Mounted on
)TEO00_UUID il
9661 _UUID
2_UUID

G
G
G
G

L G 870.26
0ST0806_UUID 916.8G o7 .26

filesystem summary: . 1% /root/lustre

Figure 9. Lustre status.

4.4. File System Layouts

In order to benchmark the performance of the distributed file systems as mentioned
above, the layout of the file systems was required. We used two different file system
layouts—*“distributed layout” and “RAID 6-like RAIN layout”—to evaluate the perfor-
mance and characteristics.

4.4.1. Distributed Layout

The distributed layout stored data linearly across the entire disk array. It can be seen
that it was very efficient because all disk space could be utilized as storage. However, there
was no data redundancy, so there was a potential for critical data loss from disk failures. We
tested the distributed layout on all distributed file systems. Table 5 describes the options
we used in each file system.
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Table 5. Distributed layout.

Distributed File System Options
Ceph OSD Pool Size =1
EOS Plain
GlusterFS Distributed Layout
Lustre Stripe =1

4.4.2. RAID 6-like RAIN Layout

Like RAID 6, the RAIN layout used in this evaluation enabled erasure coding to
calculate additional parity data for data redundancy. It could endure two disk failures.
However, if there are more than two disk failures, the entire storage may fail because it
cannot calculate the original data from storage clusters. We tested the RAIN layout on all
distributed file systems except Lustre. Although Lustre’s development roadmap has a plan
for erasure-coded pools [28], they were not officially supported when we designed our
benchmark. Table 6 describes the options we used in each file system.

Table 6. RAID 6-like RAIN Layout.

Distributed File System Options
Ceph erasure-code-profile, k =4, m =2
EOS RAID 6, stripe = 6
GlusterFS Dispersed Volume, k=4, m =2

4.5. Evaluation Software and Methods

We used fio 3.7 [27] to measure and evaluate the performance. We automated the
benchmark using Linux shell scripts. Each evaluation with the fio benchmark ran for 180 s
using the libaio I/O engine. We set the block size to 4 K, 128 K and 1024 K, respectively.
The benchmark was done with different I/O patterns for each block size. There were
four I/O patterns in our experiment: sequential write, sequential read, random read and
random write. In addition, tests were conducted by increasing the number of threads for
each experimental scenario to 1, 2, 4 and 8 in order to simulate the increasing workload.
Table 7 shows the options we used with fio.

Table 7. fio options.

Options Parameters
Block Size 4K,128K, 1024 K
Job Size 1GB
Number of Threads 1,2,4,8
IODepth 32
Evaluated I/O Pattern Sequential Read, Sequential Write

Random Read, Random Write

5. Results

In this section, we discuss the evaluation results from our experiments. The measured
results are described by dividing them into layouts, and in the case of the RAID 6-like
RAIN layout, the benchmark results of three distributed file systems excluding Luster are
shown as graphs because Luster does not support the corresponding layout.

5.1. Distributed Layout
5.1.1. Sequential Read Throughput

Figure 10 shows the result of the sequential read benchmark. Ceph showed relatively
high throughput across all block sizes. However, the 4 K and 128 K block results showed
a decrease in throughput after four threads. At the 1024 K block, there was no decrease
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in throughput due to increasing threads, but the increase in performance with increasing
threads was minimal. EOS increases throughput without deteriorating as the number
of threads increases at all block sizes. Unlike the other file systems, GlusterFS shows
similar performance between one and two threads at all block sizes. For more than two
threads, throughput was found to increase like any other file system. Lustre’s performance
was enhanced in a similar way to EOS. The 4 K and 128 K block evaluations showed
low performance compared to the other distributed file systems. However, at a 1024 K
block with eight threads, Luster showed the highest performance compared to the other
file systems.

80

20

Distributed Layout 4K Block Sequential Read 300 Distributed Layout 128K Block Sequential Read Distributed Layout 1024K Block Sequential Read
300
250
250
200
200
d 2
@150 3
= =150
100
100
50 50
1 8 ° 1 2 4 8 0 1 2 4 8
Threads Threads Threads
mEN EOS W GlusterFS W= Ceph Lustre

Figure 10. Distributed layout—sequential read result.

5.1.2. Sequential Write Throughput

Figure 11 shows the result of the sequential write benchmark. Block size has a
significant impact on performance in Ceph. The result showed very low throughput
compared to the other file systems, except for Lustre at a 4 K block. However, it could
be seen that performance was increased compared to the other file systems as the block
size increased. EOS showed high throughput with every block size and thread number
relative to the other file systems. At a 4 K block, performance increases as the number
of threads grows. As shown in the 128 K block results, we can see that if more than one
thread is used, the throughput is not increased but saturated. At a 1024 K block, there is
stagnation of increased throughput, but overall performance is increased as the number of
threads increases. In the case of GlusterFS, the result showed a huge throughput decrease
when eight threads were used. As in Ceph, block size has a significant impact on overall
performance in Lustre. However, Lustre’s performance was relatively poor compared to
the other file systems.

Distributed Layout 4K Block Sequential Write Distributed Layout 128K Block Sequential Write Distributed Layout 1024K Block Sequential Write

Threads

200 250

150 200

0
2150
=

MB/s

100
100

8 1 2 4 8 1 2 4 8
Threads Threads

s EOS s GlusterFs W Ceph Lustre
Figure 11. Distributed layout—sequential write result.

5.1.3. Random Read Throughput

Figure 12 shows the result of the random read benchmark. Ceph showed very high
single-thread performance in the 4 K block benchmark, but performance decreased signifi-
cantly when increasing the number of threads. The results of the 128 K and 1024 K blocks
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N

0o

were very similar and showed higher throughput than the other file systems. However,
it should be noted that the increase in threads had a marginal effect on the increase in
throughput. In the 4 K block benchmark, the throughput of EOS increases, but decreases
when the number of threads is 8, resulting in lower throughput than single-threaded
performance. As shown in the 128 K block results, the increase in throughput from two
threads or more was insignificant. The result of the 1024 K block shows that throughput
increases approximately 70 MB/s as the thread number increases. In the case of GlusterFS,
the results showed poor throughput performance compared to the other file systems at
a 4 K block. In other block sizes, the throughput increases as the number of threads is
increased. At this point, we can see that the performance pattern is very similar to the
sequential read graph shown in Figure 10. Luster showed increased throughput when
increasing the block size and the number of threads.

Distributed Layout 4K Block Random Read Distributed Layout 128K Block Random Read Distributed Layout 1024K Block Random Read

Threads
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Figure 12. Distributed layout—random read result.

5.1.4. Random Write Throughput

Figure 13 shows the result of the random write benchmark. Ceph showed a perfor-
mance increase when the block size and number of threads were increased, similarly to the
sequential write result. EOS has high throughput performance in all block sizes compared
to the other file systems. At a 4 K block, the result showed a performance decrease at two
threads, but high throughput was found with all the other thread options. The 128 K block
showed the opposite result to the 4 K block result. At a 1024 K block, we could see that
throughput increased, but it was limited at two threads and a fluctuating performance was
seen with eight threads. GlusterFS showed similar performance characteristics compared
to Ceph, but eight threads caused performance to dramatically decrease, as in sequential
write. Luster showed lower throughput performance, as in sequential write, compared to
the other file systems, but we saw increases in throughput as block size and number of
threads increased.
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Figure 13. Distributed layout—random write result.
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5.2. RAID 6(4+2)-Like RAIN Layout
5.2.1. Sequential Read Throughput

Figure 14 shows the result of the sequential read benchmark. Ceph’s throughput
gradually increased from 4 K and 128 K blocks. The throughput increased slightly at the
1024 K block benchmark, but the overall performance stagnated below 200 MB/s on all
threads. The EOS 4 K block results showed that throughput increased proportionally to the
number of threads and high throughput performance over four threads compared to the
other file systems. The 128 K and 1024 K block results showed that throughput performance
gradually increased according to the number of threads. In addition, compared to the
other file systems, EOS showed higher throughput when EOS used more than four threads.
GlusterFS showed similar performance characteristics over all tested blocks. Regardless of
the size of blocks, GlusterFS showed the highest performance when using two threads. At
a 4 K block, GlusterFS performed more poorly than the other file systems. However, the
128 K and 1024 K block results showed the same throughput performance, outperforming
the other file systems.

RAID 6 Layout 4K Block Sequential Read RAID 6 Layout 128K Block Sequential Read RAID 6 Layout 1024K Block Sequential Read
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Figure 14. RAID 6-like layout—sequential read result.

5.2.2. Sequential Write Throughput

Figure 15 shows the result of the sequential write benchmark. Ceph showed the lowest
throughput performance at the 4 K block. We found that increasing the block size had
a significant impact on Ceph’s throughput. At a 128 K block, a maximum throughput
of 24 MB/s and, at a 1024 K block, a throughput of 62 MB/s, were found. In the case of
EQS, the result showed a better performance relative to the other file systems. The 4 K
block results showed a gradual increase in throughput, but eight threads caused a decrease
in throughput compared to four threads. The 128 K and 1024 K blocks resulted in lower
single-threaded performance than GlusterFS, but higher performance was found compared
to GlusterFS as the number of threads increased. GlusterFS showed low throughput
performance in the 4 K block benchmark. As block size increases, GlusterFS shows more
improved performance than the previous block size, and 128 K and 1024 K block single-
threaded results shows a higher performance than any other file systems. However,
GlusterFS showed a dramatic decrease in throughput, unlike the other file systems, with a
thread size increase.

5.2.3. Random Read Throughput

Figure 16 shows the result of the random read benchmark. Ceph and GlusterFS
showed a decrease in throughput with increased threads. GlusterFS showed slightly higher
throughput at 4 K and 128 K blocks, while Ceph showed the highest performance at a
1024 K block. In the case of EOS, the overall processing performance also increased as
the number of threads increased, but EOS showed a lower performance than the other
file systems.
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Figure 16. RAID 6-like layout—random read result.

5.2.4. Random Write Throughput

Figure 17 shows the result of the random write benchmark. Ceph showed enhanced
throughput as the block size increased, but the throughput difference was marginal across
threads. At 4 K and 128 K blocks, Ceph shows the lowest performance compared to the
other file systems, but 1024 K block result shows a much improved performance compared
to the smaller block size results. EOS showed the highest throughput at all block sizes
compared to the other file systems. The 4 K block result showed a throughput increase
with an increasing number of threads. However, the amount of increased throughput
declined as the number of threads increased. The 128 K block result showed constant
throughput performance throughout all thread numbers. The 1024 K block result showed
irregular throughput performance, but the overall performance improved as the number
of threads increased. Like Ceph, GlusterFS showed poor performance compared to EOS,
and throughput was improved as the block size increased. However, unlike the other file
systems, the result of the GlusterFS 1024 K block reveals decreased performance with an
increased number of threads.
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Figure 17. RAID 6-like layout—random write result.
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6. Discussion

In this section, we discuss our evaluation results.

6.1. Distributed vs. RAIN

Table 8 describes differences between the distributed and RAID 6 RAIN layout. The
distributed layout provides fast and full utilization of configured storage space. It can be
used to store large amounts of data. Additionally, the distributed layout is faster than a
RAID 6 layout, because it does not perform parity calculations to store data. Therefore, a
single disk failure can lead to unrecoverable data loss.

Table 8. Comparison between distributed and RAIN layout.

Distributed RAIN (RAID 6)
Additional Parity Calculation X O
Data Redundancy X O
Storage Throughput Speed Fast Slow
Total Disk Capacity Utilization Full Partial

While the RAID 6 layout provides low disk utilization due to parity data compared to
the distributed layout, parity data provide data redundancy when part of the storage fails.
Additional parity data can recover the failed storage, ensuring data are intact. In addition,
the RAID 6 layout has lower throughput than the distributed layout as a result of parity
calculations, which can be seen in our results.

6.2. Distributed Layout

Sequential and random read benchmarks showed that Ceph’s throughput perfor-
mance was higher than the other file systems in all evaluations. EOS and GlusterFS showed
lower performance below four threads, but throughput performance was similar with an
increasing number of threads. Lustre showed improved performance with increased block
sizes and number of threads, and showed the highest performance when a 1024 K block
and eight threads were used.

For writing performance, EOS had higher writing performance than the other file
systems. GlusterFS also showed high sequential writing performance, but evaluation with
eight threads showed a sharp performance drop. In the case of Ceph, writing throughput
performance was significantly improved with increased block size. Lustre had similar
performance characteristics to Ceph, but writing throughput was much lower than the
other file systems.

6.3. RAID 6 RAIN Layout

Unlike the distributed layout, the sequential read performance of GlusterFS was
relatively higher than the other file systems, except for a 4 K block. EOS at a 4 K block
showed great performance compared to the other file systems when more than four threads
were used. Both EOS and Ceph showed similar performance at a 128 K block, but Ceph
did not show throughput differences with threads at a 1024 K block.

Random read performance showed that GlusterFS and Ceph had similar performance,
but the 1024 K block result showed that Ceph had higher performance than GlusterFS. EOS
showed improved throughput performance with increased block size, like Ceph, while
throughput was lower than the other file systems.

Both writing benchmark results showed that EOS has great throughput performance.
GlusterFS also showed high throughput performance at 128 K and 1024 K blocks and a
single thread, but performance sharply dropped with increasing numbers of threads. Ceph
showed poor performance with a 4 K block, but throughput performance was significantly
improved with increased block size.
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7. Conclusions and Future Work

As data are ever growing and considered important in scientific data computing, it is
important to deploy a proper file systems in such a data-intensive computing environment.
When adopting a distributed file system, there are many characteristics which we have
to take into account. One of the important characteristics is the I/O patterns shown in
data that should be analyzed in such a scientific computing environment. In addition, the
reliability results of storage for storing scientific data from the experiment may be more
important if the experiments cannot reproduce the results again. Considering such features
of data, configuring storage systems has to be carried out.

In this study, we analyzed some well-known distributed file systems in use today
and configured a small distributed file system cluster based on commodity hardware
and storage disks. Using FUSE clients provided with file systems, we could measure the
throughput performance in equivalent conditions with different workloads. Although our
experimental cluster environment was very small compared to modern storage solutions,
our experimental results identified the characteristics of I/O performance of distributed
file systems. In our experiments, it was possible to indicate which file system performed
well with different I/O patterns. In addition, we showed that the difference in throughput
performance varies with how data is stored in the storage cluster.

Our results and discussion show that a layout has to be chosen depending on how
important the data are. In this paper, we discussed two layouts: distributed and RAIN. The
distributed layout can use all disk capacities, but does not provide parity calculations, with
which disk failure leads to data loss, while RAIN cannot fully utilize the disk capacity, but
parity calculations provide an additional layer of protection. With our results, we expect
that researchers could select appropriate distributed file systems and layouts according
to the importance of data and 1/O patterns of research data. We are planning to evaluate
the distributed file systems in an improved environment as future work. We will test
distributed file systems with detailed parameters, including mixed I/O, metadata operation
and latency.
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