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Abstract: Pneumonia has caused significant deaths worldwide, and it is a challenging task to detect
many lung diseases such as like atelectasis, cardiomegaly, lung cancer, etc., often due to limited
professional radiologists in hospital settings. In this paper, we develop a straightforward VGG-
based model architecture with fewer layers. In addition, to tackle the inadequate contrast of chest
X-ray images, which brings about ambiguous diagnosis, the Dynamic Histogram Enhancement
technique is used to pre-process the images. The parameters of our model are reduced by 97.51%
compared to VGG-16, 85.86% compared to Res-50, 83.94% compared to Xception, 51.92% compared
to DenseNet121, but increased MobileNet by 4%. However, the proposed model’s performance
(accuracy: 96.068%, AUC: 0.99107 with a 95% confidence interval of [0.984, 0.996], precision: 94.408%,
recall: 90.823%, F1 score: 92.851%) is superior to the models mentioned above (VGG-16: accuracy,
94.359%, AUC: 0.98928; Res-50: accuracy, 92.821%, AUC, 0.98780; Xception: accuracy, 96.068%,
AUC, 0.99623; DenseNet121: accuracy, 87.350%, AUC, 0.99347; MobileNet: accuracy, 95.473%, AUC,
0.99531). The original Pneumonia Classification Dataset in Kaggle is split into three sub-sets, training,
validation and test sets randomly at ratios of 70%, 10% and 20%. The model’s performance in
pneumonia detection shows that the proposed VGG-based model could effectively classify normal
and abnormal X-rays in practice, hence reducing the burden of radiologists.

Keywords: X-ray images; pneumonia detection; convolutional network; image enhance

1. Introduction

Pneumonia is a lung parenchyma inflammation often caused by pathogenic microor-
ganisms, factors of physical and chemical, immunologic injury and other pharmaceuticals.
There are several popular pneumonia classification methods: (1) pneumonia is classified as
infectious and non-infectious based on different pathogeneses in which infectious pneumo-
nia is then classified to bacteria, virus, mycoplasmas, chlamydial pneumonia, and others,
while non-infectious pneumonia is classified as immune-associated pneumonia, aspiration
pneumonia caused by physical and chemical factors, and radiation pneumonia. (2) Pneu-
monia is classified as CAP (community-acquired pneumonia), HAP (hospital-acquired
pneumonia) and VAP (ventilator-associated pneumonia) based on different infections,
among which CAP accounts for a larger part. Because of the different range of pathogens,
HAP is easier to develop resistance to various antibiotics, making treatment more difficult.

Pneumonia kills more than 800,000 children under five per year, with around 2200 deaths
every day. There are more than 1400 children infected with pneumonia per 100,000 chil-
dren [1]. The Global Burden of Disease Study reported that lower respiratory tract infec-
tions, including pneumonia, were the second largest cause of death in 2013. In Europe,
nearly 35% of patients in hospital are infected with pneumococcal disease and worldwide,
the percentage is 27.3% [2]. In India, the latest report of John Hopkins Bloomberg School of
Public Health has said that India suffers the most pneumonia deaths and in 2015, there were
about 2.97 lakh pneumonia and diarrhea deaths in children aged less than five years old.
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In addition, in 2015 worldwide, pneumonia was the top killer of children under five years
old [3]. Moreover, the death rate of pneumonia is highly related to age, and the prevalence
of pneumonia increases dramatically with age, especially in people older than 65 [4]. The
large number of child deaths by pneumonia alarms scientists worldwide to propose more
effective and acute methods to detect pneumonia. With technology developing, more
and more measures are developed, in which radiology-based methods are most popular
and useful. Diagnostic radiological techniques for pulmonary disease include chest X-ray
imaging, computed tomography (CT), and magnetic resonance imaging (MRI), among
which chest X-ray imaging is most effective and economical as it is more available and
portable in hospital and has lower exposures of dose radioactivity for patients.

However, even for very professional and experienced doctors, the diagnosis of pneu-
monia through X-ray images is still a tremendous task because X-ray images have similar
region information for different diseases, such as lung cancer. Therefore, it is very time-
consuming and energy-consuming to diagnose pneumonia through traditional methods
and impossible to diagnose whether a patient suffers pneumonia through a standardized
process. Hence, in this study, we propose a Convolutional Neural Network to diagnose
pneumonia through X-ray images automatically and obtain results of accuracy 96.07% and
Area Under Curve (AUC) 0.9911.

The rest of this paper is organized as follows. Section 2 describes related literature
reviews of medical image processing methods. Section 3 describes a brief process of Convo-
lutional Neural Networks (CNN) architecture in recent several years. Section 3 illustrated
a summary of background of this machine learning and deep learning. Section 4 primarily
illustrates the data utilized in this study, our proposed methods, and training procedure.
Section 5 provides the experiments and results. Section 6 describes the conclusion of
this study.

2. Related Work

Several methods have been introduced to describe a brief process in pneumonia
detection using chest X-ray images in recent years, especially some deep learning methods.
Deep Learning has been successfully applied to improve the performance of computer-
aided diagnosis technology (CAD), especially in the field of medical imaging [5], image
segmentation [6,7] and image reconstruction [8,9]. In 2017, Rajpurkar et al. [10] proposed a
classical deep learning network named DenseNet-121 [11], which was a 121-layer CNN
model to accelerate the diagnosis for pneumonia. In contrast to experienced doctors,
the framework obtained a higher F1 score. Besides, in order to alleviate the effect of
imbalanced classes, the team introduced Weighted Binary Cross-Entropy loss, whose
difference between the Binary Cross Entropy loss was the different weights of imbalanced
classes according to the number of each class.

However, the proposed loss did account for the different training difficulty levels of
classes. In order to solve the problem of poor generalization ability caused by over-fitting
and the problem of spatial sparseness caused by ordinary convolution operation, residual
connection network [12] and dilated convolution [13] were used by Liang et al. [14] in
the backbone network model. The final recall rate and F1 score of their model reached
96.7% and 92.7%, respectively. The CNN model proposed by Jain et al. [15] combined
with transfer learning that effectively used the image features learned in large dataset,
sped up the training procedure of the model and made it more difficult to fall into local
minimum points. In addition, two models were proposed to train. Moreover, the dataset
used by Jain et al. was from the world-famous organization and competition site named
Kaggle, which contains numerous competitions and attracts passionate competitors to
achieve a higher rank. The dataset is split into three subsets: the training subset to train the
model, the validation subset to adjust parameters of model, and the test subset to verify
the generalization ability of model.
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Verma et al. [16] adopted several data pre-processing procedures and data augmen-
tation methods, like a random rotation of images and a random translation of the image
in horizontal and vertical, which enlarged the dataset and enhanced the representation
ability of their CNN model. Finally, their model obtained an extremely outstanding ac-
curacy. Ayan et al. [17] adopted transfer learning and fine-tuning to train two classical
CNN models, Xception-Net and VGG16-Net, to classify images containing pneumonia.
The authors [18] proposed four efficient CNN models, which were two pre-trained models,
ResNet152V2 and MobileNetV2, a CNN architecture, and a Long Short-Term Memory
(LSTM) network. In addition, they compared different parameters trained by each model.
Their four models achieved results of more than 91% in accuracy, recall, F1-score, precision,
and AUC.

As shown in Figure 1, invalid areas in chest X-ray images make little difference to
experienced radiologists or to any proposed model and would decrease classification
accuracy. In order to relieve the effect of invalid areas, attention-based models were widely
adopted. Li et al. [19] proposed an improved Squeeze-and-Excitation Network (SENet)
architecture to locate the pneumonia area in images. Guo et al. [20] developed a model
that adaptively assigned one attention score for each dense connected layer and proposed
an abnormal-aware attention module to make the network weight the learned low-level
features into high-level features according to the importance of features. Furthermore, they
introduced a novel angular contrastive loss to reduce the loss of intra-class and enlarge the
loss of inter-class. Their method achieved 89.41% accuracy in WCE images.
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Figure 1. Examples from the dataset. (a) normal cases, (b) pneumonia cases.

In order to make a summary about the task of pneumonia classification, Baltruschat
et al. [21] compared the classification accuracy of currently widespread CNN models in
pneumonia X-ray images by using the same hyper-parameter settings and same image pre-
processing procedures. The method by Nahid et al. [22] proposed a novel CNN architecture
which composed of two channels. The first channel processed the images, whose contrast
was enhanced by the CLAHE method, while the second channel processed the images
whose edges were enhanced by the Canny method. Then, these images were entered into a
multichannel CNN model to detect if patients suffered from pneumonia. Researchers [23]
developed a weak supervision approach to release a diagnosis burden of radiologists.
They evaluated the model performance in a dataset of 30,000 chest X-ray images which
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were collected by the Radiological Society of North America (RSNA). In addition, they
compared the region of interest (ROI) predicted by their proposed architecture and the
ROI ground truth bounding boxes provided by RSNA. Finally, they proposed several
model architectures, Xception, ResNet-50, Inception and Ensemble (which meant that they
used a weighted mean of three models above). Their single best model was Inception net,
which obtained an accuracy of 0.782 and F1 score of 0.6411 on the binary classification in
detecting pneumonia.

Other references in fields processed by CNN, like medical image segmentation, med-
ical image reconstruction and so on, are also briefly described in this paper. The most
widely used models in medical image segmentation are U-Net [6] and V-Net [7], which
propose the idea of a fully connected neural network and stacked down-sampling layers
followed by up-sampling layers. In addition, the networks directly connect the layers
at the front to the layers behind to improve the ability of the model to extract features.
The architecture [6], named U-net, consists of some stacked down-sampling convolution
layers that adopt 3× 3 kernels followed by Rectified Linear unit (ReLU) and 2× 2 max
pooling operation to obtain hidden feature maps. After down-sampling layers, there are
several symmetric convolution layers the same as down-sampling layers to reconstruct
original images. Their model design outperformed prior works on the ISBI (International
Symposium on Biomedical Imaging) challenge and won the ISBI cell-tracking challenge
2015 by a large margin. Similarly, the model architecture [7] named V-net adapts stacked
convolution down-sampling and up-sampling layers, whose difference between U-net is
the bottom of model, in other words, like their names, U-net and V-net.

3. Background

In the past few decades, machine learning (ML) algorithms have gradually attracted
researchers’ attention. This type of algorithm could take full advantage of the giant
computing power of calculators in images processing through given algorithms or specified
steps. However, traditional ML methods in classification tasks need to manually design
algorithms or manually set feature extraction layers to classify images.

In response to the above situation, LeCun et al. [24] proposed a CNN method, which
could automatically extract features through continuously stacked feature layers and output
the possibility of which class the input images belonged to. The shallow networks mainly
focus on low-level features of the image. As the number of network layers increases, CNN
model gradually extracts high-level features. Combining and analyzing these advanced
features, CNN learns the differences between different images, and uses a back-propagation
algorithm to update and record the learned parameters.

The essence of CNN is to filter the previous image or feature maps through a spe-
cific convolution kernel to generate the feature map of the next layer, and combine with
operations such as pooling operations to reduce the feature map scale and reduce the
computation. Then, a nonlinear activation function is added to the generated feature
map to increase the characterization ability of the model. Common pooling operations
include maximum pooling and average pooling. Maximum pooling means that the feature
delivered into the pooling layer is split into a number of sub-regions and will output the
maximum of each sub-region according to the strides in horizontal and vertical. The only
difference between maximum pooling and average pooling is the output of the sub-region
where the average pooling outputs the average of each sub-region. Common activation
functions include ReLU (Rectified Linear Units) and Sigmoid.

For the classification task, through the continuous stacking of convolutional opera-
tions, pooling operations, nonlinear activation functions and other fully-connected layers,
the features of the image are automatically extracted. Then possibility of whether the
images processed by the model shows pneumonia is outputted by analyzing these ex-
tracted features. While making full use of inherent pixel-level information of the image,
the generalization ability of model is improved. In recent decades, with the extensive
development of deep learning, the most popular neural framework has been proposed,
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such as AlexNet [25] and VGGNet [26]. However, when the number of network layers
increases, the neural network will suffer from the problem of gradient disappearance or
gradient explosion and will become fixated on the specific features of the training image,
rather than learning more generative features, which makes the model’s generalization
ability poorer and causes over-fitting. In order to solve the problem of network depth,
a residual connection structure was proposed. Since then, deeper neural networks have
received extensive attention and development, and have become the cornerstone of many
tasks. In this study, we also evaluated the performance of residual connection if used in
our simplified CNN architecture with fewer layers.

4. Materials and Methods

In this study, we explored: (1) the performance between original and contrast-enhanced
images; (2) performance between different image resolutions; (3) performance between
different loss functions, MSE (mean-square-error), BCE (binary-cross-entropy), FL (focal-
loss) [27]. The comparison of trainable parameters in different models are listed in Table 1.

Table 1. Trainable Parameters.

Models Trainable Parameters

VGG16 134,263,489
Res-50 23,628,673

Xception 20,808,425
DenseNet121 6,948,609

Our model 3,341,121
MobileNet 3,207,425

4.1. Data

The proposed dataset used to evaluate model performance consists of total 5786 X-ray
images and is from the Kaggle competition. In addition, the dataset is organized into
three folders (train, test, val) and contains sub-folders for each image category (Pneumo-
nia/Normal). All chest X-ray images (anterior-posterior) were obtained from patients
aged one to five years old. In order to illustrate the generalization of different models, the
original dataset was randomly split into three folders, provided with train validation, and
tested by 70%, 10%, and 20%—as was done with the work by Baltruschat et al. [21].

All images were resized to a fixed shape, which in this study is a hyper-parameter
from Ω = {50, 100, 224, 300}. The training set includes a total of 4037 images, which were
divided into normal and pneumonia sub-sets; the normal set contained 1093 images while
the pneumonia set contained 2944 images. The validation set included a total of 579 images,
which were divided into normal and pneumonia sub-sets; the normal set contained 157
images while the pneumonia set contained 422 images. The test set included a total of 1170
images; the normal set and the pneumonia set contain 316 and 854 images, respectively.
Several examples of normal and pneumonia images are listed in Figure 1.

Chest X-ray images always have the characteristics of limited contrast on account
of low-exposure dose to patients, for the reason that chest X-ray images always contain
black, white, and gray components. The lungs are located on both sides of the chest cavity
and the area of the lungs could be easily missed by X-rays, which are almost black. The
heart, located in the middle of the lungs, is shown as almost white since the X-rays cannot
completely pass through the heart. Bones are made of protein and they are too dense,
so the X-rays cannot cross through them and bones are shown almost white as well. In
addition, bones have clear edges.
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Other tissues like the trachea and arteries are always visually unclear. The unclear
information in chest X-ray images will cause an ambiguous diagnosis, not only to radiol-
ogists, but also to the CNN models. Therefore, in this study, the contrast of the original
images would be enhanced and a comparison of the performance of enhanced images
between non-enhanced images is illustrated.

4.2. Methods
4.2.1. Data Pre-Processing

Image pre-processing is a very common and beneficial technique in the deep learning
process and it not only could enlarge the quantity of the original dataset but also enrich
the information implicit in the dataset. As previously mentioned, we utilized an effective
image enhancement method named Dynamic Histogram Equalization (DHE) to improve
the quality of images before they were inputted into the CNN model.

Histogram Equalization (HE), which denotes mapping from the initial narrow pixel
levels to a wider extent and improves image enhancement, has been widely used in image
processing. The HE technique means to convert the gray levels of an image by using
cumulative effort function globally, yet always brings about the problem that elaboration
information in images is damaged, leading to awful image quality. This popular image
contrast enhancement method could enhance image contrast effectively in many aspects,
like MRI, X-rays, CT and so on.

Scientists [28] aiming to classify brain MRI images accurately proposed a novel en-
hancement method called Average Intensity Replacement-Adaptive Histogram Equaliza-
tion (AIR-AHE). The proposed model consisted of several existing methods to improve
enhancement performance, such as contrast enhancement, window-sliding neighborhood
operation and so on. Their experiments demonstrated the proposed combined enhance-
ment methods could obtain better results compared to the traditional HE method. Another
MRI brain image enhancement method [29] proposed a novel framework named parti-
cle swarm optimized texture-based histogram equalization (PSOTHE), which combs the
multi-objective fitness function to obtain better enhancement performance in brain MRI
images. In their study, different objective functions consisting of edge information, entropy,
contrast, and the PSRN of the image had the same weight to enhance the images.

In this study, we follow Wadud et al. [30], using their adaptive DHE in order to
pre-process pneumonia chest X-ray images before inputting them into the proposed CNN
model. The DHE technique eliminates the possibility of the low histogram components
being compressed, which may cause the information of the image to wash out. Moreover,
DHE is free from any severe side effects such as checkerboard effect, over-enhancing
noises, etc.

Figure 2 provides several examples between the original and enhanced images.
Figure 2a represents examples from original data set, while Figure 2b represents examples
from the enhanced data set. As shown, the upper images always contain gray and vague
areas while lower images display almost white and black areas, showing that the enhance-
ment technique plays a significant role in image contrast. In this study, the information
implicit in original images, like bones, lung areas, and other tissues, is revealed by the
DHE technique.

Figure 3 displays the histograms of original and enhanced images. The upper row
depicts histograms of several original images, while the lower row depicts histograms of
corresponding enhanced images by the DHE technique. As shown, the scopes of image
pixel levels are extended, which means the contrast of images is enhanced effectively.
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Figure 3. Histogram comparison between original and enhanced images. Ori means original images
and EH means images enhanced by DHE. As shown, the scopes of image pixel levels are extended,
which means the contrast of images is enhanced effectively.

Other techniques used throughout this paper are tabulated in Table 2. In our experi-
ment, the image size was fixed to SHAPE×SHAPE where SHAPE is a hyper-parameter,
and in this study, we explored the performance of different shapes and sizes, and the pixel
scale of image was resized to [0, 1] by dividing the maximum of image pixel. Subsequently,
the channel of images was set to [SHAPE, SHAPE, 1], as the information was already
improved by DHE and the image pixel was scaled to [0, 1]. That is, there was no need to
extend the shape of images to [SHAPE, SHAPE, 3] as used in other methods. In addition,
several data augmentation methods were applied to boost the robustness of the proposed
model. The rotation range denotes random image rotation during the training procedure
in the range [0, 30]. The zoom range was utilized to randomly rescale the image size by
0.2 percent. Horizontal and vertical flip was used to randomly flip the image horizontally.
Also, the width and height shift ranges are used to shift the image horizontally or vertically.
These operations could intensely mitigate the negative effect of different image angles,
different image heights, and different image widths.
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Table 2. Data pre-processing techniques used in this study.

Methods Setting

Resize 224× 224
Normalization [(0, 255)→ (0, 1)]
Rotation Range [0, 30]

Zoom Range 0.2
Weight_Shift_Range 0.1
Height_Shift_Range 0.1

Horizontal_Flip True
Vertical_Flip True

Also, the performance of different loss functions, MSE and Focal Loss, is discussed in
the following section.

4.2.2. Proposed Network

In this study, we designed a VGG-based CNN model to extract the features of chest
X-ray images and use those features to detect if a patient suffers from pneumonia.

Let xi be the input or the i th hidden layer feature map, 1 ≤ i ≤ N, N represents all
layers of the model and in our architecture, set N = 6, meaning our model contains six
hidden layers. Ci(·), 1 ≤ i ≤ 4, represents convolution operation whose kernel size and
strides are 3× 3 and 1× 1, respectively. Wi, 1 ≤ i ≤ N, represents the weight matrix of the
ith layer; bi represents bias value of the ith layer;

ψi =

{
ReLU, 1 ≤ i ≤ 5,
Sigmoid, i = 6

(1)

where Sigmoid and ReLU are activation functions. Di(·), 2 ≤ i ≤ 5 represents the
drop operation, which aims to randomly set the value of hidden layers or neuron to zero
and improve the performance of model. Mi(·), 1 ≤ i ≤ 4 represents the max-pooling
operation, aiming to reduce the computation of the model and improve its robustness;
FCi(·), 5 ≤ i ≤ 6 represents the fully-connected operation. So the i + 1th output of
model is:

xi+1 = Mi(Di(ψi(Ci(Wixi + bi)))) (2)

The last layer outputs final decision y ∈ {0, 1}, indicating the absence or presence of
disease, respectively.

4.3. Training Process
4.3.1. Classification Evaluation Metrics

In this subsection, several evaluation metrics, accuracy, precision, recall, F1 score and
so on, are described. According to the outputs of model, four indices, True Positive, True
Negative, False Positive, False Negative, are used to analyze and identify the performance
of model. The True Positive means that the chest X-ray images, which suffer from pneumo-
nia, are signed as pneumonia as well by the model. The True Negative means if the chest
X-ray images do not show pneumonia as well as the model predicts.

The remaining matrices have a similar definition.
The four metrics are given as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(3)

precision =
TP

TP + FP
(4)
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recall =
TP

FP + FN
(5)

F1 = 2× precision
precision + recall

(6)

TP, TN, FP and FN mentioned by the above formulas are True Positive, True Negative,
False Positive, and False Negative, respectively. Among the four metrics, the precision rate
was always used to estimate how much the number of images that are truly pneumonia
accounted for in the total number examples, which are classified as positive for pneumonia.
That is, the pneumonia images must be identified in practical clinical diagnoses and hence,
the precision rate is especially important. In most cases, the higher the precision rate gets,
the lower the recall rate is. Thus, F1 score rate is widely considered as a proper criterion. In
addition, the Receiver Operating Characteristic (ROC) and AUC are calculated to compare
the performance of different models. The whole training procedure will be displayed in
this section. First, the hyper-parameters are fixed and shown in Table 3. In our architecture,
we optimize the model by Adam optimizer, an algorithm for stochastic optimization; the
learning rate and the learning rate decay per epoch were set to 0.001 and 0.0001. Then, the
hidden layer activation function and last classification activation function are set to ReLU
and Sigmoid, respectively.

Table 3. Hyper-parameters of model.

Parameters Value

Optimizer Adam
Learning Rate 0.001

Learning Rate Decay Per Epoch 0.0001
Batch Size 16

Hidden Layer Activation Function ReLU
Classification Activation Function Sigmoid

4.3.2. Proposed CNN Model

Figure 4 illustrates the architecture of our proposed model that has been applied for
the detection of whether the input image shows pneumonia. Figure 5 displays our model
that contains a total of six layers, where we employed 3× 3 kernel convolution layers
whose strides are 1× 1 and the activation function is ReLU. After each convolution layer,
a 2× 2 strides kernel operation was employed as a max-pooling operation to retain the
maximum of each sub-region, which is split according to strides. Besides, we set several
drop layers to randomly fit weights to zero, aiming to improve the model performance.
Then two densely fully-connected layers followed by Sigmoid function are utilized to take
full advantage of the features extracted through previous layers, outputting the possibility
of patients suffering from pneumonia or not. As illustrated above, the input channel is
224× 224× 1 and the output size is y ∈ {0, 1}, where 0 denotes that the image does not
show pneumonia, while 1 denotes that the image shows pneumonia.
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4.3.3. t-SNE Visualization

The t-SNE (t-distributed Stochastic Neighbor Embedding) visualization method is also
displayed in this paper. This method aims to visualize the distribution of high dimensions
and assists us in analyzing the connection among the samples.
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5. Experiments and Results
5.1. Experiments

Figure 6 shows the training and validation accuracy as well as the training and
validation loss obtained during the training procedure for 100 epochs with our proposed
model and 50 epochs with other model for the reason that the number of parameters of the
other model are times than ours. The training accuracy and validation accuracy all exceeded
95%, also the training loss and validation loss were below 0.025, which means that the
model we proposed has the potential power to acquire excellent performance. Furthermore,
the training accuracy and training loss shows an apparent decreasing tendency during
training. As a result, the best model was saved after training the last epoch. In our
experiments, the loss tendency shows an instability of oscillatory probably according to
the mini batch size limited by our GPU computation source.
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5.2. Results
5.2.1. Comparison of Different Models and Different Shapes

Table 4 illustrates a summary of performance of different models including our pro-
posed model with and without residual framework, VGG, ResNet50, MobileNet, Inception
and DenceNet121 with input shape 224 and loss function BCE. It can be seen that the
performance of models pre-processed by contrast enhancement technology exceeds origi-
nal non-enhancement models. In addition, the table shows that the best results accuracy
0.9607 and precision 0.9441 are obtained by our proposed model. Also, it can be seen that
model performance pre-processed by contrast enhancement technology obtained accuracy
above 0.94 except DenceNet121, which is 0.9342 and model performance with the original
non-enhancement models, obtained by the best accuracy of 0.953 by our proposed model,
inflecting the effect of enhancement methods in CNN models. Yet, the enhanced model
accuracy of VGG and Res is below the original non-enhanced models. This is possibly
caused by that the number of model parameters affects the performance of different models.
In other words, the model with fewer parameters is more likely affected by enhancement
methods; for example, our proposed model and MobileNet with fewer parameters all
show a trend that model results of enhanced methods exceed non-enhanced methods.
Another trend shown in Table 4 is that the best results, accuracy, precision, recall, F1 and
AUC, are all obtained by models pre-processed by enhanced methods. The best accuracy
and precision are obtained by our proposed model. The best recall rate is obtained by
DenseNet121, which is 1, and the best F1 and AUC scores are obtained by Inception and
DenseNet121, respectively.

Table 4. Summary of performance of different models with input shape 224 and loss function BCE.

Accuracy Precision Recall F1 Score AUC

Our model
original 0.9538 0.8764 0.9652 0.9187 0.9910

enhanced 0.9607 0.9441 0.9082 0.9258 0.9911

Our-model-Res
original 0.9453 0.8481 0.9715 0.9056 0.9877

enhanced 0.9598 0.8899 0.9715 0.9289 0.9917

VGG-16
original 0.9479 0.8512 0.9778 0.9102 0.993

enhanced 0.9436 0.8511 0.9589 0.9018 0.9893

ResNet50
original 0.9496 0.9132 0.8987 0.9059 0.9825

enhanced 0.9427 0.8374 0.9778 0.9022 0.9888

MobileNet
original 0.9453 0.8706 0.93670 0.9024 0.9839

enhanced 0.9547 0.8663 0.9842 0.9215 0.9953

Inceptionv3 original 0.9470 0.8567 0.9652 0.9077 0.9921
enhanced 0.9589 0.8895 0.9684 0.92723 0.9924

DenseNet121
original 0.9137 0.7694 0.9715 0.8587 0.9845

enhanced 0.9342 0.8041 1.0000 0.8914 0.9957
[14] original 0.9050 0.8910 0.9670 0.9270 0.9530

[15]-Model 1 Original 0.8526 0.7500 0.9400 0.8900 –
[15]-Model 2 Original 0.9231 0.8700 0.9800 0.9400 –

[32]-Architecture 1 Original 0.9359 – – – –
[32]-Architecture 2 Original 0.9263 – – – –
[32]-Architecture 3 Original 0.9231 – – – –
[32]-Architecture 4 Original 0.9054 – – – –
[32]-Architecture 5 Original 0.9022 – – – –

Table 5 illustrates a summary of model performance of different input shapes with
our proposed model and loss function BCE. The table also shows the trend that the model
performance pre-processed by enhanced methods exceeds non-enhanced methods. The
best model results are also obtained by enhanced models. The best accuracy and precision
are obtained by our proposed model with input shape 224. The best recall rate is obtained
by our model with shape 300 and the best F1 score and AUC are obtained by our model
with input shape 50. Also, the comparison between different loss functions is listed in
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Table 6, which showing the same trend as Table 4; Table 5, which inflects the effect of
contrast enhancement methods.

Table 5. Summary of performance of different input shapes with our proposed model and loss
function BCE.

Accuracy Precision Recall F1 Score AUC

50 × 50
original 0.9547 0.8997 0.9367 0.9178 0.9886

enhanced 0.9589 0.8851 0.9747 0.9277 0.9948

100 × 100
original 0.9325 0.8143 0.9715 0.8860 0.9903

enhanced 0.9529 0.8718 0.9684 0.9175 0.9926

224 × 224
original 0.9538 0.8764 0.9652 0.9187 0.9910

enhanced 0.9607 0.9441 0.9082 0.9258 0.9911

300 × 300
original 0.9291 0.8074 0.9684 0.8806 0.9875

enhanced 0.9556 0.8729 0.9778 0.9224 0.9888

Table 6. Summary of performance of different loss functions with our proposed model and input shape 224.

Accuracy Precision Recall F1 Score AUC

MSE
original 0.9564 0.8909 0.9557 0.9221 0.9872

enhanced 0.9556 0.8771 0.9715 0.9219 0.9929

BCE
original 0.9538 0.8764 0.9652 0.9187 0.9910

enhanced 0.9607 0.9441 0.9082 0.9258 0.9911

Focal loss

γ = 1

α = 0.65
original 0.9479 0.8653 0.9557 0.9083 0.9884

enhanced 0.9573 0.9236 0.9177 0.9206 0.9899

α = 0.75
original 0.9368 0.8253 0.9715 0.8924 0.9900

enhanced 0.9487 0.8657 0.9589 0.9099 0.9851

α = 0.85
original 0.9043 0.7488 0.9715 0.8457 0.9869

enhanced 0.9145 0.7621 0.9937 0.8626 0.9932

γ =2

α = 0.65
original 0.9393 0.8375 0.9620 0.8954 0.9903

enhanced 0.9573 0.8800 0.9747 0.9249 0.9929

α = 0.75
original 0.9308 0.9898 0.8167 0.9589 0.8821

enhanced 0.9538 0.8639 0.9842 0.9201 0.9936

α = 0.85
original 0.8974 0.7311 0.9810 0.8378 0.9879

enhanced 0.9179 0.7709 0.9905 0.8670 0.9908

γ =3

α = 0.65
original 0.9111 0.7636 0.9715 0.8551 0.9847

enhanced 0.9436 0.8397 0.9778 0.9035 0.9919

α = 0.75
original 0.9256 0.7989 0.9684 0.8755 0.9843

enhanced 0.9256 0.7913 0.9842 0.8773 0.9904

α = 0.85
original 0.9299 0.8095 0.9684 0.8818 0.9900

enhanced 0.9333 0.8099 0.9842 0.8886 0.9921

5.2.2. Confusion Matrix and ROC

The predicted probabilities of CNN models by stacked convolution layers combined
with pooling layers and ReLU activation or Sigmoid function were calculated by Re-
ceiver Operating Characteristic Curve (ROC curve), which is shown in Figure 7. It shows
that among the total of 316 pneumonia images, only 29 samples were misclassified and
17 samples from true normal images, which are 854, were predicted as pneumonia. A total
of 46 images among 1170 images from the test sub-set were classified incorrectly.

The difference in discriminative capacity between each individual risk score obtained
by each CNN model was evaluated by the DeLong test [31], where p < 0.05 was statistically
significant. In this paper, the diagnosis efficacy of ROC by our proposed model was higher
than other CNN models in test subsets and the difference was statistically significant
(p = 0.0061 < 0.05).
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5.2.3. Other Evaluations

The TP, TN, FP and FN were also calculated. Liang et al. [14] reported a classifica-
tion accuracy rate of 90.5%. The study described by Jain et al. [15] proposed two CNN
architectures, which obtained 85.26% and 92.31% accuracy rates, respectively. Although
the proposed Model 2 by Jain et al. [15] obtained a 98% recall rate, which means the
FN obtained is lower than our model, Model 2 obtained a higher FP, which is 42 com-
pared to our 29. Ayan et al. [17] used two well-known CNN networks, Xception-Net and
VGG16-Net, combined with transfer learning and fine-tuning to diagnose pneumonia.
Varalakshmi et al. [32] proposed five CNN model architectures to classify whether the
images suffer pneumonia or not.

These methods evaluated the model performance in the original test subset, which
contained 624 images. Other methods changed the original data set split to training, test and
validation subsets by a fixed ratio. For example, Nahid et al. [22] took a different approach
to split original samples into new sample sets by 70% and 30%, and finally obtained
excellent results. Stephen et al. [33] rearranged the entire data set into train and validation
sets only and obtained a validation accuracy of 93.73%. Rajpurkar et al. [10] presented
the biggest available X-ray image set named ChestX-ray8, which contains 112,120 frontal
chest X-ray images. Ma et al. [34] proposed a novel multi-attention CNN model for disease
diagnosis and location on the ChestX-ray8 dataset. Xu et al. [35] proposed a new model
named CXNet-m1, which was thinner and more powerful than fine-tuning, and obtained
outstanding results.

Figure 8 gives the t-SNE of the test set. First, there is no clear boundary of original non-
enhanced images between the normal and pneumonia subsets (PNE-Ori and NORMAL-Ori
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respectively in Figure 8), which would obscure the detection of human radiologists or other
automatic models. Second, enhanced by DHE, the distribution of normal and pneumonia
subsets (PNE-EH and NORMAL-EH respectively in Figure 8) is almost independent,
showing that the contrast-enhanced method provides effective results in medical images
classification tasks.
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6. Conclusions

This study describes a CNN-based model aiming to diagnose pneumonia on a chest
X-ray image set. The contributions in this paper are listed as follows. First, we utilized the
Dynamic Histogram Equalization (DHE) technique to enhance the image contrast. This
technique has the potential to enhance image contrast without washing out appearance
or causing problems like checkerboard effects. Then, we designed a simple VGG-based
CNN model to extract the features from original images or previous feature maps, which
contained only six layers combining ReLU activation function, drop operation, and max-
pooling layers. The results of the obtained accuracy rate of 96.07% and precision rate of
94.41%, shows that our proposed model performs well in comparison to state-of-the-art
CNN model architectures. To illustrate the performance of our proposed model, several
comparisons of different input shapes and loss functions were provided.

In the future, we will continue the research to explore more accurate classification
architectures to diagnose two types of pneumonia, viruses, and bacteria. According to the
description discussed above, the CNN-based model is a promising method to diagnose the
disease through X-rays.
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