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Abstract: This paper considers multiple target localization using a non-coherent bi-static radar with
multiple receivers, where the targets are located behind a wall. This paper presents a new clustering
algorithm inspired by Newtonian gravity that iteratively groups particles at target locations and
eliminates particles at non-target locations. We first propose a histogram based pre-processing
algorithm that imposes a grid over the region of interest and defines a particle with measurement-
dependent mass for each grid square. We then calculate a Newtonian inspired force on each of the
particles and move them in the direction of the force. We repeat the process until there is no further
movement. The proposed algorithm works even when some of the measurements are unavailable or
missing and when some of the measurements are false measurements. Location accuracy is shown to
be in the order of 8 cm.

Keywords: non-coherent radar; through-the-wall radar; localization; multiple targets; newtonian
gravity; gravity inspired algorithm

1. Introduction

Through-the-wall radar (TWR) has attracted considerable interest in recent years
because of its increasing applications in rescue and military operations [1–5]. There are two
different processing techniques in TWR systems, coherent processing, and non-coherent
processing. Most of the existing systems have employed coherent processing [6–11]; how-
ever, they require wide bandwidth and large aperture arrays [1,3]. They also need complex
transmitter or receiver designs, which are expensive and typically cumbersome and not
portable in emergencies. In contrast, non-coherent radar localization can be performed
with simple hardware and allows flexible distributed deployment scenarios [12–15]. Non-
coherent TWR uses the envelope of the received (reflected) signal, thus significantly relax-
ing the radar positioning and processing requirements and resulting in low-cost and low
hardware complexity [3].

In this paper, we consider using a non-coherent bi-static radar to estimate the locations
of multiple targets that are behind a wall. In the multiple target (N targets) scenario, the re-
ceiver lacks knowledge about which measurement is associated with which target. As such,
there is a measurement target association problem. We will consider a deployment scenario
with one transmitter and multiple receivers (R receivers), at geographically different loca-
tions outside the wall, and, therefore, there are up to N2(R

2) possible target-measurement
association combinations.

In the single target case there is no association ambiguity, and the localization is
typically done using the time taken, t, by the transmitted signal to reach the receivers, after
getting reflected from the target, and having travelled a distance (range) r. For a given
transmitter and receiver pair, there is a set of potential target locations that satisfy a given
range measurement. These locations form an ellipse. The task is to find where the actual
target lies on the ellipse. When there are two different transmitter-receiver pairs, the two
ellipses intersect at the target location. Estimating the target location using ellipses is called
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ellipse cross localization (ECL). When transmitting through a wall, the transmitted signal
takes a longer time to travel (through the wall) than in free space and the path is different,
due to the dielectric constant of the wall. For a given transmitter-receiver pair, the target no
longer lies on the same (free space) ellipse, however without knowing the exact dielectric
constant of the wall, the wall thickness, the distance to the wall, and the angle of incidence,
it is impossible to know where the actual ellipse is. Therefore, it is necessary to use the free
space ellipse and accept that the intersection points will not locate the target exactly.

In [4], an algorithm was proposed to estimate a single target location through a
wall using ECL with a particular characterization of the influence of the wall thickness
and its dielectric constant. In [5], an algorithm was proposed based on a hyperbola cross
localization (HCL) technique. However, both of these techniques required knowledge about
the distance of the wall from the transmitter and receiver pair and the wall parameters, such
as the wall thickness, material of the wall, etc., which are generally not available in real-time
applications. In [2], an Ellipse-Hyperbola-Localization approach was proposed based on
ECL and HCL. The approach composed of two steps, rotation cross localization approach
and determination of optimal range based on the statistical properties of the ECL and HCL
in different target scene regions. However, as with [4,5], it is also restricted to localizing
only a single target and cannot be directly extended to multiple target localization.

For multiple (N) targets it is necessary to solve both the noise displacement and
the measurement association problem together. At each receiver, there will be N range
measurements (assuming there are no lost measurements). As mentioned above, the
receivers have a target-measurement association ambiguity, and, therefore, there is an
associated target-ellipse association problem. When there are R receivers, there will be
up to N2(R

2) intersection points. Only N(R
2) of these correspond to the actual targets. The

first approach to solve the multi-target problem was proposed in [16] in the free space
scenario. However, it is a greedy algorithm and does not perform well in the through-the-
wall scenario. The algorithm often fails to select N target estimates in a through-the-wall
scenario. The complexity of the algorithm increases exponentially with the number of
receivers (number of measurements). In [17], an algorithm was proposed to find multiple
target locations by iteratively enforcing a set of constraints. It is limited by the fact that
the complexity of the algorithm increases exponentially with an increase in measurements,
and it also requires all the measurements to be available, i.e., no missing measurements.

An important practical limitation of all the ECL based approaches is that they require
the receivers to be co-linear. When the receivers are not co-linear, the resulting ellipses will
be rotated, and calculating the intersection points of two rotated ellipses is known to be a
hard problem due to the cosine terms in the second order polynomial. As the number of
receivers increases, the number of intersection points increases, giving the problem even
greater computational complexity. This co-linear limitation is problematic for practical
applications requiring accuracy in two dimensions, since the ellipse crossings are oblique
for targets at broadside, as well as those in the axis of the array, and are hence sensitive
to measurement errors. For practical applications with targets in two dimensions, a new
non-ECL based approach is needed.

Adding to the challenge is that, even if it were possible to calculate all the crossing
points for an ECL-based algorithm, it is then necessary to decide which points correspond
to real targets (i.e., where the crossing ellipses are both from the same target), and which
points have arisen from ellipses from two different targets. One approach would be to
apply a clustering algorithm, however, since there is no known model for the statistical
distribution of the locations of the ellipse intersection points in the multiple target scenario,
there is no existing clustering algorithm that is suitable. Existing clustering algorithms, such
as k-means, are based on the assumption that the data comes from a source with additive
noise. As most of the intersection points in our case do not belong to any source (such
as the intersection of two ellipses belonging to two different targets), existing clustering
algorithms fail to estimate the target location.
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In this paper, we propose a new multiple target location estimation algorithm con-
sisting of a new (non-ECL) pre-processing step which we call Ellipse-Histogram (EH)
pre-processing, coupled with a new clustering algorithm motivated by Newtonian gravity.

Our proposed EH pre-processing algorithm imposes a grid over the region of interest,
and places a virtual particle of zero mass at the centre of each grid square. We then map the
transmitter–receiver-pair ellipses onto the grid, by considering each ellipse, and increasing
(by one unit) the mass of the particles in each grid-square that the ellipse passes through.
Note that this operation is computationally much simpler than calculating the intersection
of two ellipses. At the end of this process, each grid-square will, therefore, contain a particle
with a mass equal to the number of ellipses that pass through the square. Any particles
that remain with zero mass are removed.

Note that the particles in the grid-squares around the target locations will have high
mass compared to other particles in non-target areas. The task then is to identify clusters of
high-mass particles, corresponding to target locations. Our EH pre-processing algorithm is
presented in detail in Section 3.1.

At this point it would be possible to consider applying traditional clustering algo-
rithms such as k-means clustering [18], or fuzzy c-means clustering [19]. However both
of these algorithms operate under the assumption that each data point (particle in our
case) belongs to one of the clusters, and is randomly perturbed from the cluster centroid
according to a particular distribution. As mentioned previously, this is not the case for
our particles.

An alternate clustering algorithm based on a universal gravity rule was proposed
in [20]. In that algorithm, initially the cluster-centroids were randomly chosen, and the data
points were associated with the clusters based on Euclidean distance to the centroids. After
association, a ‘force’ was calculated on the centroid, due to the particles that were associated
with it. The centroid was then moved in the direction of the force. The distance each
centroid moved was proportional to the magnitude of the force. After moving the centroids
to the new location, the data points were reassociated with the updated centroids (based
on the new locations). This process was repeated until there was no further movement of
centroids. As with the other algorithms, a characteristic of this approach was that there
was a significant influence on the centroids due to particles at non-target locations.

Our proposed approach to clustering (which forms the second part of our new pro-
posed algorithm) is also inspired by gravitational ideas. We call it the gravity inspired
clustering algorithm (GICA). A key difference is that our approach is not based on calcu-
lating cluster centroids. Instead, we calculate a Newtonian inspired force on each of the
particles individually, and move each particle in the direction of the corresponding force.
When particles collide, they combine into a single particle with the mass of the original two
particles. This is analogous to the formation of stars in the early phase of the universe. Our
proposed algorithm iteratively eliminates any particles that have low mass. We repeat this
process iteratively until the particles have coalesced into clusters and there is no further
movement in the particles. Our new algorithm is presented in detail in Section 3.2.

We note that the overall complexity of our proposed approach is limited by the number
of grid squares, and unlike other approaches, the complexity of ours does not increase
exponentially with the number of measurements. Additionally, our proposed algorithm
can be applied even when some of the measurements are missing, and works even when
the receivers are not collinear. The proposed algorithm can also be applied when some of
the measurements are false. False measurements arise when there is a strong reflection
from objects that are not targets (i.e., not of interest, e.g., reflection from walls.).

2. System Model

The objective is to estimate the target locations that are behind a wall. In this paper,
we assume the region of interest is a region of size 20 m by 15 m. We consider the bi-static
radar with multiple receivers (R). For example, when trying to map an office that is behind
a wall, with a corridor in between, as shown in Figure 1. Unlike many ray-tracing studies,
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we do not assume a straight line reflector for internal walls; instead, we model the practical
situation where these walls are made of plasterboard, and the RF reflectors come from the
vertical metal studs that support the walls and doors. Here, the targets are the metal studs,
and the aim is to estimate the target location of the metal studs.
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Figure 1. Location map showing target location and transmitter and receiver locations, for a scenario
with a 10 m2 office and a corridor in between.

As shown in Figure 1, the targets of interest are on one side of the wall, and the
transmitter-receivers are on the other side. The receivers (R) are placed as shown in
Figure 1. Receivers in this configuration produce better results compared to when they
are collinear.

As mentioned previously, for a given transmitter and receiver pair, there is a set of
potential target locations that satisfy a given range measurement. These locations form an
ellipse. Let Tx and Rx be the transmitter and receiver locations for a specific pair, and let r
be the range measurement from that pair. Then the ellipse is defined by the set of points, e,
such that ||Tx− e||2 + ||Rx− e||2 = r.

When the receivers are in x and y directions as shown in Figure 1, the ellipses that
belong to the same target, and come from different receivers, intersect at greater angles
resulting in better target estimation. When the receivers are collinear, the ellipses intersect
at lower angles. Even with small measurement noise, the ellipses intersect at a location far
from the true target location.

The measurements are taken as shown in Figure 2. The transmitter and receivers
move together, from one place to another. At intermediate points (φ′ks, k = 1, 2, . . . , M)
the receivers collect range measurements. In practice, an example is when the transmitter
and receivers are mounted on a vehicle moving from one point to another collecting
measurements at intermediate locations. At each intermediate point φk, N × R range
measurements are collected (N range measurements corresponding to N targets at each
receiver). As the range measurements are collected at M intermediate points, there will be
a total of M× N × R range measurements.

The range measurements in the presence of a wall is modeled as r̃i,j,φk = ri,j,φk +
∆ri,j,φk [2]. Where r̃i,j,φk represents the range measurement corresponding to the to the
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ith target at jth receiver when the transmitter and receivers are at intermediate location φk
in the presence of a wall. Where ∆ri,j,φk ’s are the i.i.d Gaussian random variables with mean
µ and variance σ2 (

∆r ∼ N (µ, σ2)
)
, and ri,j,φk represents the distance from the transmitter

to the ith target and from ith target to the jth receiver at the φth
k intermediate location. In

this paper, we do not use any specific knowledge about the wall parameters, and we use
average values for the mean and standard deviation (µ = 0.48 m and σ = 0.1 m) [2]. These
are typical values, and details about the calculation of µ and σ can be found in [2] as a
function of frequency and bandwidth. Without loss of generality, mean µ, is removed
from all range measurements. Indeed, when the knowledge about the wall parameters,
such as wall thickness, dielectric constant, etc., are known, the proposed algorithm works
better. For a given transmitter and receiver pair, the set of all points that satisfy a range
measurement is an ellipse. There are a total of M× N × R ellipses, as this is the number of
range measurements.
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Figure 2. Scenario showing where both the transmitter and receivers are moving together.

Figure 3 shows the ellipses for the scenario in Figure 1. The number of intermediate points
are taken to be 5, i.e., M = 5 (number of ellipses equals to (M =) 5× (N =) 7× (R =) 4).
From the figure, it can be seen that each ellipse intersects with other ellipses at various
locations. Some of the intersection points represent target locations, i.e., intersection points
corresponding to the ellipses from the same target and different receivers. Some of the
intersection points are from the ellipses belonging to different targets. As noted, the number
of intersection points from the ellipses arising from different targets is very large compared
to the number of intersection points of ellipses belonging to the same target. From Figure 3
we can see that it is hard to estimate the target locations. The aim is to find the target
locations from the available range measurements information.
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Figure 3. Ellipses plotted for the scenario shown in Figure 1, with measurements taken at M(= 5)
different locations.
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3. Proposed Algorithm

Our proposed algorithm consists of two elements. We first propose a pre-processing
algorithm called Ellipse-Histogram (EH) pre-processing, which generates a set of particles.
We then propose a new clustering algorithm inspired by Newtonian gravity to cluster the
particles and hence identify the target locations. In the following subsections, we present
our algorithm and describe it using pseudocode.

3.1. Ellipse-Histogram (EH) Pre-Processing

We propose a pre-processing approach to generate particles based on ellipses and
histograms. The first pre-processing step is to impose a grid over the region of interest, (as
shown in Figure 4), and place a particle of zero mass at the centre of each grid square. In
this paper, we use a grid square that is 7 cm by 7 cm (the choice of 7 cm is for the office-type
scenario we are considering in this paper, but these values could be adjusted for other
building scenarios of different scale). We then map the transmitter-receiver-pair ellipses
onto the grid, by considering each ellipse, and increasing (by one unit) the mass of the
particles in each grid-square that the ellipse passes through. At the end of this process, each
grid-square will therefore contain a particle with a mass equal to the number of ellipses
that pass through the square. The higher the particle’s mass, the higher the probability
that particle location corresponds to the target location. In the algorithm, we represent the
entire region with matrix Mass with the mass at grid location [i j] stored in the element
Mass[i j].
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Figure 4. Figure showing imposing the grid over the area of interest.

Figure 5 is plotted for the scenario in Figure 3 with height as the mass of the particle.
From the figure, it can be observed that the particles around the target location have higher
mass compared to non-target locations. However, there are many particles at non-target lo-
cations whose mass is relatively high. This makes the problem challenging, i.e., identifying
the particles corresponding to the target locations among various local maximas.
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Figure 5. Plot of particle weightings for the 2-D grid, derived from the ellipses in Figure 3.

The second pre-processing step is to remove particles that have less than the half the
mass of the largest mass particle, thus restricting attention to the particles corresponding to
the highest concentration on ellipses.

After this EH pre-processing, we then performed clustering via our novel gravity
inspired algorithm, which we now present.

3.2. Gravity Inspired Clustering Algorithm (GICA)

We propose a new algorithm motivated by Newtonian gravity. We calculate a New-
tonian inspired force on each of the particles from the Ellipse-Histogram pre-processing
and move them in the direction of the force. We repeat this iteratively until the particles
have coalesced into clusters and there is no further movement in the particles. This is in
contrast to the other approaches that are based on iteratively estimating a known number
of centroids.

First we select a non-zero mass particle randomly from the entire region. An important
element of our approach is the definition of a box around the chosen particle. We define the
box to be square, where the box-size is defined to be the distance from the particle to the
edge of the box, as shown in Figure 6. Within the box we will be calculating a Newtonian
inspired force on the chosen particle from all the other particles within the box.

Our Newtonian Force is calculated in the procedure DISPLACEMENT in Algorithm 1.
The position of the randomly selected particle is located at the grid coordinates [i j] and
the masses of all the particles in the whole region is stored in the matrix Mass. The size of
the box is chosen randomly between two values rlow and rhigh. The box size should not be
too large or otherwise particles belonging to two different targets will merge into one. The
box size should not be too small or else there will no other particle and no gravitational
force will be felt. The minimum box size depends on the density of ellipse intersection
points, which is heterogeneous across the entire region. For this reason, we use a random
box size chosen between rlow and rhigh. We choose rlow = 2 and rhigh =

⌈ q
2l
⌉
, where q is the

minimum distance between any two targets, and l is the length of a grid square.
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To calculate the force, we use the traditional Newtonian force formula, and propose to
set the gravitational constant equal to one. In particular, the force on particle p1 because
of the particle p2 is defined as Fp1,p2 = m1 × m2

||l2 − l1||32
× (l2 − l1). Where l1, and l2 are the

physical locations (measured in meters), and m1, and m2 are the masses of the particles
p1 and p2, respectively. Similarly, we calculate the force from all the particles within the
box. The resultant force on the selected particle is the vector addition of all the forces from
individual particles.

In the procedure DISPLACEMENT, the double loop looks at all the grid squares (each
which may contain a particle) inside the given box. The box is cropped so that we only
look at the part of the box that lies in the rectangular region of interest where targets can
occur. On the edge of the region, the box can go outside, hence the need for cropping.

Once the force is calculated, the acceleration of the selected particle is calculated

using the formula
Fp1
m1

, where m1 is the mass of the selected particle p1. Upon calculation

of acceleration, displacement of the selected particle in time
√

2 seconds is calculated
(assuming initial velocity is zero).

The procedure MOVE actually moves the particle, and adjusts the mass matrix Mass.
If the particle moves to a grid square where there is another particle, the two particles merge
into a single particle with the combined mass of the two original particles. Movement
only occurs if the magnitude of the displacement is more than half of the length of the
grid square (which is 7 cm) containing the particle. If so, the selected particle moves one
step in the direction of the force (i.e., we move the particle to one of the eight adjacent
grid squares). After moving to a new location, if there already exists a particle in that
location, we merge the two particles into one. In other words, the mass of the particle in the
new location increases to be the sum of the two masses. After merging the two particles,
we remove any particles that are likely to be related to non-targets. To achieve this, we
remove particles whose mass is less than one-seventh of the largest mass particle. We
have performed extensive simulations across a wide range of system configurations, and
show in Section 4 that the choice of one-seventh produces better results compared to other
thresholds such as 1

5 , 1
6 , 1

8 , 1
9 , and 1

10 .
The main Algorithm 2 consists of two loops. The inner loop repeatedly selects a

particle at random, chooses a random-sized box, computes the gravitational force, and
associated movement and mass change (if any). All of this is done in Algorithm 1 as
described above, which is called from Algorithm 2. If the particle moves, the mass matrix
changes, because the mass at the original location goes to zero, and the mass at the new
location increases by the mass of the moving particle. The inner loop of Algorithm 2
repeats until it is deemed that there is no further change. Even if one particle does not
move, another randomly selected particle may yet move. An equilibrium is deemed to
have been reached if there is no change after N × 50 randomly selected particles are tested.
When the number of targets is unknown, we output the location of the non-zero mass
particles after the equilibrium reached. When we have additional information regarding
how many targets are there, we output the locations of non-zero mass particles if the
number of non-zero mass particles equals to the number of source targets. Otherwise,
when they are not equal, we repeat the process again. This is done using the outer loop in
Algorithm 2.

The reason for the outer loop is because the problem we are solving is hard. It is a
non-convex problem, and the equilibrium reached can be a locally optimal solution, but
not globally optimal. We find that when we run the algorithm for a second time, from
the same starting conditions, a different equilibrium can be reached. The randomness of
particle selection and box size selection can lead to different equilibria being reached. The
number of targets found can be different in different iterations. The algorithm stops when
the number of targets found equals the true number of targets, in which case it outputs the
target locations found in the final equilibrium. The algorithm terminates after a maximum
of 10× N trials. If it runs for 10× N trials then it has failed by definition.
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We find that Algorithm 2 almost always (98% of the time over 5000 realizations)
terminates before reaching 10× N iterations, and the results presented in Section 4 show
how accurate the output target locations are. The fact that the number of trials is upper
bounded by N × 10 tells us that the number of local optima is limited, and grows no more
than linearly with the number of targets.

Ideally, we would run the gravity algorithm in continuous time, and all forces would
be calculated simultaneously. Since we are running a discrete-time algorithm, and consider-
ing each particle one at a time, it is important that we do select each particle in a systematic
way (e.g., from right to left) as this would impose a bias on the process of movement. For
this reason, each particle is selected randomly each time. The maximum movement step of
one grid square is imposed as a way to approximate a continuous movement.

Algorithm 1 Procedures

1: procedure DISPLACEMENT([i j], M, X)
2: Ftotal ← [0, 0]
3: m1 ←M(i, j)
4: (xi, yj)← corresponding physical location of the element at [i, j] from X.
5: l1 = (xi, yj)
6: q←minimum distance between any two targets.
7: rlow ← 2 (minimum box-size value)
8: rhigh ←

⌈ q
2l
⌉

(maximum box-size value)
9: r ← a random number between rlow and rhigh

10: c←maximum(1, i− r)
11: for c ≤minimum(size(M, 1), i + r) do
12: d←maximum(1, j− r)
13: for d ≤minimum(size(M, 2), j + r) do
14: if !{(c = i) and (d = j)} then
15: m2 ←M(c, d)
16: (xc, yd)← corresponding physical location of the element at [c, d] from X.
17: l2 = (xc, yd)

18: Fp1,p2 = m1×m2
||l2−l1||32

× (l2 − l1)
19: Ftotal ← Ftotal + Fp1,p2
20: d← d + 1
21: c← c + 1
22: a← Ftotal

m1

23: s← 1
2 a(
√

2)2

24: return s
25: procedure MOVE(d, [i, j], M ,m1, l)
26: if ||d||2 ≥ l

2 then
27: Move the particle to one of 8 adjacent square in the direction of force.
28: return M
29: procedure UPDATE( M)
30: mmax ←max(M)
31: [i j]← size(M)
32: a, b← 0
33: for a ≤ i do
34: b = 0
35: for b ≤ j do
36: if M(a, b) ≤ mmax

7 then
37: M(a, b) = 0
38: b← b + 1
39: a← a + 1
40: return M
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Algorithm 2 Gravity Inspired Algorithm

1: Create a matrix Mass such that each element in matrix represents mass of the particle.
2: X vector consists of the corresponding physical locations of the elements in the matrix

Mass.
3: nnz(Y) - represents the number of non zero entries in matrix Y.
4: l ← length of the square’s side
5: iteration← 0
6: for iteration ≤ N × 10 do
7: no-change = 0
8: Mass-Previous = Mass
9: while no-change ≤ N × 50 do

10: z← randomly pick a non-zero element from matrix Mass
11: [i j]← indices of z w.r.t to matrix Mass
12: s← DISPLACEMENT([i j], Mass, X)
13: Mass←MOVE(s, [i j], Mass, z, l)
14: if Mass == Mass-previous then
15: no-change = no-change + 1
16: else
17: Mass = UPDATE(Mass)
18: no-change = 0
19: Mass-previous = Mass
20: if nnz(Mass) = N then
21: break
22: else
23: iteration = iteration + 1
24: Output the location of the non-zero elements of the Matrix Mass from the Matrix X.

3.3. General Application of GICA

We note that our proposed gravity inspired clustering algorithm can be applied much
more generally to any data clustering task (i.e., not limited to TWR radar). For example,
any system where measurements are being made from a finite number of sources or classes
and where those measurements are inaccurate or noisy, and where there can be additional
spurious measurements. This includes many more general classification problems.

4. Results

The range measurements in the presence of a wall is modeled as r̃i,j,φk = ri,j,φk +
∆ri,j,φk [2]. Where r̃i,j,φk represents the range measurement corresponding to the to the
ith target at jth receiver when the transmitter and receivers are at intermediate location φk
in the presence of a wall. ∆ri,j,φk ’s are the i.i.d Gaussian random variables with mean µ and
variance σ2 (

∆r ∼ N (µ, σ2)
)
. ri,j,φk represents the distance from the transmitter to the ith

target and from ith target to the jth receiver at the φth
k intermediate location. Figure 7 is

plotted for the scenario in Figure 1, i.e., 7-target scenario.
It is difficult to compare our proposed algorithm with existing algorithms because

none have been proposed for the novel problem formulated in this paper. Given just
the range measurements, a model would typically be needed for the locations of ellipse
intersection points before a suitable algorithm could be applied, and we do not currently
have such a model. As noted earlier, calculating intersection points of two rotated ellipses
is a hard problem. The number of intersection points increases as the number of targets
increases, which further increases the complexity. For the same seven target scenario, using
“solve” function in MatLab to solve for all the intersection points took one day for just one
realization. This shows that it is not practical. The simulation is performed on the desktop
computer with 32 gigabytes of RAM and Intel Xeon @3.50 GHz processor.

Instead, we will first utilize our EH pre-processing step to obtain data consisting of
the histogram of ellipse crossings over grid squares, and then consider alternatives to our
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proposed gravity clustering algorithm. We consider two standard clustering algorithms:
k-means and fuzzy c-means, and we also consider the alternative clustering algorithm
using gravity proposed in [20]. In all cases, the measurements are taken at M = 9 equally
spaced intermediate points between −5 and 5 m, as the system moves from left to right
across 10 m.
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7 target scenario with EH pre-processing

Clustering algorithm in [20] on particles surviving after threshold

K-means clustering algorithm

Fuzzy C means clustering algorithm

Clustering algorithm in [20]

Fuzzy C means clustering algorithm on particles surviving after threshold

K-means clustering  algorithm on particles surviving after threshold

Proposed clustering algorithm

Figure 7. Performance comparison with proposed ellipse-histogram (EH) pre-processing.

Our proposed algorithm uses a thresholding operation (in EH pre-processing step)
to remove those particles with mass less than half that of the largest mass particle. For
the existing algorithms, we depict in Figure 7 the performance both with and without
this initial thresholding operation. The dashed red curve represents the performance of
the fuzzy c-means algorithm without thresholding, and the solid red curve represents the
performance with thresholding. It can be seen from the results that thresholding improves
the performance of the two standard clustering algorithms. Thresholding does not benefit
the gravity-based clustering algorithm [20], and it appears that this algorithm does not
work for our problem.

From Figure 7, we can see that proposed algorithm performs better than the other
algorithms. For σ = 0.1, the proposed algorithm has 70% less error per target when
compared to the best of the other three algorithms, which is either k-means or fuzzy
c-means, depending on the level of noise. The proposed algorithm has an accuracy of 8 cm.

In simulations, the maximum number of iterations for convergence in the k-means
and fuzzy c-means algorithm is set to 100. In [20], they used the following values for the
parameters in their algorithm, G0 = 0.02 (the initial gravity constant) and T = 200 (the
number of iterations), which resulted in good performance for the datasets considered in
that paper. However, we have observed that for the datasets we are considering in this
paper, the gravity constant needs to be increased to G0 = 0.5 in order for the centroids in
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their algorithm to move, although, as remarked above, this is still not effective for finding
the target locations.

For the seven target scenario in Figure 1, we compare the error performance of
our algorithm for different threshold levels. Table 1 tabulates the error per target for
different threshold levels. From the table, we can see that one-seventh has slightly better
performance; however, we can see that performance is robust to the change in threshold
levels. The results are for the noise level σ = 0.1.

Table 1. Impact of different threshold level on performance of the proposed algorithm.

Threshold Error per Target (in cm)

1/5 8.72

1/6 7.75

1/7 7.69

1/8 7.76

1/9 8.47

1/10 8.07

1/11 8.22

Figure 8 shows that the proposed algorithm performs better than the other two, even
when some of the measurements are missing. From the figure, we can see that as the
percentage of missing measurement increases, the error per target also increases. Results
show that the proposed algorithm outperforms the existing algorithms and produce better
results. The results are for the noise level σ = 0.1.
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Figure 8. Performance comparison with missing measurements and for σ = 0.1.

To show the effect of the choice of square size’s length on the proposed algorithm, we
have tabulated the error performance for different grid square side’s length. Table 2 shows
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that the performance is robust to the changes but performs slightly better when the square
side’s length is 7 cm.

Table 2. Impact of the grid square side’s length on the proposed algorithm.

Length of Grid Square (in cm) Error per Target (in cm)

6 8.4

7 7.69

8 7.91

9 9.28

10 9

11 10

Figure 9 shows that the proposed algorithm performs better than the existing algo-
rithm when some of the measurements are false measurements for the scenario in Figure 1
(i.e., 7-target scenario). False measurements arise when there is a strong reflection from
the objects that are not targets (i.e., not of interest, e.g., reflection from the walls.) Figure 9
is plotted when there are no missing measurements. Figure 10 shows the proposed algo-
rithms perform better than the existing algorithms when 25% of measurements are missing
and contains false measurements. From the figures, we can see that as the percentage of
false measurement decreases, error per target also decreases. We also see that in both the
scenarios (with and without missing measurements), the proposed algorithm outperforms
the existing algorithms. The simulations are performed for the noise level σ = 0.1.
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Figure 9. Performance comparison with false measurements and for σ = 0.1 and no missing
measurements.
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Figure 10. Performance comparison with false measurements and for σ = 0.1 and 25% of missing
measurements.

Figure 11 shows the performance of the proposed algorithm for a different number of
intermediate locations. From the figure, we can see that the proposed algorithm performs
better than existing algorithms. The figure shows that as the number of intermediate
locations increases, the error per target decreases.
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Figure 11. Performance comparison with different number of intermediate locations for σ = 0.1.

Figure 12 shows that the proposed algorithm performs better than existing for the
different number of receivers for the scenario in Figure 1 (i.e., 7-target scenario). From the
figure, we can see that error per target decreases as the number of receivers increases. The
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simulations are done for the noise level, σ = 0.1 and number of intermediate locations,
M = 7.
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Figure 12. Performance comparison with different number of receivers for σ = 0.1 and number of
intermediate locations, M = 7.

To illustrate how the proposed algorithm progresses, we have shown different stages
of the algorithm in Figures 13–16, for a 9 target scenario with noise level σ = 0.1 and 10% of
measurements are missing. From the figures, it can be seen that as the proposed algorithm
progress, the particles at non-target locations are removed iteratively. It can also be seen
that as the algorithm progresses, particles around the target locations merge together (mass
of the particles increasing from Figures 13–16).

Figure 13. Surviving particles of the proposed algorithm at the end of 60th iteration. Mass of the
particles is represented using the color. The simulation is performed for a 9 target scenario with
10% of missing measurements and with noise level σ = 0.1. The color scale indicates the mass of
the particles.
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Figure 14. Surviving particles of the proposed algorithm at the end of 120th iteration for the same
scenario as in Figure 13. The color scale indicates the mass of the particles.

Figure 15. Surviving particles of the proposed algorithm at the end of 180th iteration for the same
scenario as in Figure 13. The color scale indicates the mass of the particles.
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Figure 16. Surviving particles of the proposed algorithm at the end of 310th iteration for the same
scenario as in Figure 13. The color scale indicates the mass of the particles.

For a range of different 7-target, 8-target, and 9-target scenarios simulated, on average,
error per target is 7.5 cm, 8 cm, and 11 cm.

5. Conclusions

This paper presented a gravity inspired algorithm for non-coherent localization of
multiple targets. The proposed algorithm iteratively groups particles at target locations
and eliminates particles at non-target locations. The overall complexity of our proposed
approach is limited by the number of grid squares and does not increase exponentially
with the number of measurements. We showed that the proposed algorithm can be applied
even when some of the measurements are unavailable or missing, and when some of the
measurements are false measurements. Location accuracy of the proposed algorithm is
shown to be in the order of 8 cm.
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