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Abstract: The recent development and adoption of unmanned aerial vehicles (UAVs) is due to its
wide variety of applications in public and private sector from parcel delivery to wildlife conservation.
The integration of UAVs, 5G, and satellite technologies has prompted telecommunication networks
to evolve to provide higher-quality and more stable service to remote areas. However, security
concerns with UAVs are growing as UAV nodes are becoming attractive targets for cyberattacks due
to enormously growing volumes and poor and weak inbuilt security. In this paper, we propose a
UAV- and satellite-based 5G-network security model that can harness machine learning to effectively
detect of vulnerabilities and cyberattacks. The solution is divided into two main parts: the model
creation for intrusion detection using various machine learning (ML) algorithms and the implemen-
tation of ML-based model into terrestrial or satellite gateways. The system identifies various attack
types using realistic CSE-CIC IDS-2018 network datasets published by Canadian Establishment for
Cybersecurity (CIC). It consists of seven different types of new and contemporary attack types. This
paper demonstrates that ML algorithms can be used to classify benign or malicious packets in UAV
networks to enhance security. Finally, the tested ML algorithms are compared for effectiveness in
terms of accuracy rate, precision, recall, F1-score, and false-negative rate. The decision tree algorithm
performed well by obtaining a maximum accuracy rate of 99.99% and a minimum false negative rate
of 0% in detecting various attacks as compared to all other types of ML classifiers.

Keywords: UAV; machine learning; intrusion detection system; cybersecurity attacks; software-
defined security

1. Introduction

Recently, Unmanned Aerial Vehicles (UAVs) or drones have become popular and
have been used for a variety of purposes in terms of everyday flying objects connected
to the internet and able to identify themselves to other devices by sharing information
via smart devices such as mobile phones and tablets. UAVs are flying objects that can fly
independently or with the assistance of human pilots. UAVs are used for package delivery,
aerial mapping, irrigation, environmental management, aerial photography, monitoring,
rescue operations, and other critical applications. The reliability of UAV and its wireless
communications is important for those critical applications. Security schemes and intrusion
detection techniques are used to ensure critical security features. For communication, UAVs
can communicate with terrestrial networks such as ground Base Stations (BSs) and non-
terrestrial networks such as low-altitude satellites.

Space-based technologies, which include a newly named network of communications
satellites for non-terrestrial uses, permit global telecommunications systems to transmit
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their signals based on voice, video, and other data from multiple access points [1]. Ter-
restrial infrastructure requirements can be reduced by using communications satellites so
that more cost-effective service delivery options can be provided. Other applications of
remote sensing satellites are in the agricultural area (for monitoring soil, drought, and crop
development), environment (surveying water cycles, air quality, forests and state of ecosys-
tems), UAV (communication), global health objectives (monitoring disease patterns, predict
risk areas and define regions), and Internet of Things (IoT), where things are connected
to the internet, which can be implemented in factory automation, smart homes, etc. [2].
According to [3], it is expected that there will be more than 27 billion devices connected to
the internet by 2026 [4]. 5G networks will be able to support massive IoT (mIoT) devices,
which will change the way society can interact with basic everyday objects. The majority
of mobile networks are terrestrial, so they cannot cover remote areas, e.g., deserts, oceans,
and forests, as they lack terrestrial infrastructure and universality of telecommunication
software [5]. Similarly, UAVs flying at low altitudes cannot operate beyond cellular cov-
erage area. Thus, satellite infrastructures, which extend and complement the terrestrial
network, play a vital and crucial role in UAV networks [6]. The term Internet of Remote
Things (IoRT) has been studied in [7], which reviews satellite-based IoTs in terms of Media
Access Control (MAC) protocols for the sensor of satellite networks, supporting IPv6,
heterogeneous networks interoperability, and managing Quality of Service (QoS) criterion.
It can also be used in drones to remotely control them. A constellation of Low Earth
Orbit (LEO) satellite architecture, efficient spectrum allocation, heterogeneous networks
agreement, access, and routing protocols has been presented in [8]. Another novel archi-
tecture is designed to obtain intelligent, rapid, and efficient Heterogeneous Space and
Terrestrial Integrated Networks (H-STINs) [9], which includes a proposed intelligent data
center based on Software-Defined Networking (SDN)/Network Functions Virtualization
(NFV) technology. The fifth generation (5G) networks can be deployed in satellite-based
communication to achieve high bandwidth, low latency, and increasing coverage [10–12].
The introduction of UAVs into telecommunications networks, either as aerial users or
as communication platforms, introduces new design possibilities as well as hurdles. Be-
cause of the high elevation and mobility of UAVs, service quality requirements, and the
high chance of UAVs to ground Line of Sight (LoS) networks, both cellular-connected UAV
communication and UAV-assisted wireless communication differ significantly from their
terrestrial counterparts. In this paper, we focus on UAVs as a cellular user. Moreover,
due to complexity, heterogeneity, and many interconnected resources, providing security
in the UAV networks has become a big challenge in space-based networks. Some secu-
rity issues that imply security in space-based information networks are hand-off security,
transmission control security, and routing protocol security, which have been addressed
in [13]. In [14], the security requirements of satellite-based wireless networks have been
studied systematically, and the appropriate model for attacks are proposed for a satellite
platform according to the MIL-STD-1553B bus, which is significantly used in an internal
bus of spacecraft. There are two main ways for increasing security in satellite-based UAV
networks: (1) encryption algorithms and (2) machine learning (ML) techniques, which
are used to mitigate anomalies [15,16]. Encryption algorithms can protect the networks
against external attacks by using authenticated packets from the source node and have two
classifications, which are content-based and stream-based. An automation level should be
considered in 5G-based UAV networks because of its complexity, volatility, and scalability,
which has never been seen earlier. Blockchain, which has been presented as a secure, decen-
tralized, and distributed ledge, r can be used for ensuring satellite security [17,18]. Unlike
previous methods, which uploaded data to a cloud server or stored it in a single location,
blockchain creates several small chunks of an original block and distributes them to the
different parts of networks. Blockchain can be deployed as a means for providing secure
transactions in the network infrastructures; on the other hand, machine learning and artifi-
cial intelligence methods can be used to prevent the network from violent threats [19,20].
Blockchain can encrypt everything that exits in the network so that the data cannot be
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altered across the transmission. In the encryption-based security methods, the key man-
agement scheme consumes energy in nodes, and it is considered a noticeable challenge.
Furthermore, these methods should maintain all the keys in the whole network that waste
the limited energy of the nodes [21]. Thus, cryptographic approaches increase network cost
and node overhead in order to support internal attacks with cryptographic keys. In this
paper, we will discuss alternative security solutions based on Intrusion Detection System
(IDS) integrated with machine learning methods. Machine learning is a significant method
for security protection, which can provide security orchestration required to detect new
threats in the UAV networks supported by satellite communication. Moreover, the IDS is
effectively useful as a security scheme to increase accuracy in the networks and protect
drones against intruders because both internal and external attacks can be accurately de-
tected by IDS [22,23]. Anomaly detection is one of the IDS approaches for detecting new
attacks that had never been seen before that instance. Anomaly detection uses a supervised
machine learning (ML) algorithm [24–26] to create normal data behavior patterns. A real-
time model was presented for detection of outgoing Denial of Service (DoS) attacks in [27],
in which many ML algorithms are used and compared in terms of speed, accuracy, and
weighting calculation. Machine learning algorithms are an important approach to handle
the security problems in 5G-based UAV networks [28]. ML is a kind of artificial intelligence
that applies various learning techniques to train devices without definite programming.
ML can be employed efficiently in the UAV networks for the following reasons: (1) There is
no need for a mathematical model for complex UAV environments. (2) Some applications,
which require datasets, can be correlated. (3) ML algorithms are able to adjust with the
dynamics and unforeseen patterns of UAV systems. (4) ML algorithms can eliminate
human interventions, which does not fit for the UAV networks. The main contribution of
this paper is as follows:

• Initially, we use a dataset named CSE-CIC-IDS2018 [29] on Amazon Web Service (AWS)
for training and testing, which are performed once per iteration. The same training and
test data are considered for all models to provide a fair comparison between them.
Eighty percent of the dataset is assigned to training set, and 20% is assigned to the
test set.

• Model creation can be defined as feature selection, implementation, refinement, and
comparison. We propose a 5G satellite-based UAV model. We implemented security
based on ML algorithms in gateways. To increase the accuracy of our system model
as well as implementing it in the real world, we consider the features that we mention
here. Some of the most important features include flow duration, total packets in
the forward and backward direction, maximum and minimum size of the packet in
the forward and backward direction, average and total size of the packet in forward
direction, standard deviation packet size in forward and backward direction, etc. We
consider zero (0) for normal and one (1) for attack records.

• In order to provide security in this paper, data packets are encrypted initially, and then
ML algorithms are used to increase the level of accuracy of packets to identify which
one is the correct packet and which one is fake or attack packet. The ML algorithms
such as Logistic Regression (LR), Linear Discriminant Analysis (LDA), KNN, Decision
Tree (DT), Gaussian Naive Bayes (GNB), Stochastic Gradient Descent (SGD), and
K-mean are used.

• Finally, we compare the output of the above ML algorithms for above-mentioned attacks
based on their precision, recall, F1-score parameters, accuracy rate, false-negative rate,
correctly classified records, and incorrectly classified records, which will be explained
in Section 4.

The remainder of the paper is organized as follows. Section 2 describes the background
of satellite backhaul connectivity based on the 5G system. Section 3 presents the system
model and IDS for satellite-based UAV security. Section 4 is related to an intrusion detection
system based on ML approaches to detect various types of attacks. Section 5 provides the
experimental results using ML techniques for various attacks. Section 6 provides discussion
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on the experimental results obtained using ML, while Section 7 presents the future works,
and finally, Section 8 provides the conclusion.

2. Background and Related Works
2.1. Satellite Architecture

A Public Land Mobile Network (PLMN) can have both terrestrial 3GPP access and
satellite 3GPP access. However, the coverage of the satellite access network may span over
the coverage of the terrestrial access network, as shown in Figure 1 [30].

Figure 1. Satellite and terrestrial 3GPP access networks within a PLMN. (a) architecture, (b) coverage.

A satellite access network is shared between multiple core networks in a 5G Multi-
Operator Core Network (MOCN) sharing architecture. In this case, the shared satellite
Radio Access Network (RAN) broadcasts the system information for both PLMNs, whose
core networks are available. According to Figure 2, these PLMNs might have different
Mobile Country Codes (MCCs) [30].

Figure 2. Multi Operator Core Network sharing architecture with satellite radio access network:
(a) architecture, (b) coverage.

A satellite back haul is used between the core and terrestrial access network, providing
a backup transport for the N2/N3 reference points as demonstrated in Figure 3. The N2/N3
reference points are generally used for connecting standalone non-3GPP accesses (e.g.,
WLAN access) to the 5G core network via control plane and user plane functionality,
respectively. The User Plane Function (UPF) is one of the Network Functions (NFs) of a
5G core (5GC) network. The 5GC network consists of more than one Access and Mobility



Electronics 2021, 10, 1549 5 of 28

Management Functions (AMFs) and UPFs. The 5GC is linked with the distributed gNB
through standard N2 and N3 interfaces [31]. The satellite system transparently carries the
communication payload of the 3GPP reference points [30].

Figure 3. 5G System with a satellite backhaul.

In the case of Non-Geostationary Satellite Orbits (NGSO) such as Low-Earth Orbiting
(LEO), Medium-Earth Orbiting (MEO), and Highly Eccentric Orbiting (HEO), the attached
cells and tracking areas move with the corresponding gNBs. The NGSO with beam steering
is capable of seamless handover from one satellite to another to guarantee the connectivity
service for moving gNBs when proceeding on non-geostationary satellites. In satellite
access, the one-way propagation delay between a User Equipment (UE) and a satellite
communication payload may range between 2 ms and 140 ms according to the satellite
altitude and the relative location of the UE. In our case, the UAVs are considered UEs. It is
possible that in a constellation of non-geostationary satellites including Inter Satellite Links
(ISLs), the delay between a UE and functional elements of the Core Network will increase
depending on the actual location of the communication endpoints. The delay also depends
on the function and mode of operation of the configuration of the NGSO Access Network.
The Non-access Stratum (NAS) is a functional layer that provides communication between
the mobile user nodes and the core network nodes. The impacts of delays in the satellite
access on the 5G system in the NAS are as follows:

• As mentioned above, the propagation delay between the UE and access node can
change significantly, i.e., between 2 ms to 140 ms.

• The need for the 5G core network implies tackling different access capabilities such as
propagation delays, coverage, etc., which can satisfy a terrestrial network.

• UEs can utilize the concept of multi-connectivity, which is the capability of supporting
simultaneous UEs by multiple sessions that can take advantage of various 3GPP access
networks (terrestrial and satellite in the forward and backward direction), as shown
in Figure 4.

While 4G is the most common network in the world, it will not be able to manage
the huge number of connections that will be on the network in the future, at which point
5G will come into existence. Unique Radio Frequencies (RF) are used by 5G networks to
gain what 4G networks were unable to obtain. Each radio spectrum includes several bands
from low frequencies to high frequencies that uniquely have particular features.

The 4G network uses frequencies lower than 6 GHz, while 5G uses frequencies from
low-band, 600 MHz, to mid-band, and to very high frequencies between 30 GHz to 300 GHz,
and they differ from country to country [32]. These low-band frequencies have high 5G
coverage and are suitable for rural areas. These high frequencies have great advantages, the
most important of which is high capacity and throughput. In comparison to 5G, 4G cells
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transmit data covering the cell area, which is a waste of both energy and cell power, while
5G cell transmits only small beams in the direction of users only [33]. Furthermore, much
smaller antennas are installed in 5G because of shorter wavelengths while still supplying
directional control. In terrestrial mobile networks, one BS can effectively be equipped with
even more directional antennas for supporting over 1000 additional devices per square
meter in comparison with 4G. Thus, many more users can use 5G with enhanced Mobile
Broad Band (eMBB), high precision, and very low latency. Moreover, 5G networks can
easily receive the required type of data and switch to a lower power when lower rates are
needed, and then it switches to a higher-powered mode [34]. A 5G satellite network can be
based on a constellation of one or multiple satellites. The satellites are placed in LEO in
order to permit connectivity of users, which have constrained RF and energy capabilities.
The constellation of satellites may provide a continuous service, with a satellite covering
any user with a continuous global coverage. The satellites that are not within range of
a ground station can use ISL to communicate (via indirect means) to the ground station.
When a UE moves from one static tracking area to another, the tracking area is updated.
A Heterogeneous Space and Terrestrial Integrated Networks (H-STIN) architecture has been
proposed according to advancement procedure of the UAV, mobile networks, and satellite
network [7].

Figure 4. Multi-connectivity architecture with terrestrial, NGSO satellite, and GEO satellite RANs.

The integration of UAVs into cellular networks provides significant advantages with
several applications and use cases. With the new paradigm of integrating UAVs with
cellular networks, UAVs can be used in two categories. In one category, UAVs can be used
as aerial users where the UAVs use the cellular network for connectivity also known as
cellular-connected UAVs. The second category is that UAVs can be used as aerial platforms
for communication, i.e., UAVs can be used as cellular BS or relays, to provide extended
communication to the terrestrial networks and users, known as UAV-assisted wireless com-
munication [35]. In Release 17, there is a 5G enhancement for UAVs to provide extended
service to mobile users by using on-board UAV access nodes (UxNB). The UxNB provides
extended coverage in scenarios such as natural disasters, temporary coverage for mobile
users, and other emergency situations [36]. With the help of on-board UxNB access nodes,
the UAV can act as either a base station, where it is connected with the 5G core network,
or as a relay, where the UAV is connected with the terrestrial BS to provide extended
coverage, as shown in Figure 5. The telecommunications community has acknowledged
the importance of providing communication support to low-altitude UAVs in achieving
beyond-LoS control and developing a secure communication network. Only terrestrial or
satellite communication cannot satisfy the connectivity issues for terrestrial, aerial vehicles,
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and mobile devices. 5G communication needs to have non-terrestrial support such as
integration of satellite system to enhance its communication range and provide guaran-
teed service. The satellite enhances the 5G system by providing satellite access to allow
a radio coverage extension to the terrestrial networks, as well as extension to other 5G
terrestrial networks through a roaming agreement. The 5G systems define conditions to
avoid instability of the offered Quality of Services (QoS) when switching from the 5G
satellite access network to the terrestrial access network and vice versa. Security is a very
important issue for a UAV system, where it flies autonomously and beyond LoS communi-
cation. The UAV traffic management (UTM) system provides Command and Control (C2),
navigation, airspace management, traffic management, route planning, monitoring, etc.
to autonomous UAVs [37]. The UTM provides continuous C2 to the autonomous UAVs
based on the pre-schedule flying route and monitors its flight status, as shown in Figure 6.
However, we will concentrate on cellular-connected UAVs flying at a very low altitude
only. A cellular-enabled UAV allows the ground pilot to remotely control and operate the
UAV over an LoS range. It also offers an efficient way to establish wireless communication
between UAVs, end users, and UAV traffic controllers, regardless of their locations. Even
though cellular-enabled UAV communications provide advantages, there are still instances
where cellular networks are inaccessible, such as in remote locations, including the sea,
desert, or mountains. In such situations, the cellular networks integrated with satellite
systems can be used to enable UAV communications outside the terrestrial coverage of
cellular networks. In 5G systems, it is possible to integrate satellite communication to
extend its connectivity and communicate with UAVs.

Figure 5. UAVs acting as aerial platform (BS) using UxNB access nodes.

Figure 6. Cellular-connected autonomous UAVs controlled by UTM system.
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2.2. Related Works

There are three major types of ML algorithms, namely supervised learning, unsu-
pervised learning, and semi-supervised learning, which can be widely applied in various
networks including UAV networks to increase network security. These ML techniques are
also used in intrusion detection systems. An IDS has several benefits, including attack
detection, protection against violations, and recording existing threats to protect satellite
networks. Moreover, it acts as high-quality control for safe format and administration and
furnishes useful records about intrusions that occur. There are two main approaches to de-
tect intrusions, and they are based on signature and statistical anomaly. The authors in [38]
present an exhaustive survey on IDS based on CICIDS-2018 datasets. The CICIDS2018
is the most comprehensive Big Data, publicly available intrusion detection dataset that
encompasses a broad range of types of attacks. These authors examined numerous research
papers and compared their performance based on their ML models, computing environ-
ments and several performance parameter scores such as accuracy, precision, recall, area
under curve, etc. The CSE-CIC-IDS-2018 datasets can be a convincing dataset to evaluate
ML-based IDS in UAVs [39,40].

2.2.1. Related Works for CSE-CIC-IDS2018 Dataset

This section summarizes the research that has been done that leverages the CSE-CIC-
IDS2018 dataset to employ machine learning techniques. It also gives a quick review of the
main machine learning techniques and demonstrates how the CSE-CIC-IDS2018 dataset
can be used to evaluate and test different types of machine learning methods. To detect
network intrusion traffic and identify attack types, the authors of [41] used a variety of
deep learning frameworks. For training and testing, ten-fold cross-validation with an
80–20 or 70–30 split was utilized. The main drawback of this study is the use of only
one classifier. In [42], the authors analyzed how well the results of an intrusion detection
dataset can be generalized by integrating both CIC-IDS-2017 and CIC-IDS-2018. The authors
employed 12 supervised learning algorithms from various families to assess performance.
The assumption that some categorical characteristics, such as destination port, have the
same number of unique values in both datasets is a shortcoming of this study. This study
presents a taxonomy of deep learning intrusion detection models as well as a summary
of pertinent research publications. The KDD Cup 1999 [43], NSL-KDD [44], CICIDS2017,
and CICIDS2018 datasets were then used to test four deep learning models (feed-forward
neural network, auto encoder, deep belief network, and LSTM). The usage of KDD Cup
1999 and NSL-KDD, both of which are outdated and have recognized faults, is one of the
study’s drawbacks. The biggest issue with KDD Cup 1999 is a large number of duplicate
records [44]. NSLKDD is a better variant that avoids the problem of duplicated instances,
although it is still far from ideal. For instance, in the NSL-KDD test dataset, some attack
classes have no records. In [45], to detect Botnet attacks, the authors trained a two-layer MLP
using Python and Scikit-learn. The AUC for this study was one, which is a perfect score. All
of the related accuracy, precision, and recall ratings were perfect. The article is four pages in
length (with two references), and there is a noticeable lack of depth. Another disadvantage
is that it used just one classifier to evaluate the performance. In [46], the authors used DoS
datasets from the KDD Cup 1999 and CIC-IDS-2018 to train a CNN. Python and Tensor
Flow were used to create the model. The train-to-test ratio was 70–30 for both datasets.
The authors employed around 283,000 samples in KDD and approximately 11,000,000 in
CIC-IDS-2018. The use of the KDD Cup 1999 dataset, which, as previously mentioned,
is an older dataset with a significant number of redundant instances. This is one of the
fundamental flaws of the KDD Cup 1999 dataset.

Some papers [47] used outdated datasets to evaluate the IDS system using machine
learning such as KDD Cup 1999, NSL-KDD, and ISCX2012. These datasets are obsolete,
with a huge number of redundant occurrences compared to the rapid development of new
types of network technologies and introduction of newer cybersecurity attacks. Several
recent research papers detect IDS and malware utilizing various ML techniques. One of
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them is [48], which proposed a multi-dimensional feature fusion and stacking ensemble
mechanism (MFFSEM) machine learning in Network IDS to detect anomalous behav-
iors. They used their proposed scheme on multiple feature datasets to achieve global
multi-dimensional anomaly detection model in the real world. They claimed that their
scheme is superior to other ensemble approaches; however, they used old datasets such
as KDD Cup 99, NSL-KDD, UNSW-NB15, and CIC-IDS2017. They also did not include
decision-tree-pruning methods or optimal feature selection strategies. The authors in [49]
proposed ensemble-based classification using stacked ensemble of dense, convolutional
neural networks (CNN), and a meta-learner for malware detection in Windows Portable
Executable (WinPE) small operating system. They used Classification of Malware with
PE headers (ClaMP) dataset for this type of malware detection. Similarly, the authors
in [50] used ensemble-based ML methods such as random forest, extremely randomized
tree, and voting mechanism for web injection or webshell detection in lightweight and
heavyweight IoT computing scenarios. The authors used 1551 malicious PHP webshells
and 2593 normal PHP scripts for IoT security testing. The authors of [51] used DenseNet-
based deep learning model to classify malware by handling imbalanced data issues. This
model was evaluated on four malware datasets and can detect malwares move efficiently
than conventional malware detection. However, this paper needs to improve optimize the
false negative rates in detecting the malwares. Most of the above-mentioned related works
are based on malware detection, which is similar to host-based intrusion detection that
needs an agent or host on the machine. However, network-based intrusion detection is an
advanced and as precise detection system that can detect any type of intrusions on any
systems (i.e., network- or host-based). They can analyze outgoing and incoming traffic on
network interfaces. On the other hand, malware detection has difficulty detecting intrusion
based on network traffic only, and if the malware detection host is compromised, then the
attacker can disable the malware detection agent.

2.2.2. Recent Public Datasets

Recently, a few newer public datasets available based on network intrusion detection
have been introduced. One of them is the Boğaziçi University (BOUN DDoS) dataset, which
is of resource-depletion DDoS attacks [52]. It was generated and recorded from router
backbone mirrored ports at the Bogazici University campus environment. The datasets
include non-attack and attack traffic such as TCP SYN, and UDP flooding packets based on
Hping3 traffic generator software by flooding. There are some advantages of BOUN DDoS
datasets. It provides simple resource depletion-type DDoS attacks on a campus network,
which are suitable for generating and analyzing network-based attack detection methods. It
consists of different intensities of attacks to help researchers to train and estimate their IDS
methodologies for different attack densities. BOUN dataset consists of genuine background
internet traffic combined with DDoS attack traffic. These datasets provide easier simulation
and analysis because of small file sizes and fewer packets compared to other datasets,
which helps researchers to import datasets in different research software platforms easily.
However, BOUN DDoS dataset has limitations when it comes to achieving the task we
are trying to solve in this paper. It only consists of only basic attack types such as DDoS
attack, TCP SYN flood, UDP flood attack. BOUN DDoS has not been widely adopted by
the research community as a benchmark dataset. The datasets have been used in academia
but only by the authors who generated them.

Similarly, the LITNET-2020 dataset is a new annotated network benchmark dataset
that contains real-world network traffic data and under-attack data samples from the
academic networks environment captured over 10 months [53]. It consists of 85 network
flow features that can be used to recognize 12 network attacks. The dataset features were
analyzed based on statistical analysis and clustering methods. Some advantages of these
datasets are as follows: It contains real-world network traffics, unlike other datasets, which
were generated synthetically. The datasets are freely available for research purpose and
can be used to benchmark network intrusion datasets. The datasets were accumulated
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over a longer period than other datasets, i.e., 10 months. It is therefore very helpful for
researchers and academicians working in the cybersecurity domain. However, for the
task we are trying to solve, they have some limitations. These datasets are new datasets
that have not yet been widely adopted by the research community as benchmark datasets.
For analysis, we used datasets that have been widely accepted, used, and analyzed by
researchers and academicians such as CIC-IDS2018 datasets. The LITNET-2020 dataset lacks
some of the popular attack types such as DDoS attacks, brute-force attacks, BoTnet, and
infiltration attack types. Nevertheless, LITNET-2020 dataset might present an important
contribution to the research community by enriching the number of datasets accessible
for the development and refinement of new network-attack identification systems. This
dataset has the potential to be adopted in new research for NIDS.

3. System Model

There will be a large number of UAVs, terrestrial vehicles, and smart devices in urban
cities in the near future, and there are already millions of smart phones. It is important to
ensure security of UAVs against attackers: if the attackers compromise UAVs, then they
might crash into urban locations, causing serious damage. We need to provide an efficient
security mechanism to the UAV system, and there are some requirements to be fulfilled.
Thus, the potential requirements of the 5G-satellite system can be defined as follows:

• A 5G system supporting satellite access and massive Machine-Type Communica-
tions (mMTC) should also support UAV communication based on the 5G-satellite
access network.

• A 5G system should have multiple access points including satellite networks and
terrestrial access mobile networks, combined with a machine learning based firewall.
In 5G Core (5GC), a machine learning-based, intelligent Next Generation Firewall
(NGFW) provides protection across all these access points. Thus, NGFW helps to
achieve multiple network slices, as shown in Figure 7.

• One of the requirements is the selection of satellite and terrestrial access networks.
The selection should be based on operator policy, subscription settings, QoS settings,
and security policies.

The description of our security system model is shown in Figure 7 and is discussed
below. In this approach, different types of traffic from various devices/services can be
divided into slices, from slice 1 to slice n. As the 5G core and RAN are software-defined, it is
feasible to implement NGFW based on machine learning techniques and AI. The AI enabled
software-defined help to examine network packet flows for anomalies. In this model, traffic
is fed into the firewall component and analyzed with various machine learning techniques.
The flows that are identified as anomalies, i.e., the packet flows that behave abnormally,
are flagged as malicious, and the policies are updated to terminate these flows. The policy
updates are then sent to the SDN controller to terminate the appropriate flows or drop
packets. The SDN controller then provides proper routing and management of traffic
entering into virtualized core network components.

Some of the key threats based on DDoS and DoS attacks that impact the 5G networks
security (including data integrity protection, and data encryption) can be mitigated by
using this model. By using a slice-based approach, security policies can be customized and
configured based on the sensitivity of the data within the slice. This approach can assist
in providing a greater degree of protection for a large variety of services that are expected
to operate on 5G networks. The threats and vulnerabilities in 5G and UAV networks are
shown in Figure 8. Additionally, by looking at lower-level network traffic such as flow-
based statistics and not using deep packet inspection, network traffic can be analyzed in
an encrypted state, removing the overhead and additional complexity of decrypting data
for analysis and then re-encrypting, which will reduce latency as well. The effectiveness of
flow-based analysis using machine learning is demonstrated in the results section.
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Figure 7. End-to-end model describing slice-based software defined security.

Figure 8. Threats in the 5G and UAV networks.

3.1. UAV Threats and Vulnerability

Due to the UAV wireless communication system and its unmanned nature, UAV
is not free from security attack and vulnerabilities, but instead the security issue that is
even more serious. There are several security attacks issues in UAV as well as in the 5G
network that have received considerable attention in recent years. UAVs occasionally face
security threats of various types, such as malicious messages being sent to UAVs, and
hackers interfering with ECUs and attempting to reverse engineer their micro-controllers,
software, and so on. We will discuss some of the UAV security issues and threats in this
section [54,55].

3.1.1. Man-in-the-Middle (MITM) Attack

In an MIMT attack, the malicious attacker places rogue access point between the
endpoints of the target communication; i.e., the attack is carried out on the legitimate Wi-Fi
links between the UAVs and the pilot. The attacker can gather active network information
using wireless monitoring equipment and then reads and potentially changes the message
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exchanged between the nodes. As a result, the attacker takes over the UAVs under his
control. This attack leads to eavesdropping, hijacking, and data tampering.

3.1.2. Hijacking

The adversary can hijack the radio or connection links between the UAVs and the
ground controller by de-authenticating the management frames, which disconnects the
connection. As a result, the adversary might take control of the UAVs and operate them
according to his or her wish. As a result, this might cause the UAVs to crash or cause
serious injuries.

3.1.3. Eavesdropping and Spoofing

Another prominent attack issue is eavesdropping and spoofing when attackers obtain
critical information by listening to the communication between source and destination
points via spoofing the Address Resolution Protocol (ARP) packets. In UAVs, once a
hacker obtains the secret keys of the UAV, the whole device is compromised. The hacker
can eavesdrop and steal their data through the open communication channel. In case of
spoofing, the intruder will impersonate other UAVs and then take control of the UAV
system by providing false information. GPS spoofing is a typical example of a spoofing or
forgery attack in UAVs.

3.1.4. Denial of Service (DoS)

In a DoS attack, the attackers flood the controller with numerous requests, causing a
network overload that depletes the bandwidth and resources to the UAV. The adversaries
might use Telnet software to send several requests to the controller. Thus, the communica-
tion between the UAV and its controller is disrupted, and as a result, the UAVs may behave
abnormally and might crash. Some other effects of DoS attacks on UAVs can be battery
exhaustion, poor performance, latency, and system seize.

3.2. 5G Threats

The 5G telecom network is divided into four major network elements: RAN, core
network, transportation network, and interconnection network. Again, each of the network
elements consists of three planes for carrying various types of network traffics: control
plane, user plane and management plane. These planes are vulnerable to new threats if
they are exposed to the attackers. Furthermore, there are threats in 5G cellular networks,
which are classified by authentication and privacy approaches, meaning pattern behavior
of the attacks in 4G and 5G networks [56]. There are other classifications according to
various metrics including passive or active, internal, external, etc. Four clusters of attacks
have been described in [12,56], (1) attacks against privacy, (2) attacks against integrity, (3)
attacks against availability, and (4) attacks against authentication. All of the mentioned
threats are given in Figure 8. Some of the threats in 5G are discussed below.

3.2.1. Attacks against Privacy

In this category, there are fourteen attacks including MITM, eavesdropping, parallel
session, reply attack, impersonation attack, collaborated attack, tracing attack, spoofing,
privacy violation, adaptive chosen cipher text attack, chosen-plaintext cipher text, stalking,
masquerade, and disclosure attacks [57,58]. It should be mentioned that the most important
attack among them is MITM, when the false BS acts as a real BS [57].

3.2.2. Attacks against Integrity

According to [56], there are six attacks in this category, which are as follows: tempering
attack, message insertion attack, message modification attack, cloning attack, message-
blocking attack, and spam attack. The attack against integrity occurs when data are transmit-
ted between the 5G nodes and mobile users although hash functions are mostly used for
assuring the integrity of exchanged data.
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3.2.3. Attacks against Availability

This category has six classes of attacks, including First in First out (FIFO), redirection,
physical, and free-riding attack. This category can make a service such as a data routing
service unavailable [56]. The FIFO attack can occur via robust adversary when the entering
time and exiting time intervals are gathered. When an adversary obtains the information
of the correct user, it can amplify its wrong signal strength to redirect or can impersonate
itself as a right BS in 5G cellular networks.

3.2.4. Attacks against Authentication

This category includes ten different types of attacks, which are password reuse, pass-
word stealing, dictionary attack, brute force attack, de-synchronization attack, verifier leakage,
forgery attack, partial-message collision, and stolen smart card attack. The authentication
attack disrupts the authentication of the client to the server and vice versa. Password reuse
and password stealing occur when an attacker shows itself as a legitimate user in order to log
in to the server by guessing various passwords. In the stolen smart card attack, an attacker
can disrupt the smartcard-based user password authentication schemes and then remotely
achieve vital information without having access to the real passwords [57].

As a result, in order to provide an acceptable level of security in UAVs, several
important factors, including reliable ID, reliable SW, secure configuration, trustworthy
data, safe communication, privacy, and physical security, should be take into account, as
shown in Figure 9. The 5G systems are expected to provide connectivity and other types of
services to a large number of devices simultaneously. Such networks, including UAVs, may
send or receive an infrequent or frequent small numbers of data, which are transmitted
over the air interface and are vulnerable to eavesdropping. In addition to the protection of
small data from eavesdropping at the application layer, it also protects the lower layers
and protects against eavesdropping of headers such as IP headers.

Figure 9. UAV security criteria.

A large number of UAVs acting as UEs performing similar actions at the same time
can easily lead to a signaling attack on the network. If such an attack persists and is not
dealt with appropriately, it brings a risk for other users in the network. As such, mitigating
measures should be designed to protect the network against such attacks. For this key
issue, it is assumed that the malicious behavior on the UAV is the result of an attacker with
access to the UAV application, which can instruct to make certain requests to the network.
An attacker could have obtained this access through the over-the-top service and could for
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example instruct the UAVs to set up dedicated bearers or request access to certain network
slices [59].

The mitigation of the attack by software and appliances is usually deployed at the
central position of the architecture. Thus, latency can be seen because network traffic has to
be changed and prepared from the initial main path and then sent back to the destination,
which is not the optimum approach. Furthermore, other sections such as core routers,
switches, and firewalls must be pre-configured to mitigate attacks and allow the traffic
diversion after the mitigation has been done. The SDN-based approach is a networking
paradigm that has gained traction due to its dynamic functionality in programming net-
works and increasing network visibility. It is gaining popularity due to its ability to separate
control and data planes of the networking infrastructure and assists in minimizing security
vulnerabilities in various networks, such as UAV networks. One of the SDN controller
advantages is that it knows the network topology and infrastructure and thus can monitor
the traffic network. The SDN controller offers integrated security functions, which are
routing, firewalling policies, and service chaining enablement, which provides dynamic
security in the network via the controller. An NFV can be used in coordination with an SDN
to assist in attack avoidance and network analysis. The NFV concepts deploy complicated
network functions in commodity hardware and direct the traffic flows to the right network
elements through the application of service chaining dynamically. In other words, NFV
enables the development of network-based softwareized tools that can enhance in the
security of data transmission networks. When anomalies are discovered, NFV functions
will be used to mitigate potential threats. The final model is presented as Software-Defined
Security (SDSec). According to the proposed architecture, designing a security approach,
which protects the systems from DDoS and Malware attacks, becomes more complicated
and dynamic. By introducing the concepts of SDN and NFV, the design of SDSec will be
as follows:

• The softwareized components of the network, i.e., the NFV version of routers, switches,
and firewalls, should be integrated with the SDN environment, which enables the
monitoring topology types and manages the softwarized devices (NFV functionalities)
directly and indirectly via their own element managers.

• SDN controllers have the capability to control the traffic flows and communication
between points and to implement the security policy. Additionally, information on
the network and the traffic analytics can be collected and processed by the SDN.

• Network security components can be applied through northbound APIs with the SDN
controller in order to detect and respond to spoofing DDoS attacks. The advantage of
SDN is that it can efficiently detect the DoS attacks and achieve optimal network wide
effectiveness; however, it enforces overhead to the network access as well as overhead
to network utilization performance.

3.3. Intrusion Detection System

Using IDS has several benefits, including attack detection and protection against
violations, and recording existing threats to protect satellite networks. Moreover, it acts
as high-quality control for safe format and administration, furnishes useful records about
intrusions that occur. There are two main approaches to detect the intrusion, and they are
based on signature and statistical anomaly as shown in Figure 10. The signature-based IDS
is able to evaluate the data traffic in the behavior of signature, known identity, or patterns
that have similarity with existing signatures. There are many definite and distinguished
signatures, which are known for attackers; thus this method can broadly be applied.
The statistical anomaly-based technique can be applied for new kinds of attacks; thus much
greater overhead and processing capability is required in comparison to the signature-
based approach. However, the anomaly-based technique defines and characterizes accurate
static form and ideal dynamic behavior of the system. It is popular among researchers
due to its potential in detecting new types of attacks efficiently. Basically, there are three
types of IDS, and they are classified as network-based, host-based, and application-based.
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The network- based IDS (NIDS) can reside on computer or appliances, which are connected
to a segment of an organization’s network and search for attack patterns when examining
packets. Another advantage of NIDS is that it can be installed at a specific place, where it
controls incoming and outgoing traffic. The Host-based IDS (HIDS) detects those types
of attacks where the intruder creates, modifies, or eliminates the authentic system files or
log files. In comparison to NIDS, it can usually be installed at any place, so it provides
encrypted information access when transmitting over the network. Application-based IDS
(AppIDS) investigated applications consisting of database management systems, content
management systems, and accounting systems for abnormal events. In addition, AppIDS
can be designed to block requests such as file system, network, configuration and execution
space. One of the significant advantages of AppIDS is that it can interact with users and
applications as well as operate on incoming encrypted data.

Figure 10. Intrusion detection system classification.

In this paper, we use network-based anomaly detection techniques to detect any new
types of intrusion in the UAV networks. The UAVs fly in groups and communicate with
each other by sharing critical information such as route information, traffic payload (such
as multimedia and images), command and control information, and location information.
As a result, it is critical to protect these information exchanges against malicious attackers by
using IDS, who might try to leverage the vulnerabilities of wireless networks to disrupt the
UAV operations. The anomaly-based technique used in this paper is an attempt to detect
all the malicious traffics that harm the networks as well as the UAVs as early as possible to
decrease the number of adverse effects. In the next section, we discuss the different types
of machine learning techniques to detect various types of attacks in UAV system.

4. ML Approaches to Detect Attacks

There are many ways to create security in UAV networks, and among them, we use
anomaly detection using ML algorithms in order to increase the accuracy of 5G-transmitted
packets. Anomaly detection is not a novel field of research in machine learning systems,
and recent research has focused on a wide range of machine -learning-based applications.
First of all, 5G packets are recorded in the network. More clearly, we gather a total number
of records, which are divided into two classes, including the number of normal records
and attack records. In the considered dataset, 80% is allocated to train ML algorithms
and 20% for testing algorithms. After training the mentioned ML algorithms, in testing
records, a number of randomly selected packets are used for detecting legitimate or attack
packets. Thus, UAVs based on 5G networks can be evaluated by these real data. Moreover,
this structure operates like a firewall that controls and eavesdrops on 5G-based UAV data.
If controlled data are confirmed as correct, then they can pass through the other nodes of
networks, but if they are detected as an attack, then they is not allowed to enter the network.
The rest of section provides a review of machine learning algorithms that are applied in
this paper. Three major types of ML algorithms, namely supervised learning, unsupervised
learning, and semi-supervised learning, can be widely applied in UAV networks in order
to increase network security. The ML classifiers used in this paper are: Logistic Regression
(LR), Linear Discriminant Analysis (LDA), K-nearest Neighbor (KNN), Decision Tree (DT),
Gaussian Naive Bayes (GNB), Stochastic Gradient Descent (SGD), and K-means (K-M).
These ML classifiers add a label to the network features of UAV nodes in order to create a
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classification or regression model [60,61]. A brief description of the mentioned algorithm
are discussed as follows:

• LR Algorithm: This method is applied for binary classification problems with two
class values. Logistic regression is widely used to evaluate and explain the relationship
between a binary real variable such as success or failure and predictor variables. It
uses a logistic function for classification logistic regression. Modeling the mean of
the response variable for a given set of predictor variables is one of the significant
objectives of this algorithm [62].

• LDA: LDA is a well-known method to reduce and classify the projects that have high-
dimensional data and create low-dimensional space to efficiently obtain a separate
maximum class. In fact, an LDA classifier linearly combines original features. By si-
multaneously minimizing the samples of a class distance and maximizing distance
between class categories, optimal design in LDA algorithm can be achieved [63].

• KNN: For both classification and regression objectives, KNN is an ideal choice in
predictive problems. However, most of its applications are related to classification
problems in the industry. It has three prominent benefits, including easy interpretation
of output, predictive power, and calculation time. The classification is done based
on the majority of neighbors of the considered case. This means the case is assigned
to the class where the most similarities are observed among its K nearest neighbors,
calculated using a distance function.

• DT: In DT, a decision-making method is used that is a tree-like model of the decisions
and their potential outcomes that helps to reach a goal. In a DT classifier, a collection
of test questions and conditions are designed in a tree shape. The internal nodes in
DT include test conditions to divide records, which have different features. A class
label including success or failure is assigned to all the terminal nodes. Then, DT
recursively selects the best features to separate the data and develops the clusters as
the leaf nodes of the tree until its iteration criterion is met. When the decision tree
is built, a tree-pruning step can be applied to decrease the size of the decision tree.
A decision tree model with many branches and leaves that is too large is known as
overfitting [64].

• GNB: Another classification algorithm for binary (two-class) data is Naive Bayes,
which is appropriate for multi-class classification problems. Initially, the Gaussian
Naive Bayes classifier specifies the total number of classes and then computes the
conditional probability for each dataset class. Then, for each feature, the conditional
probability can be calculated.

• SGD: A stochastic gradient descent algorithm uses regularized linear models with
stochastic gradient descent. In an SGD method, one random point is considered while
changing weights, in contrast to gradient descent, which takes into account all of the
training data. When there is a huge number of datasets, stochastic gradient descent is
the faster choice than gradient descent.

• K-M: K-means clustering is classified as unsupervised learning, and it is used when
data are unlabeled, such as data without definite categories or groups. The initial
goal of this classifier is to find a cluster in the whole data that the number of clus-
ters represents the variable named K. The algorithm iteratively performs until each
data point is assigned to one of K clusters according to the features that are con-
sidered. In conclusion, data points are clustered based on the similarities that exist
between features.

In this paper, we use datasets from CSE-CIC-IDS 2018 on AWS, which provides a good
understanding of intrusion configurations and characteristics. It is a collaborative project
between Communications Security Establishment (CSE) and the Canadian Institute for
Cybersecurity (CIC) that began in 2018 [29]. A systematic approach was used to generate
the datasets for testing, analyzing, and evaluating the IDS considering the network-based
anomaly detectors. It uses the profile concept to produce datasets in a systematic manner
that gives comprehensive explanations of intrusions as well as abstract distribution models
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for programs, protocols, or low-level network entities. It provides an extensive benchmark
dataset for IDS that comprises representations of events and behaviors observed in the
network. Individual operators may use these profiles for a diverse range of network
protocols with different topologies to create network events because of the abstract nature
of the profiles. The applied dataset has a complete description of intrusions for applications,
protocols, or lower-level network entities and is widely used for test and evaluation of
intrusion detection algorithms. The dataset consists of six different attack scenarios such as
Botnet attack, HTTP denial of service, Collection of web application attacks, infiltration
of the network attacks, brute force attacks, and DDoS attacks. A detail information on
these attack scenarios can be found in [29]. It includes 6,437,330 normal records and
1,656,840 total attack records, while it has 20% test records and 80% training records.
The complete illustration of attack distribution types within CSE-CIC- IDS2018 dataset is
demonstrated in Table 1.

Table 1. Table of attack records.

Category Attack Number Train Test

Bot 286,191
Botnet

Benign 762,384
838,860 209,715

GoldenEye 41,508

Hulk 461,912

SlowHTTPTest 139,890

Slowloris 10,990

Dos

Benign 1,442,849

1,677,719 419,430

Web

Brute Force-Web 611

Brute Force-XSS 230

SQL Injection 87

Benign 2,096,222

1,677,720 419,430

Infilteration 161,934
Infilteration

Benign 782,237
755,336 188,835

FTP-BruteForce 193,360

SSH-Bruteforce 187,589BruteForce

Benign 667,626

838,860 209,715

HOIC 686,012

LOIC-UDP 1730DDos

Benign 360,833

838,860 209,715

5. Experimental Results
5.1. Experimental Setup

In this sub-section, we discuss the experimental setup. We use Python programming
language because, it is easy to use and is a desired application development platform for
many application areas. Python has many ML libraries, including internet protocols, string
operations, web services tools, and operating system interfaces. In Python, Scikit-Learn
is available, whic is an open-source library. It permits implementation of several ML
algorithms such as classification and clustering. Some of the libraries used to process the
datasets are Pandas, Numpy, and Sklearn. In particular, n-fold cross-validation (usually
10-fold) and train-test split (normally 70–30 or 80–20) are two typical schemes for evaluating
machine learning models. When the number of samples in certain categories is small or
disproportionate, n-fold cross-validation is typically employed, but the train–test split is
often used when the dataset has a significant number of samples in each category. We
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used cross-validation with 10 folds in this paper. As mentioned in the previous sections,
logistic regression, linear discriminant analysis, KNN, decision tree, and Gaussian Naive
Bayes have been used and compared in terms of accuracy, precision, recall, F1 Score, false
negative rate, etc.

A confusion matrix, which is also known as an error matrix, includes prominent
information about real and predicted output classes. A confusion matrix is a table that is
used to represent the output of a classification model (or “classifier”) on a collection of test
data whose true values are known. The outcomes of the classification are divided into two
classes, i.e., correct and incorrect classes. The confusion matrix for the intrusion detection
is given in Table 2. A confusion matrix with specific layout visualizing the performance of
ML algorithm is created for each ML classifier. The main elements of the confusion matrix
are presented as follows:

• True Positive (TP): A TP rate shows the number of attack packets that are correctly
classified as attacks.

• True Negative (TN): The number of normal packets that correctly classified as normal
packets is known as the TN rate.

• False Negative (FN): FN is an incorrect classification where the attack packets are
considered normal packets. The FN rate will increase when the number of attack
packets that are incorrectly classified as normal packets grows, such it will be antici-
pated that a serious problem occurs in network resources in terms of confidentiality
and availability.

• False Positive (FP): FP refers to when the normal packets are incorrectly classified
as the attack packets. The value of FP will grow, which leads to an increase in the
computation time. Clearly, the effect of this incorrect classification is less harmful than
increasing the FN value.

Table 2. Confusion Matrix.

Confusion Matrix
Prediction

Positive Class Negative Class

Actual
Normal TP FN

Anomaly FP TN

5.2. Results

In general, for IDS, recall and precision values are appropriate choices, but other
important valuesl including FP rate and FN rate, are serious factors. In IDS, FN and FP
parameters should possibly be reduced, specifically, the FN parameter, which demonstrates
that the portion of attacks classified as legitimate packets. According to the definition of
precision, when the value of precision is low, it means the classifier has a high percentage of
false-positive value. Hence, many normal packets are classified as attack packets, so it has
a lower effect in comparison to the FN rate. For a better understanding of recall parameter,
the lower percentage of it can be interpreted that the value of FN is high, and thus the huge
portion of attacks can be found as a normal packet that shows this kind of classifier has a
large value of attack classification process. In terms of F1 score, a higher value of F1 score
means fewer incorrectly classified packets (i.e., normal-to-attack and attack-to-normal) and
vice versa. Accuracy rate indicates correctly classified normal and attack packet to the
total packets.

A Botnet attack is the first attack that was evaluated with the above-mentioned ML
algorithms. As can be seen in Table 3, KNN and DT classifier have similar output, but DT
has better FNR and incorrectly classified packet. K-M has the worst accuracy rate and the
highest incorrect classification value.

In Table 4, we present the evaluation of DoS attacks with respect to various ML
algorithms. The DT and KNN indicate high accuracy rates with the highest correctly
classified data, respectively. The DT has 0 FNR with 1 precision, recall, and F1-score value.
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However, the LDA classifier has a 99.02% accuracy rate, and its FNR is 0.014, which shows
that a nearly huge portion of attacks are known as normal packets as compared to DT and
KNN. The K-M classifier has the lowest accuracy rate at 37.67% and a high FNR of 0.897,
as can be seen from the table.

Table 3. Botnet Attack.

Botnet AR P R F1 FNR CC IC

LR 88.06% 0.867 0.666 0.753 0.038 184,692 25,023

LDA 94.45% 0.84 0.984 0.907 0.07 198,095 11,620

KNN 99.99% 1 1 1 0.00004 209,705 10

DT 99.99% 1 1 1 0.00001 209,712 3

GNB 76.15% 0.534 0.999 0.696 0.328 159,708 50,007

SGD 90.30% 0.901 0.726 0.804 0.03 189,386 20,329

K-M 61.93% 0.002 0.001 0.001 0.148 129,891 79,824

Table 4. DoS Attack.

Dos AR P R F1 FNR CC IC

LR 87.81% 0.743 0.932 0.827 0.146 368,337 51,093

LDA 99.02% 0.97 0.999 0.985 0.014 415,355 4075

KNN 99.94% 0.999 1 0.999 0.001 419,210 220

DT 99.99% 1 1 1 0 419428 2

GNB 76.95% 0.577 0.981 0.726 0.326 322,792 96,638

SGD 87.66% 0.79 0.824 0.806 0.099 367,706 51,724

K-M 37.67% 0.331 0.982 0.496 0.897 158,004 261,426

Regarding web attack in Table 5, the GNB classifier indicated the lowest accuracy, 20.19%,
of all ML techniques, while K-M, SGD, DT, KNN, LDA, and LR had nearly the same AR.
However, among them, DT and KNN indicate higher precision values, i.e., 0.962 and 0.904, so
there is a lower number of normal packets that are wrongly assigned to the attack class.

Table 5. Web Attack.

Web AR P R F1 FNR CC IC

LR 99.95% 0.818 0.049 0.093 0.000005 419,254 176

LDA 99.71% 0.067 0.421 0.116 0.003 418,253 1177

KNN 99.99% 0.904 0.88 0.892 0.00004 419,391 39

DT 99.99% 0.962 0.978 0.97 0.00002 419,419 11

GNB 20.19% 0.001 0.973 0.001 0.798 84,722 334,708

SGD 99.77% 0 0 0 0.002 418,500 930

K-M 99.95% 0 0 0 0.000002 419,246 184

Table 6 illustrates Infiltration attack, where GNB has the maximum FNR value of 0.922
and can be interpreted as large number of attack packets misclassified as normal packets.
In contrast to GNB, the LR classifier obtained the lowest FNR, i.e., 0, but at the same time
LR also had a lower accuracy rate of 82.76%. That means it had a high FP rate, meaning a
huge number of normal packet were interpreted as attack packets. However, LR classifier



Electronics 2021, 10, 1549 20 of 28

did not reach the maximum value of the accuracy rate, and it achieved the lowest FN rate
and it needed low time demand for creating the training model.

Table 6. Infiltration Attack.

Infiltration AR P R F1 FNR CC IC

LR 82.76% 0.759 0.003 0.005 0 156,292 32,543

LDA 82.86% 0.583 0.026 0.05 0.004 156,475 32,360

KNN 80.29% 0.431 0.443 0.437 0.122 151,630 37,205

DT 86.57% 0.616 0.59 0.603 0.077 163,490 25,345

GNB 22.67% 0.175 0.939 0.295 0.922 42,822 146,013

SGD 82.53% 0.231 0.005 0.01 0.003 155,860 32,975

K-M 74.76% 0.148 0.097 0.118 0.117 141,176 47,659

Table 7 presents Brute Force Attack, where we can see the highest accuracy rate for DT,
KNN, and LDA classifier at 99.99%, 99.96%, and 99.77%, respectively. However, among all
of them, GNB shows the highest FNR value, 0.64, and has the lowest accuracy rate of
59.26%. Moreover, the LR algorithm has a higher FNR of 0.155, which means that LR can
incorrectly classify attack packets as normal packets.

Table 7. Brute Force Attack.

BruteForce AR P R F1 FNR CC IC

LR 81.18% 0.736 0.754 0.745 0.155 170,252 39,463

LDA 99.77% 0.994 1 0.997 0.003 209,252 463

KNN 99.96% 1 1 1 0 209,696 19

DT 99.99% 1 1 1 0 209,715 1

GNB 59.26% 0.472 1 0.641 0.64 124,283 85,432

SGD 88.34% 0.912 0.752 0.824 0.042 185,274 24,441

K-M 63.61% 0 0 0 0 133,413 76,302

For the DDoS attack give in Table 8, all ML algorithms showed excellent performance
based on accuracy rate, precision, recall, and F1 score. The K- M classifier performed tbe
worst in detecting DDoS attacks based on different metrics, and it was the worst classifier
to be used to detect a DDoS attack. It obtained the lowest accuracy rate of 34.39% with an
FNR value of 0.005, which can be interpreted as showing that there were a number attacks
classified as having a normal value.

Table 8. DDOS Attack.

DDOS AR P R F1 FNR CC IC

LR 99.99% 1 1 1 0.00001 209,714 1

LDA 99.99% 1 1 1 0 209,706 9

KNN 99.99% 1 1 1 0.00003 209,712 3

DT 99.99% 1 1 1 0 209,715 1

GNB 99.99% 1 1 1 0.00006 209,710 5

SGD 99.98% 1 1 1 0 209,680 35

K-M 34.39% 0.488 0.003 0.005 0.005 72,136 137,579
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6. Discussion

In this section, we summarize our experimental results to determine the efficiency of
ML algorithms to detect various types of attacks based on selected critical IDS parameters
such as accuracy, precision, FNR, and F1 score. We present the following results to analyze
the best ML algorithm that can be used for IDS.

The analysis of the numerical ML algorithms can be itemized in the following items:

• The DT reached the maximum value for accuracy rate compared to all other types of ML
classifiers, as indicated by the yellow bar shown in Figure 11. It obtains a 99.99% accuracy
rate for Botnet, Brute force, DoS, DDoS, and Web attacks. DT has the lowest false negative
rate value of 0.001%, as shown in Figure 11. KNN had second highest accuracy rate in
detecting different types of attacks, as indicated by the gray bar. The accuracy rate of
KNN is slightly less than that of DT classifier. On the other hand, GNB has the worst
accuracy in detecting all types of attacks. The GNB algorithm shows the lowest average
accuracy rate of 20.19% with the smallest precision value of 0.001.

Figure 11. Accuracy of different ML approaches based on various attack types.

• The precision of DT is pretty good in terms of detecting most of the attack types,
as can be seen from Figure 12. However, its precision performance is quite lower
than that of other ML algorithms in detecting infiltration attack. The GNB classifier
precision is lowest among all other ML classifiers. In detecting the DDoS attack, all
the machine learning classifiers perform well and have higher precision rates except
the GNB classifier.

Figure 12. Precision of different ML approaches based on various attack types.
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• The FNR is one of the most important parameters in evaluating the IDS. The lower
the FNR, the better it is. In Figure 13, the GNB shows the worst FNR performance
in detecting various attacks. The LR and K-means algorithm also performs badly in
terms of FNR against various attacks. The K-means performs the worst in detecting
DoS attacks, with the highest FNR value of 0.897. Most of the ML algorithms have a
higher FNR in the case of infiltration attack; however, K-means performs better than
any other ML algorithms, with an FNR value of 0.148.

Figure 13. False Negative Rate (FNR) of different ML approaches based on various attack types.

• Similarly, in the case of F1 Score, the higher value of F1 score represents a lower rate
of incorrect classified packets; i.e., higher the F1 score, the better it is. F1 is considered
the best when its F1 score is 1, whereas the model is a failure when the F1 score is 0.
The DT has the highest F1 score value in detecting various types of attacks. KNN also
performs well compared to the DT classifier, while LDA performs slightly lower than
DT and KNN. However, K-means and GNB has the lowest F1 score value compared
to other ML algorithms, as can be seen in Figure 14.

Figure 14. F1 Score of different ML approaches based on various attack types.

Thus, the overall performance of DT classifier is better than any other ML classifier for
ML based IDS. It shows the maximum percentage for detecting normal packets correctly
followed by KNN. There was no considerable difference between KNN and K-means
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classifier based on FNR parameters in case of infiltration, Brute force and web attacks.
The K-means and GNB performs worst among all other ML algorithms.

We also compared our results with the results of other authors’ work on the same
benchmark dataset, i.e., CSE CIC-IDS2018. We mainly compared our results based on accuracy
obtained using Botnet attacks. Botnet attacks are common attack used by all other authors. All
the authors used various ML algorithms to detect specific attack cases. A comparison is given
in Table 9. It should be noted that the result for DT is as achieved by the authors in [65], with a
99.99% accuracy rate for the Botnet attack. Moreover, the accuracy rate for KNN is 99.984%
in [65], which is same as our result. The result achieved by the authors in [66] is similar to our
case, which is about 99.99% for KNN and DT and almost same as our result, but our results
are slightly better than [9] in the case of the LDA algorithm.

Table 9. Accuracy comparison based on Botnet attack on the same benchmark dataset.

Ref. Authors DT KNN LDA GNB

[65] Huancayo et al. 99.99 99.98 — 90.24

[66] Karatas et al. 99.99 99.97 93.34 99.94

[67] Qusyairi et al. 98.6 — — 73.6

[68] LinPeng et al. 96.2 — — —

[69] Khan 97.75 — — —

Ours 99.99 99.99 94.45 76.15

The ROC curve is a graphical approach for displaying the trade-off between the true-
positive rate and the false-positive rate of a model. The area under the ROC curve (AUC)
is its quantitative indication, and it indicates how well the identified model performs.
To make the detection effect more clear, the Receiver Operating Characteristic (ROC) curves
of the ML models for DDoS are presented in Figure 15. The areas under the ROCs for
most of ML technieques are quite good at detecting DDoS, except the K-means algorithm.
The ROC curve for BotNet attack is given in Figure 16. The DT performs better in detecting
the BotNet, while K-means, GNB, and LR perform worst among other ML techniques.
Similarly, Figure 17 shows the ROC for BruteForce attack, the performance of K-means,
GNB, and LR is worst compared to other ML techniques. Similarly, Figures 18 and 19 show
the AUC curve of web attack and DoS attack, and in both cases, the DT performs best
among all other ML techniques.

Figure 15. The ROC curves of ML models for DDoS.
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Figure 16. The ROC curves of ML models for Botnet.

Figure 17. The ROC curves of ML models for Bruteforce.

Figure 18. The ROC curves of ML models for.
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Figure 19. The ROC curves of ML models for DoS.

7. Future Works

In this paper, we have discussed the IDS based on ML techniques for 5G satellite-
connected UAV networks to provide secure communication. However, in the future, the sky
will be filled with massive numbers of UAVs and other flying objects such as flying taxis
and air cargo vehicles at different airspace levels. Thus, for massive UAV connections,
and for providing seamless connectivity, communication beyond 5G and 6G will be used.
These new communication technologies can help in UAV traffic management systems in
urban scenarios. However, security will still be an important issue. The 5G Ultra-Reliable
Low-Latency Communications (URLLC) applications provide temporal and short packet
transmission, achieving 99.999% reliability with 1ms latency. However, UAVs require
higher reliability and very low latency for communication and control of the aircraft for
real-time applications such as mission-critical applications. To overcome these issues, new
adaptation and learning capability in machine learning methods (e.g., artificial neural
networks) along with communication beyond 5G and 6G will be required. At the same
time, more advanced software and artificial-intelligence-defined security algorithms will
be needed that can identify the attacks and counter them in an optimum way. Moreover,
current SDN and NFV ideas must be enhanced with embedded intelligence for robustness
to meet the objectives beyond 5G and 6G [70,71]. In this context, the security mechanism in
containerized Virtual Network Function (VNF) boxes in gateways will observe 6G traffic
based on new ML techniques that will help to detect threats and mitigate attacks. Thus,
in the future, we will study how technology beyond 5G and 6G will incorporate the concept
of NFV, SDN, and ML to provide essential service for UAVs and how they provide efficient
end-to-end network security based on IDS.

8. Conclusions

We designed a model for a 5G software-defined security system to show the benefits
of machine learning in a satellite and UAV network for threat detection. We used various
types of ML algorithms in networked based intrusion detection to detect new types of
intrusion in the UAV networks. The efficiency and performance of various ML algorithms
has been verified based on different parameters. The results demonstrate that there is
no unique machine-learning algorithm that succeeds in preventing all types of attacks.
However, the decision tree obtained the minimum value of false negative rate of 0% with
a maximum accuracy of 99.99% for all types of tested attacks, except infiltration, which
had 86.57% accuracy. Among all ML classifiers, Gaussian Naive Bayes reached the lowest
accuracy rate and the maximum false negative rate. Furthermore, to detect the intrusion in
the network, the FN rate is very significant to provide availability and the confidentiality
in addition to precision, recall and the accuracy rate parameters. These results show a
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promising capability for the application of ML in network threat detection for cellular-based
UAVs and satellite networks.
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