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Abstract: This paper develops a model predictive controller (MPC) for constrained nonlinear MIMO
systems subjected to bounded disturbances. A linear parameter varying (LPV) model assists MPC
in dealing with nonlinear dynamics. In this study, the nonlinear process is represented by an LPV
using past input–output information (LPV-IO). Two primary objectives of this study are to reduce
online computational load compared with the existing literature of MPC with an LPV-IO model
and to confirm the robustness of the controller in the presence of disturbance. For the first goal, a
recurrent neural network (RNN) is employed to solve real-time optimization problems with lower
online computation. Regarding robustness, a new control law is developed, which comprises a fixed
control gain (K) and a free perturbation (C). The proposed method enjoys a shrunken conservatism
owing to the finding of a larger possible terminal region and using free control moves. The strategy
is examined in an alkylation of benzene process and displays outstanding performance in both
setpoint tracking and disturbance rejection problems. Moreover, the superiority of RNN over three
conventional optimization algorithms is underlined in terms of MSE, the average time for solving
the optimization problem, and the value of the cost function.

Keywords: model predictive control; robust model predictive control; recurrent neural network;
linear parameter varying; LPV; MPC; RNN

1. Introduction

Over the past few decades, model predictive controllers (MPCs) have attracted a
great deal of attention in industry and academia [1–4]. This considerable prominence
of MPC is rooted in several factors, including simple generalization to a MIMO system,
applicability to non-minimum phase and unstable processes, capability to compensate
delay, and imposing output/input constraints [1]. While influential theories exist in
MPC for linear systems, some systems are nonlinear and operate under large operating
conditions, or some external parameters can fundamentally change the process response [5].
Nonlinear MPC (NMPC) has been developed to deal with systems with nonlinear dynamics.
A higher level of algorithm complexity and excessive computational load are two main
drawbacks of NMPC.

A linear parameter varying (LPV) framework is established in this paper to mitigate
these problems by assisting the MPC to model dynamic and static nonlinearities [6–9].
MPC founded on LPV has aroused enthusiasm among researchers to ensure practical
implementation to bridge the gap between linear MPC and NMPC [10–12] (less complicated
than nonlinear models and more accurate than linear models). With the help of LPV, MPC
can be employed for nonlinear and/or time-varying systems [6,13–15]. LPV offers MPC a
linear model instead of nonlinear models, where the scheduling variable denotes nonlinear
dynamic parameters, changing environmental conditions, and operating points. It is also
noteworthy that, in an LPV model, current values of scheduling variables can be measured
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or estimated, but the future values are unknown, so a robust MPC is required, or the future
values can be estimated.

Most MPC-LPV literature is centered around the state-space model, while states might
not be measurable in many industrial applications. Moreover, using an observer can
complicate the design. In Reference [16], MPC-LPV with SS and IO presentations are
compared for a control moment gyroscope (CMG). The results showed that the execution
time would be reduced when using the IO framework. To this end, MPC is established
based on an LPV-IO framework in this paper.

Only a few MPCs have been documented for LPV systems under the I/O formulation,
mainly focused on stability, computation, and conservatism [5]. One of the initial research
works on MPC with the LPV-IO model can be found at [10], where min-max (worse-case)
cost functions are regarded. The cost function includes a stage cost for control performance
and a terminal cost to grant stability. The optimization problem of MPC is written in bilinear
matrix inequality (BMI), which can be non-convex and challenging. This approach was
improved in [17] in order to reduce the complexity level markedly. The authors designed a
controller based on a linear matrix inequality (LMI) convex problem, successfully assessed
in an ideal continuous stirred tank reactor (CSTR). They also enlarge the terminal region
to moderately reduce conservatism. This work employed offline controllers and terminal
regions to reduce the online computational burden moderately. However, the controller
still suffers from substantial online computational capacity, stemming from solving LMI
equations and calculating the Markov coefficient of the LPV system [18]. Above all, it is
assumed that the future values of scheduling variables can vary inside a convex polytope.
This assumption is less conservative than a frozen or fixed scheduling variable over the
prediction horizon while making the optimization problem nonlinear or unreachable [5,17].
The online computational complexity of [17] has been slightly ameliorated in a sequence
of quadratic programs. The main drawback of this work is that it lacks a provision for
recursive feasibility.

The first novelty of our paper is to make the controller, developed in [10], more
computationally efficient. To the best of our knowledge, for the first time, a computationally
efficient MPC with an LPV-IO model was presented in this study while keeping the
conservatism degree as low as reasonably achievable. A recurrent neural network (RNN) is
proposed to deal with the online optimization problem in this paper. Thanks to the global
convergence and low computational burden, neural network-based optimizations have
been applied to linear, quadratic [19,20], nonlinear programming [21,22], and variational
inequality problems [23,24]. The RNN is pointed out to display convincing performance
in either MPC or NMPC [25–27], in which nonlinear optimization can be converted to
quadratic programming. The motive behind selecting RNN is its good adaptability as
well as lower complexity, even in real-time nonlinear and large-scale optimization. That is
why the studied method was assessed in the alkylation of benzene process, a large-scale
nonlinear process with 25 state variables, 5 inputs, and 5 outputs.

The second novelty of this paper is to guarantee the robustness of the system when
facing bounded disturbance. The problem of disturbance rejection has not been studied
so far for MPC with LPV-IO models. A stabilizing control law based on the input–output
measurements is proved to ensure the superior closed-loop performance of the controller
in the presence of additive disturbance. The control law includes a fixed control gain (K)
and a free perturbation (C), the former of which is designed offline with the largest possible
terminal region to reduce conservatism. The free control moves are determined online
to ensure input-state stability in the presence of bounded disturbances. Adding control
moves provides a less conservative framework than those studied in [17,18], where only
offline control gain is employed.

To sum up, the contributions of this paper are as follows:

• An RNN-based optimization algorithm is developed to offer global convergence and
lower the online computational load.
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• Free control moves are added to the constant control gain to maintain the closed-loop
stability when facing bounded disturbances.

• Concerning previous studies for MPC with LPV, the proposed method inherently en-
joys a shrunken conservatism degree as a result of finding the larger possible terminal
region, using free control moves, and the global solution of the optimization problem.

The rest of the paper is organized as follows. The standard nonlinear model is
reformulated as an LPV-IO model in Section 2. The proposed RMPC-LPV structure is
developed in Section 3 and proved to be stable and feasible. The MPC-RNN is presented
in Section 4. Next, the state-space equations, inputs, outputs, and critical parameters of
the alkylation of benzene process are wholly outlined in Section 5, followed by a collection
of simulations to evaluate the proposed control methodology. Key findings are finally
summarized in Section 6.

2. Problem Statement

Assume the following discrete-time MIMO linear parameter-varying (LPV) transfer
function with constraints:

y(k) = −
(

na

∑
i=1

Ai(p(k))q−i

)
y(k)−

(
nb

∑
j=1

Bj(p(k))q−j

)
u(k) + d(p(k)) (1)

Subject to the following constraints

u(k) ∈ U ≡ {u ∈ Rnu | |u(k)| ≤ umax}
∆u(k) ∈ V ≡ {∆u ∈ Rnu | |∆u(k)| ≤ ∆umax}

y(k) ∈ Y ≡ {y ∈ Rny | |y(k)| ≤ ymax}
(2)

where y(k) are outputs; u(k) are inputs; p(k) are scheduling variables; q−i is backshift oper-
ator; na is the degree of the output polynomial ; nb is the degree of the input polynomial; nu
is the number of input; ny is the number of outputs; and umax, ∆umax, and ymax are bound-
aries. The state-space representation of the dynamic model given by Equation (1) is as
follows [10]:

x(k + 1) =
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A(p(k))

x(k)

+


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︸ ︷︷ ︸

B(p(k))

u(k) + d(k)

(3)

where x(k) = [y(k− 1) . . . y(k− na) u(k− 1) . . . u(k− nb)]
T . For the sake of simplicity,

p(k) is removed from all coefficients ai and bi. The following assumptions are made:
A1: The parameter-varying matrix is [A(k) B(k)] ∈ Ω = Co[[A1 B1], · · · , [Am Bm]],

where Ω is the polytope, Co is the convex hull, and [Ai Bi] are vertices corresponding to
scheduling variable pi:

p = Co{p1, . . . pm} (4)
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A2: The profile of changes in scheduling variables is predetermined from a safety and
economic point of view with the following upper and lower bound:

p ∈ P ≡ { p ∈ Rnp | |p(k)| ≤ pmax} (5)

A3: The disturbance is bounded:

d(k) ∈ D ≡ {d ∈ Rnd | |d(k)| ≤ dmax} (6)

A4: System 3 is controllable, i.e., the controllability matrix (M) has a full rank:

M =
[

B AB A2B . . . An−1B
]

(7)

3. Robust Model Predictive Controller
This paper aims to define a control law that ensures the input-to-state practical stability

(ISpS) of the system (1) with constraints (2). The control law is calculated by minimizing
the cost function at any time instance k:

VN(xk, uk, pk) =
N−1
∑

k=0
[e(k + i)TQe(k + i) + ∆u(k + i− 1)T R∆u(k + i− 1)]

+[x(k + N)TQpx(k + N)]
Subject to

y(k + j) = −
(

∑na
i=1 Aiq−i

)
y(k + j)−

(
∑nb

j=1 Biq−i
)

u(k + j) + d(k), j = 1, 2, . . . , N− 1

u(k + j) ∈ U
∆u(k + j) ∈ V
y(k + j) ∈ Y

x(k + N) ∈ X f

(8)

where e = r− y, the deviation of output from the reference trajectory, and ∆u is the control
increment. Q and R are positive definite state and input weighting matrices in charge
of closed-loop achievements, Qp = Qp

T > 0 is the terminal penalty matrix designed to
ensure stability, and X f is the terminal region. The first and second part of VN are named
stage cost (Vs) and terminal cost (VT), respectively. Disturbances are supposed to be fixed
over the prediction horizon.

According to [28], a state feedback controller can represent the system’s stability with
the LPV-IO form. The control law (u(k)) is comprised of a fixed state feedback K and a free
control move (c), in which K is computed offline and c is obtained from the minimization
of (8):

u(k) = −Kx(k) + c(k) (9)

The state-feedback gain accounts for maintaining the final state variable x(k + N) in
the terminal region while meeting constraints and keeping the controller as less conserva-
tive as possible. In fact, a constant state feedback controller confirms the stability when
there is no disturbance. Otherwise, free control moves (c) will be determined online in a
min-max problem to guarantee the ISpS. Thus, a part of the controller will be calculated
offline for conditions in which there is not any disturbance, and a part of the controller will
be set online to deal with existing disturbances or violation of x(k + N) ∈ X f .

3.1. Offline Controller

In this section, the stability of the system will be represented when x(k) ∈ X f through
finding control gain K. After calculating the offline controller, a procedure to specify the
terminal region is defined.

Theorem 1. Taking a disturbance-free state-space model of Equation (3), there exists a control
law u = −Kx that asymptotically stabilizes the system if VT is a positive definite Lyapunov
function such that
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• VT(x(k + 1))−VT(x(k)) < 0 for ∀ x ∈ X f And ∀ p ∈ P.
• If x(k) ∈ X f then x(k + 1) ∈ X f

• |u| = |Kx| ≤ umax f or ∀ x ∈ X f .

Proof. Considering VT = x(k)TQpx(k) > 0 as the candidate Lyapunov function, the
controller u = −Kx exists, if the equation below satisfies the following:

VT(x(k + 1))−VT(x(k)) < 0
x(k + 1)TQpx(k + 1)− x(k)TQpx(k) ≤ −x(k)TQx(k)− ∆u(k)T R∆u(k)

(10)

It is assumed that there exists a K such that A− BK is stable for all possible pairs of
[A(k) B(k)] ∈ Ω. By substituting ∆u = −Kx and x(k + 1) = (A− BK)x(k), it yields

((A− BK)x(k)) TQp((A− BK)x(k))− x(k)TQpx(k) ≤ −x(k)TQx(k)− (−Kx(k))T R(−Kx(k)) (11)

It can be rewritten in a more compact form:

MTQp M−Qp + Q + KT RK ≤ 0M = A− BK (12)

Therefore, VT is a Lyapunov function, and the stabilizing state-feedback gain K can be
found from (12). After showing the controller’s stability, the terminal region is required to
be specified, reducing the conservatism level. The terminal region X f is considered to be
an ellipsoidal invariant set:

X f =
{

x ∈ Rn
∣∣∣x(k + N)TQpx(k + N) < θ

}
(13)

While X f is intended to be as broad as possible to reduce conservatism, it might lead
to extensive control law and violation of input constraints. The maximum value of γ can
be derived from an optimization problem such that input limitations are met:

maxθ
Subject to

x(k + N)TQpx(k + N) < θ

|Kx| ≤ umax

(14)

In Reference [10], it is proved that γ can equivalently be derived from the following
optimization problem:

min
γ

θ

θ2 AT P−1 AT
T ≤ BT BT

T
(15)

where AT = [−In K In − K]T , BT = [xmax − xs ∆umax xmax − xs ∆umax]
T , and xs is the

desired state. In this section, an offline state-feedback controller (K) and the corresponding
terminal region (X f ) that stabilize the system are introduced. Unlike [17], where the future
profile of scheduling variables {p(k + 1), . . . , p(k + N)} is assumed to be unknown, in this
paper, a least-square algorithm was used to find scheduling variables over the prediction
horizon. This means that the controller must not be robust against the possible uncertainties
in the scheduling variables. For further information about the procedure for predicting the
scheduling variables, please refer to [29]. �

3.2. Online Controller
The free control moves will be determined online in the case wherein there is a

disturbance or the condition x(k) ∈ X f is not meet. The online controller steers the states
towards X f , where offline control asymptotically stabilizes the system. Two theorems
are defined here to demonstrate the controller validity. Theorem 2 shows that the system
remains ISpS when there is a bounded disturbance. Subsequently, the recursive feasibility
of the system will be proved in Theorem 3. Because of additive disturbances, a min-max
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(worst-case) optimization problem is defined to cope with uncertainties. The optimization
problem (8) can be rewritten considering the bounded disturbance:

min
c(k)

max
d(k)∈D

VN(x(k), u(k), p(k), K, c(k))

y(k + j) = −
(

∑na
i=1 Aiq−i

)
y(k + j)−

(
∑nb

j=1 Biq−i
)

u(k + j) + d(k), j = 1, 2, . . . , N− 1

u(k + j) = −Kx(k + j) + c(k + j)
u(k + j) ∈ U

∆u(k + j) ∈ V
y(k + j) ∈ Y
d(k + j) ∈ D

x(k + N) ∈ X f

(16)

The optimal solution of problem (8), subjected to the system (1) with constraints (3), is the se-
quence [c∗(k) c∗(k + 1) . . . c∗(k + N− 1)] corresponding to [u∗(k) u∗(k + 1) . . . u∗(k + N− 1)].
Two theorems are defined in this section; Theorem 2 for showing stability and Theorem 3 for
showing recursive feasibility. To begin with, a robust positively invariant (RPI) set is needed to
be defined as bellow:

A set X is RPI for x+ = Ax + Bu + d with u = −Kx if ∈ X f or ∀ x+ ∈ X,d ∈ D,
[A(k) B(k)] ∈ Ω

Theorem 2. There exists asequence of optimal control input (c∗ ) andα, β, γ λ that ensures the
ISpS of the system (1) with bounded disturbances (6) with the following assumptions:

• |u| = |Kx| ≤ umax f or ∀ x ∈ X f .
• X f is an RPI set of the system (1) with u = −Kx.
• αxλ ≤ Px ≤ βxλ f or ∀ x ∈ X f .
• Px+ − Px ≤ −(Qx + Rkx) + µd for x ∈ X,d ∈ D, [A(k) B(k)] ∈ Ω
• Qx + Ru ≥ γxλ f or ∀ x ∈ X f

The underlying causes of these assumptions can be found in [30].

Proof. The definition of ISpS for the system (1) is

α1(||x||) ≤ V(x) ≤ α2(||x||) + s1
V(x+)−V(x) ≤ −α3(||x||) + α4(||d||) + s2

(17)

where x+ RPI set in which x+ = Ax + Bu + d with u = −Kx; α1, α2, and α3 are K∞-
function; α4 is K-function; and s1 and s2 are positive numbers such that x ∈ X, x+ ∈ X,
and d(k) ∈ D. It is also noteworthy that ISpS is equivalent to ISS for s1 = s2 = 0. The
VN(x) > 0 should first be proved to be bounded so that Equation (17) can be expressed
as follows:

Vi(x(k + i)) = min
ck

max
d(k)∈D

[
x(k + i)TQx(k + i) + u(k + i)T Ru(k + i) + Vi+1(x(k + i + 1))

]
(18)

Equation (18) is derived from a mathematical induction technique such that the
following holds:

V0(x(k)) = min
ck

max
d(k)∈D

[
x(k)TQx(k) + u(k)T Ru(k) + V1(x(k + 1))

]
V1(x(k + 1)) = min

ck
max

d(k)∈D

[
x(k + 1)TQx(k + 1) + u(k + 1)T Ru(k + 1) + V2(x(k + 2))

]
. . .

VN(x(k + N)) = [x(k + N)TQpx(k + N)

(19)

Equation (10), when the disturbance is regarded to be non-zero, results in the following:

x(k + 1)TQpx(k + 1)− x(k)TQpx(k) ≤ −x(k)TQx(k)− u(k)T Ru(k) + dmax (20)
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By developing this equation for the next value of state variables, the following equa-
tions will be reached:

x(k + 2)TQpx(k + 2)− x(k)TQpx(k) ≤ −x(k + 1)TQx(k + 1)− u(k + 1)T Ru(k + 1) + dmax
. . .

x(k + N)TQpx(k + N)− x(k)TQpx(k) ≤ −
N−1
∑

i=0
x(k + i)TQx(k + i) + u(k + i)T Ru(k + i) + dmax

(21)

From Equations (18) and (20), and substituting u(k) = −Kx(k), the following is
obtained.

VN(x(k)) ≤ max
d(k)∈D

[
x(k)TQx(k)− x(k)TKRx(k)

]
+ x(k + 1)TQpx(k + 1) (22)

where V(xk+1) ≤ x(k + N)TQpx(k + N) and, therefore,

VN(x) ≤ x(k)T(Q− KR + Qp
)
x(k) + dmax =

(
Q− KR + Qp

)∣∣∣∣∣∣x∣∣∣∣∣∣+dmax (23)

It can be concluded that VN(x) has an upper bound and α1 = Q−KR + Qp, s1 = dmax
in the right-hand side of the first equation of (23). The difference between two sequential
Lyapunov functions is

V(x(k + 1))−V(x(k)) ≤ max
d(k)∈D

−
[

x(k)TQx(k) + u(k)T Ru(k)
]
+ x(k + N)TQpx(k + N) (24)

This can be expressed by

V(x(k + 1))−V(x(k)) ≤ x(k)T(−Q + KR + Qp
)
x(k) + dmax = −

(
Q− KR−Qp

)
x + dmax (25)

Accordingly, the difference of Lyapunov function is bounded such that α3 = Q −
KR − Qp, s2 = dmax. It has been proven that the proposed controller is ISpS, and the
optimal solution, satisfying input, output, and terminal constraints, can be derived from a
min-max problem (16). In the next stage, it has been shown that the solution is feasible. �

Theorem 3. Given system (1) with constraints (2) and bounded disturbance(6) , the closed-loop
system is ISpS for x0 ∈ xN , and the system is feasible.

Proof. Suppose that there exists a terminal region, derived from (15), and a control gain K,
calculated by Equation (12); then, the system is stable and x0 ∈ xN . Consequently, if the
optimization problem (8) is feasible at time instance k, it remains feasible at the subsequent
instances. After finding the optimal K, c∗, and the corresponding u∗ at time instance k, the
system of Equation (3) at the next instance can be rewritten.

x(k + 1) = A(p(k))xk + B(p(k))uk
∗ + d(k) (26)

Moreover,

x(k + 2) = A(p(k + 1))x1 + B(p(k + 1))u0
∗ + d(k + 1) (27)

In general, the sequence of system states can be described as follows:

x(k + i + 1) = A(p(k + i))xk+i + B(p(k + i))uk+i
∗ + d(k + i) (28)

By substituting u(k) = −Kx(k) + c(k), Equation (28) can be derived:

x(k + i + 1) = (A(p(k + i))− B(p(k + i))K) ∗ xk+i + B(p(k + i))ck+i
∗ + d(k + i) (29)

The above equation for i = N results in

x(k + N + 1) = (A(p(k + N))− B(p(k + N))) ∗ xk+N + B(p(k + N))ck+N
∗ + d(k + N) (30)
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This implies that the optimal solution is feasible because

f or i = 0, XN−1 ∈ XN
f or i = 1, XN−2 ∈ XN−1 ∈ XN

f or i = N, X0 ∈ XN and x(k + N + 1) ∈ XN

(31)

According to Theorems 1 to 3, the developed controller has two components. The
first is determined offline, which included a control gain K and terminal region X f . When
x ∈ X f , the offline controller asymptotically stabilizes the system. Otherwise, when there
is uncertainty, an online controller verifies the ISpS. The online optimization problem is
shown to be feasible. In the next section, a dynamic neural network is constructed to solve
the online optimization problem for the first time. �

4. Real-Time Optimization Problem Using RNN

The global convergence and low complexity of RNN for optimization of linear models,
constrained linear models, linear models with uncertainty, and various nonlinear models
are represented in the literature. In this study, RNN optimizes a real-time QP problem
enjoying parallel computation. To begin with, the original optimization problem is required
to transform into a standard form. The input-state relationship of Equation (1) can be
expressed in the following form:

x(k + 1) = A(p(k))x(k) + B(p(k))u(k) + d(p(k)) (32)

The vectors of predicted outputs, inputs, and disturbance are as follows:

X(k) = [X(k + 1) . . . X(k + N)]T ∈ Rm×N

U(k) = [u(k) . . . u(k + N − 1)]T ∈ Rn×N

D(k) = [d(k + 1) . . . d(k + N)]T ∈ Ro×N
(33)

where m, n, and o are the number of states, inputs, and disturbances, respectively. The
predicted states can be easily shown to be in the following form:

X(k + j) = G(p(k + j− 1))X(k + j− 1) + F(p(k + j− 1))U(k + j− 1) + D(k + j− 1), j = 1, . . . , N

G(p(k)) =
[

A(p(k)) A(p(k))2 . . . A(p(k))N
]T

F(p(k)) =


B(p(k))

A(p(k))B(p(k)) + B(p(k))
...

A(p(k))N−1B(p(k)) + . . . + A(p(k))B(p(k)) + B(p(k))


(34)

The constraints (2) can be represented as follows:

−umax ≤ u(k) ≤ umax
−∆umax ≤ u(k)− u(k− 1) ≤ ∆umax
−xmax ≤ Gu + F + d ≤ xmax

(35)

The optimization problem (16) can be written as follows:

min
U

XTQX + UT RU = min
U

(GX + FU + D)TQ(GX + FU + D) + UT RU

min
U

UT × ((FU)TQ(FU) + R)×U + (GX + FU)TQ(GX + FU)
(36)

where

Q =

[
Q 0
0 Qp

]
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According to Equations (35) and (36), the standard form can be expressed as follows:

min
v

1
2 vT Hv + bTv

Subject to Tv ≤ q
(37)

where
H = 2× ((FU)TQ(FU) + R)

b = 2× (GX + FU)TQ(GX + FU)

T =



In×n
−In×n
In×n
−In×n

G
−G

, q =



umax
−umax

∆umax + u(k− 1)
∆umax − u(k− 1)

Xmax − F− d
−Xmax + F + d


Remark 1. The vector q is unknown as d is not measurable, while it can be estimated by the
difference between the measured output and model output. In Reference [31], a simple model to find
unknown parameters is proposed.

Remark 2. In References [25,31], a simplified form of a dual neural network is described to
ensure the lower computational burden by defining the dual form of the optimization problem (37)
as follows:

State equation:

dω

dt
= λ

(
−TH−1TTω + M

(
TH−1TTω− TH−1c−ω

)
+ TH−1c

)
(38)

where ω is the state variable of the network, λ > 0 adjusts the convergence rate of RNN,
and M is a piecewise linear function as follows:

M(z) =


qmin z < qmin
z qmin < z < qmax
qmax z > qmax

(39)

Output equation:
v = H−1TTω− H−1c (40)

In the dual form of the optimization problem, constraints are added to the primary
cost function as a penalty term. This means that, if Tv < q, the cost function decreases by a
factor of α; otherwise, for Tv > q, the cost function is penalized. The single-layer RNN is
given in Figure 1. The global convergence of the proposed network is verified in [31].
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Finally, the proposed MPC algorithm can be summarized in the following steps:

1. The value of Q, R, λ, N, umax, ymax, dmax, p and model (A, B);
2. Specify K using (12) and θ using (15);
3. Repeat the procedure of finding u(k) by solving Equations (38)–(40).

The whole procedure is also depicted in Figure 2.
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5. Case Study

Alkylation of benzene with ethylene, a principal process in the petrochemical industry,
produces ethylbenzene, which is widely used as a large-scale benchmark. As shown in
Figure 3, the process studied in this work consists of four continuously stirred tank reactors
(CSTRs) and a flash tank separator. A detailed description of the process is described
in [32,33]. The process’s manipulated variables are heat inputs to five vessels shown by
Q1, Q2, Q3, Q4, and Q5. The temperatures of five vessels T1, T2, T3, T4, and T5 are
considered the process’s outputs. The process’s dynamic behavior is set out in detail in
Equations (41)–(45), and all parameters are named in Table 1. For more information and
the value of fixed parameters, refer to [34].

dT1
dt =

Q1+F1CA0 HA(TA0)+F2CB0 HB(TB0)+∑A,B,C,D
i Fr2Cir Hi(T4)−F3Ci1 Hi(T1)

∑A,B,C,D
i Ci1CpiV1

+−∆Hr1r1(T1,CA1,CB1)−∆Hr2r2(T1,CB1,CC1)

∑A,B,C,D
i Ci1Cpi

(41)

dT2
dt =

Q2+F4CB0 HB(TB0)+∑A,B,C,D
i F3Ci1 Hi(T1)−F5Ci2 Hi(T2)

∑A,B,C,D
i Ci2CpiV2

+−∆Hr1r1(T2,CA2,CB2)−∆Hr2r2(T2,CA2,CB2)

∑A,B,C,D
i Ci2Cpi

(42)

dT3
dt =

Q3+F6CB0 HB(TB0)+∑A,B,C,D
i F5Ci2 Hi(T2)−F7Ci3 Hi(T3)

∑A,B,C,D
i Ci3CpiV3

+−∆Hr3r1(T3,CA3,CB3)−∆Hr3r2(T3,CB3,CC3)

∑A,B,C,D
i Ci3Cpi

(43)

dT4
dt =

Q4+∑A,B,C,D
i F7Ci3 Hi(T3)+F9Ci5 Hi(T5)

∑A,B,C,D
i Ci4CpiV4

+
∑A,B,C,D

i −Mi Hi(T4)−F8Ci4 Hi(T4)−Mi Hvapi

∑A,B,C,D
i Ci4CpiV4

(44)

dT5
dt =

Q5+F10CD0 HD(TD0)+∑A,B,C,D
i Fr1Cir Hi(T4)−F9Ci5 Hi(T5)

∑A,B,C,D
i Ci5CpiV5

+−∆Hr2r2(T5,CB5,CC5)−∆Hr3r3(T5,CA5,CD5)

∑A,B,C,D
i Ci5Cpi

(45)
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Table 1. Process variables of the alkylation of benzene process.

Variables Definition

CA1, CB1, CC1, CD1 Concentrations of A, B, C, D in CSTR-1
CA2, CB2, CC2, CD2 Concentrations of A, B, C, D in CSTR-2
CA3, CB3, CC3, CD3 Concentrations of A, B, C, D in CSTR-3
CA4, CB4, CC4, CD4 Concentrations of A, B, C, D in Separator
CA5, CB5, CC5, CD5 Concentrations of A, B, C, D in CSTR-1
CAr, CBr, CCr, CDr Concentrations of A, B, C, D in Fr, Fr1, Fr2

T1, T3, T3, T4, T5 Temperatures in each vessel
Tre f Reference temperature

F3, F5, F7, F8, F9 Effluent flow rates from each vessel
F1, F2, F4, F6, F10 Feed flow rates to each vessel

Fr, Fr1, Fr2 Recycle flow rates
HvapA, HvapB, HvapC, HvapD Enthalpies of vaporization of A, B, C, D
HAre f , HBre f , HCre f , HDre f Enthalpies of A, B, C, D at Tre f

∆Hr1, ∆Hr2, ∆Hr3 Heat of reactions 1, 2, and 3
V1, V2, V3, V4, V5 Volume of each vessel

Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel
CpA, CpB, CpC, CpD Heat capacity of A, B, C, D at liquid phase

αA, αB, αC, αD Relative volatilities of A, B, C, D
CA0, CB0, CC0, CD0 Molar densities of pure A, B, C, D

TA0, TB0, TD0 Feed temperatures of pure A, B, D
k Fraction of overhead flow recycled to the reactors

CA1, CB1, CC1, CD1 Concentrations of A, B, C, D in CSTR-1
CA2, CB2, CC2, CD2 Concentrations of A, B, C, D in CSTR-2
CA3, CB3, CC3, CD3 Concentrations of A, B, C, D in CSTR-3
CA4, CB4, CC4, CD4 Concentrations of A, B, C, D in Separator
CA5, CB5, CC5, CD5 Concentrations of A, B, C, D in CSTR-1
CAr, CBr, CCr, CDr Concentrations of A, B, C, D in Fr, Fr1, Fr2

T1, T3, T3, T4, T5 Temperatures in each vessel
Tre f Reference temperature
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Table 1. Cont.

Variables Definition

F3, F5, F7, F8, F9 Effluent flow rates from each vessel
F1, F2, F4, F6, F10 Feed flow rates to each vessel

Fr, Fr1, Fr2 Recycle flow rates
HvapA, HvapB, HvapC, HvapD Enthalpies of vaporization of A, B, C, D
HAre f , HBre f , HCre f , HDre f Enthalpies of A, B, C, D at Tre f

∆Hr1, ∆Hr2, ∆Hr3 Heat of reactions 1, 2, and 3
V1, V2, V3, V4, V5 Volume of each vessel

Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel
CpA, CpB, CpC, CpD Heat capacity of A, B, C, D at liquid phase

αA, αB, αC, αD Relative volatilities of A, B, C, D
CA0, CB0, CC0, CD0 Molar densities of pure A, B, C, D

The steady-state values of inputs and outputs and initial conditions are indicated in
Table 2. The controller desires to steer the system from this initial condition to the steady-
states condition while satisfying the constraints:

|Q1 −Q1s| < 7.5× 105, |Q2 −Q2s| < 5× 105, |Q3 −Q3s| < 5× 105

|Q4 −Q4s| < 6× 105, |Q5 −Q5s| < 5× 105

Table 2. The steady-state and initial values.

Steady-State Temperatures
of Vessels (K) Steady-State Inputs (J/K) Initial Temperatures of

Vessels (K)

T1s = 477.24 Q1s = −4.4× 106 T1,0 = 443.02
T2s = 476.97 Q2s = −4.6× 106 T2,0 = 437.12
T3s = 473.47 Q3s = −4.7× 106 T3,0 = 428.37
T4s = 470.60 Q4s = 9.2× 106 T4,0 = 433.15
T5s = 478.28 Q5s = 5.9× 106 T5,0 = 457.55

In contrast to previous works that developed nonlinear MPC and/or noncentralized
MPC, an MPC setup built on the LPV model, improved by RNN, is proposed in this paper,
having lower complexity and better performance. More significantly, Fr, CC0, and CD0 are
considered to be time-varying, for the first time, to the best of the authors’ knowledge.
From a practical point of view, these variables are selected to be scheduling variables with
±10% variation around their nominal values. Before applying the controller, the LPV-IO
framework is required to be identified so that ten levels are defined within the range of
90% to 110% of the nominal value for each scheduling variable. The global LPV model
originates from a polynomial interpolation of ten local LTI models, identified with 500
data points in each level (operating condition). Each local model has five inputs and five
outputs. All manipulated inputs are chosen to be pseudorandom binary signals to extract
data with a sampling time of T = 10 s. With the measured data, the LTI models, afterward,
are identified using MATLAB system identification Toolbox. With several simulations, it
has been realized that a third-degree polynomial interpolation produced a good fit for
constructing the global LPV-IO model, while the order of local transfer functions varies
from second to fifth.

The scheduling variables and the responses that come from the global LPV-IO model
and nonlinear model are presented in Figures 4 and 5, respectively. The figures supplied
show that the identified LPV model can predict the nonlinear system’s behavior. Moreover,
mean square error (MSE) and Akaike’s final prediction error (FPE) for the global model
were 0.032 and 0.058 in succession, and for the local LPV models, the range of MSE was
between 0.004 and 0.062, and FPE changed from 0.040 to 0.081. Figure 5 and the numerical
results show that the LPV-IO model is sufficiently reliable for estimating responses.
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Figure 4. Scheduling variables from left to right: Fr (recycle flow rates), CC0 (molar densities of pure C), and CD0 (molar
densities of pure D).
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6. Results and Discussion

In the next step, the performance of the controller in terms of setpoint tracking and distur-
bance rejection is investigated, in which a step change at t = 1500 s with amplitude 2× 10−3 is
made in F1 and F2. The controller parameters were N = 6, Q = 1000× I5×5, R = 10−7× I5×5,
and λ = 3.5. All controllers employed in the performed comparison used the same param-
eters. The proposed approach is compared with linear RMPC [35], and the LPV controller
studied in [17] is shown in Figure 6, where the dashed red line denotes the references,
the blue line is the proposed method, the green line is linear RMPC, and the black line is
LPV-IO RMPC. In all methods, MPC parameters are chosen according to [36,37].
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Looking firstly at reference tracking, the proposed controller’s rise time is slightly
larger than other methods, while being fast enough. On the other hand, the proposed
controller has a lower settling time. In contrast to LPV-MPCs that reach the reference,
the linear RMPC has a non-zero steady-state error, especially in T4 and T5. The proposed
controller reached the setpoint without any oscillations, while linear RMPC and LPV-RMPC
suffer from large-amplitude oscillations. The reason behind the fluctuation in T5 for linear
RMPC can be found in Equation (35), such that CD0 directly affects the output, and LRMPC
failed to tackle the changes in molar densities of pure D. In general, regardless of rise time,
settling time, and overshoot, all three methods followed the setpoints for T1 to T4.

Turning to disturbance rejection, the studied approach outperforms others with re-
moving the disturbance in a short time ranging from 120 s to 355 s for T1 to T5. After time
t = 1500 s, when the disturbance was applied to the process, the LRMPC violated both
inputs and outputs constraints, especially in T1, although it can overcome the disturbances
after a while; on the other hand, LPV-RMPC became highly unstable. Therefore, LPV-
RMPC failed to cope with disturbances imposing the process in contrast to other methods,
and high amplitude of oscillation in the LRMPC response can be devastating.

Regarding the cost function, the wasted resources by LPV-RMPC are 5.04 times more
than LRMPC and 1.59× 10 times greater than those of the proposed method, which proved
that the studied approach is significantly cost-effective. More importantly, the cost function
of LRMPC and LPV-RMPC did not converge to zero, so that they cannot deal with changes
in three scheduling variables. The MSE of all three methods for different outputs is reported
in Table 3. Using the proposed method leads to a sharp decline in error compared with
other methods, as the MSE for LRMPC, LPV-RMPC, and proposed method were 447.56,
5.09 × 103, and 43.84, respectively. In short, the proposed method had an acceptable speed
(rise time, settling time, and time required to remove disturbance), as well as lower MSE
and cost.

Table 3. The steady-state and initial values.

Method T1 T2 T3 T4 T5 Total

LRMPC 391.40 387.25 346.72 331.76 408.73 347.56
LPV-RMPC 5.33× 103 5.31× 103 5.07× 103 4.90× 103 5.41× 103 5.09× 103

Proposed method 67.32 65.30 52.34 60.00 76.45 43.84
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After evaluating the performance of the proposed controller, the importance of RNN
needs to be emphasized. Finding the global minimum in a shorter time was the primary
reason behind using RNN in this study. To this end, RNN is compared with three widely
used optimization algorithms for MPCs, namely, sequential quadratic programming (SQP),
genetic algorithm (GA), and singular value decomposition (SVD). It has been proven that
using RNN reduces the average time required for computing the control action in each
sampling in contrast with NMPC based on SQP, GA, and SVD. The average run-time and
MSE of these methods is reported in Table 4 and Figures 7–9. The RNN-based method
experienced far less MSE (43.84) and cost (2.03× 104) than other optimization algorithms
and found the optimal control actions remarkably quick (0.033). GA ranked second in cost
and MSE, while being slow, resulting in instability and significant fluctuations in some
simulations. In stark contrast, however, SVD has faster responses, although it failed to
converge the minimum cost function at times and saw monumental errors. SQP, on the
other side, had a smaller MSE and cost than SVD and solved the optimization problem in
a shorter time than GA did. According to Figure 7, RNN and SVD have the lowest and
highest MSE, respectively. Figure 8 depicts that SQP and GA are sluggish as opposed to
RNN and SVD. As described in Figure 9, SVD is the only method with a significant error
and fails to find the proper control actions from the optimization problem.

Table 4. A comparison of different optimization algorithms for finding the control signals.

Optimization Algorithm MSE Average Time Cost

RNN 43.84 0.033 2.03× 104

SQP 153.12 0.76 8.04× 106

GA 76.55 0.81 5.01× 104

SVD 241.22 0.013 2.05× 108
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7. Conclusions

An RMPC with an LPV-IO model is investigated in this paper, in which an RNN algo-
rithm solves the real-time optimization problem. The study had three contributions. Firstly,
an RNN-based optimization algorithm was developed to offer global convergence and
lower the online computational load. Secondly, free control moves were added to the con-
stant control gain to maintain the closed-loop stability when facing bounded disturbances.
Lastly, concerning previous studies for MPC with LPV, the proposed method inherently
enjoys a shrunken conservatism degree owing to finding the larger possible terminal region,
using free control moves, and the global solution of the optimization problem.

This approach’s effectiveness was monitored and compared with LRMPC [35] and
LPV-RMPC [17] in an alkylation of benzene process, nonlinear, and large-scale with three
scheduling variables. The proposed method was astonishingly successful in both setpoint
tracking and disturbance rejection having a reasonable rise time, settling time, MSE, and
response amplitude. The LRPMC had a similar speed response while suffering from
adverse oscillation. The LPV-RMPC can partially track the predefined reference outputs,
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whereas it failed to remain stable when facing disturbances. Meanwhile, four optimization
algorithms are utilized to solve the online optimization problem of the proposed controller.
The results showed that RNN and GA outdid in error reduction and finding the optimal
solution; nonetheless, GA was sluggish, and thus detrimental to stability. SVD had the
fastest convergence rate with the highest MSE and cost value, and SQP, with a stable
response, had the worst execution with an excellent average time and MSE. Future works
will focus on showing the stability of the LPV-IO system with multiplicative disturbances.
Moreover, the conservatism can be further lowered by ellipsoidal invariant sets with
polyhedral invariant sets.
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validation, M.H., A.R. and W.Z.; formal analysis, M.H.; investigation, M.H.; resources, M.H., A.R.
and W.Z.; writing—original draft preparation, M.H.; writing—review and editing, M.H., A.R. and
W.Z.; visualization, M.H.; supervision, A.R. and W.Z.; project administration, A.R. and W.Z. All
authors have read and agreed to the published version of the manuscript.
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