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Abstract: Over recent years, massive open online courses (MOOCsS) have gained increasing popularity
in the field of online education. Students with different needs and learning specificities are able to
attend a wide range of specialized online courses offered by universities and educational institutions.
As a result, large amounts of data regarding students” demographic characteristics, activity patterns,
and learning performances are generated and stored in institutional repositories on a daily basis.
Unfortunately, a key issue in MOOCs is low completion rates, which directly affect student success.
Therefore, it is of utmost importance for educational institutions and faculty members to find more
effective practices and reduce non-completer ratios. In this context, the main purpose of the present
study is to employ a plethora of state-of-the-art supervised machine learning algorithms for predicting
student dropout in a MOOC for smart city professionals at an early stage. The experimental results
show that accuracy exceeds 96% based on data collected during the first week of the course, thus
enabling effective intervention strategies and support actions.

Keywords: MOOCs; smart cities; completion rates; dropout; early prediction; supervised learning;
classification models

1. Introduction

Over recent years, massive open online courses (MOOCs) have gained increasing
popularity in the field of online education. Students with different needs and learning
specificities are able to attend flexible and high-quality online courses offered by universi-
ties and educational institutions [1]. These courses vary significantly from the traditional
online courses delivered by higher education institutions, particularly in terms of course
length and content structure [2]. As a result, large amounts of data regarding students’
demographic characteristics, activity patterns, and learning performance are generated
and stored in institutional databases and repositories on a daily basis.

However, despite the potential benefits of MOOCs, these courses are characterized by
low retention rates, which directly affect student success [3]. A number of studies have
highlighted various factors influencing retention rates in MOOCs. Student motivation,
challenge, future economic profit, growth of personal and professional identity, insufficient
background knowledge, and lack of time have a significant impact on preventing students
from completing a MOOC. Additionally, lack of mobile-friendly features (e.g., inability to
watch videos via smart phones), lack of interaction with peers and instructors, and difficulty
in following the language of the instructor have a major influence on student dropout [4].
Another key factor is course design, which comprises three components: course content,
course structure, and information delivery technology. Among these components, course
content is the most significant predictor of MOOC dropout [3].
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Consequently, it is of utmost importance for educational institutions and faculty
members to find more effective practices, provide efficient intervention strategies, sup-
port low performers, and decrease non-completers. Educational data mining (EDM) is
the appropriate tool for efficiently analyzing students’ learning behavior and predicting
their performance. EDM is a fast-growing research field that is mainly focused on the
implementation of data mining methods in educational settings for improving teaching
and learning [5]. Predicting student dropout in distance education is considered to be
one of the most important EDM tasks. In this context, the main purpose of the present
study is to employ a plethora of state-of-the-art supervised ML algorithms for predicting
student dropout in a three-month MOOC at an early stage. A plethora of experiments are
conducted measuring the values of various metrics, such as accuracy, F1-score, and kappa.
Further, it is examined whether an accurate prediction could be done in sufficient time to
provide effective intervention strategies for at-risk students. The experimental results show
a high degree of accuracy based on data collected during the first week of the course, thus
enabling properly targeted support for potential non-completers.

The rest of the paper is organized as follows: Section 2 reviews recent studies con-
cerning the implementation of ML techniques for detecting high-risk MOOC students.
Section 3 provides a description of the dataset, while Section 4 presents the experimental
procedure and a thorough analysis of the results obtained. The paper concludes by summa-
rizing the most important elements of the study and considering some thoughts for future
research directions.

2. Related Work

A number of studies have examined the impact of learners’ characteristics on MOOC
retention rates employing a variety of statistical methods. Guo and Reinecke (2014) ana-
lyzed student activity in four ed X MOOCs [6]. To this end, data comprising 140,546 students
were evaluated using multiple linear regression. The findings revealed that students usu-
ally ignore the linear structure of the learning content, while age and grade were found to
correlate positively with the volume of the learning material studied by a learner. In a simi-
lar study, Cisel (2014) attempted to identify the indicators that significantly affect student
completion rates in a French xMOOC [2]. Data regarding 3029 registered students were
analyzed using the R statistical package. The experimental results indicated that comple-
tion rates are mainly dependent on employment status and time limitations. Additionally,
student active participation in forums was found to enhance their overall performance.
In the same context, Morris et al. (2015) explored the existence of relationships between
completion and several demographic characteristics of students enrolled in five MOOCs
using nonparametric methods [7]. The level of completion was found to be closely linked
to prior online experience and educational attainment, employment status, and age of
participants.

Several ML approaches have been adopted for detecting students who are likely to
drop out from a MOOC. Kizilcec et al. (2013) applied a clustering method for categorizing
students according to their engagement patterns [8]. The most notable cluster included
learners who remained engaged through the course without taking assessments. Similarly,
a systematic investigation of MOOC dropout was conducted using logistic regression
(LR) on data from 100,000 students enrolled in 21 courses [9]. The study yielded that the
probability of student dropout increases substantially if students disengage for 14 days or
more. In addition, the probability of re-engaging increases with the number of released
videos that students have viewed before the absence. LR was also used for predicting
student dropout in MOOCs including feature generation and feature selection methods [10].

Feng et al. (2019) proposed a context-based feature interaction network (CFIN) for
predicting the potential dropout students enrolled in two MOOCs [11]. Various experiments
were conducted evaluating the effectiveness of CFIN against familiar classification methods,
such as LR, support vector machines (SVM), and random forest (RF). In addition, an
ensemble method was designed by combining CFIN with XGBoost. CFIN prevailed
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over baseline methods in terms of area under the ROC curve (AUC) and Fl-score. In this
connection, the RF ensemble method was utilized with a view to finding the most important
features that influence students’ performance [12]. A set of familiar ML algorithms was
applied for predicting student performance in MOOCs. The results revealed that RF
prevailed in terms of accuracy, sensitivity, and Cohen’s kappa coefficient (Kappa).

Deep neural networks (DNNs) were also used for predicting student success and
dropout in a MOOC [13]. Several predictive models were built after applying multivariate
analysis for selecting the most important features of students. In addition, association
rules were extracted for discovering similarities in student behavior patterns. A feed-
forward DNN was also employed for addressing the dropout problem in MOOCs [14].
The produced model achieved high accuracy and a low false-negative rate compared with
familiar classification methods.

Liang et al. applied gradient boosting for predicting student dropout in MOOCs [15].
Hence, data regarding students’ learning activities from 39 courses were collected and
exploited for creating decision tree models with an accuracy of 89%. Very recently, a
support vector regression model incorporating an improved quantum particle swarm
optimization algorithm was applied for the same task [16]. The model was based on
students’ learning behavior data collected on a weekly basis and achieved better predictive
performance compared with other classification methods.

3. Dataset Description

The study was performed in the context of the Erasmus+ Sector Skills Alliances
project “DevOps Competences for Smart Cities” (https://devops.uth.gr/dev/, accessed on
20 June 2021). DevOps focuses on equipping current and prospective professionals in mu-
nicipalities and regional authorities with appropriate competences to support the emerging
smart city concepts, needs, and requirements [17]. Registrations in the DevOps MOOC
(https://devops.uth.gr/dev/about-the-mooc/, https://smartdevopsmooc.eu/moodle/
pages/login.php, accessed on 20 June 2021) lasted from 15 September to 15 October 2020,
while the course started on 19 October 2020. It lasted approximately 3 months, and it was
structured on a weekly format delivering one or two training modules (i.e., competences)
per week. Each training module—available in English—comprised two to five learning
units, each of which included an automatically graded assessment test. The course content
was designed to address the European Qualifications Framework level 5, as this is the
required level of autonomy and responsibility for smart city professionals. The registration
form included a questionnaire asking applicants to provide personal and demographic data
and notifying them that all data would be acquired and used according to the General Data
Protection Regulation (EU 2016/679) for evaluating the quality of the DevOps MOOC. All
applicants were requested to provide their consent to store and use these data; otherwise,
they could skip the questionnaire and proceed with the registration providing only their
full name and email.

The initial dataset used in the study included the following attributes regarding a
wide range of personal and demographic information of students: gender, age, nationality,
country of residence, mother tongue, education level, current employment status, current
job role or occupation, years of experience in the role/occupation, average amount of
daily working hours, level of technical English language skills, current digital proficiency,
number of underage children, available amount of study hours on a weekly basis, and
prior MOOC attendance. Figures 1-3 depict the interdependent relationship between two
demographic attributes each time and their impact on MOOC dropout.
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Figure 1. The interdependent relationship between current technical English language skills and education level and their
impact on MOOC dropout.
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Figure 2. The interdependent relationship between current digital proficiency and education level and their impact on

MOOC dropout.
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Figure 3. The interdependent relationship between current digital proficiency and previous MOOC experience and their

impact on MOOC dropout.

Figure 4 provides additional information regarding the dropout rates in the dataset
depending (Figure 4a) on the education level and (Figure 4b) on the current digital profi-
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ciency skills. Furthermore, Figure 5 presents a correlation matrix heatmap for the dataset
used in the study, where each correlation is shown by color. The red color indicates positive
correlation, and the blue one negative. The deeper the color, the larger the correlation
between two attributes. Overall, weak correlations appear between the attributes. The
strongest positively correlated pairs are {Quiz Week 1 Unit 1 Assessment, Quiz Week 1 Unit
2 Assessment} and {Connections per Day Module 1, Course Dedication in Mins Module 1}.
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Figure 4. Dropout rates depending (a) on education level and (b) on current digital proficiency.
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4. Experimental Process and Results

A set of nine classification algorithms were used during the experimental process for
building nine corresponding predictive models using PyCaret [18], an open-source ML
library in Python. In addition, hyperparameter optimization was automatically performed
on a set of optimal hyperparameters for all the examined learning algorithms using random
search, which chooses random groupings of hyperparameters for training the learning
model. These algorithms are:

LightGBM, a gradient boosting decision tree implementation [19];
Extremely randomized trees (Extra) algorithm [20];

Ridge classification method (Ridge) [21];

Gradient boosting classifier (GBC) [22];

Random Forest (RF) ensemble method [23];

Logistic regression (LR) [24];

Classification and regression tree (CART) algorithm [25];

AdaBoost boosting algorithm [26];

Linear SVM with stochastic gradient descent (SVM-SGD) algorithm [27].

The initial dataset was aggregated with attributes regarding (a) student performance
in the first week of the course (i.e., quiz week 1 unit 1, quiz week 1 unit 2) and (b) student
activity in the online learning platform during the first week of the course (i.e., forum views,
logins, and dedication time). All the attributes were acquired through custom software
querying the Moodle database directly, except for the dedication time attribute, where the
course dedication plugin (https://moodle.org/plugins/block_dedication, accessed on 15
June 2021) was implemented.

For evaluating the performance of the models, the 10-fold validation resampling
technique was used [28] while calculating six metrics: accuracy, recall, precision, F1-score,
kappa, and Matthews correlation coefficient (MCC). The results are shown in Table 1,
whereas the best value for each metric is highlighted in bold font. Overall, it is observed
that LightGBM is the top-performing model. Accuracy and Fl-score range from 91% to
95.58% and 93.16% to 96.34%, respectively, showing that a very accurate prediction of
potential dropout students could be performed after the first week of the course.

Table 1. Experimental results.

Classifier Accuracy Recall Precision F1-Score Kappa MCC
LightGBM 0.9558 0.9507 0.9777 0.9634 0.9076 0.9097
Extra 0.9497 0.9434 0.9755 0.9585 0.8946 0.8972
Ridge 0.9497 0.9483 0.9704 0.9587 0.8944 0.8964
GBC 0.9450 0.9482 0.9637 0.9551 0.8841 0.8866
RF 0.9435 0.9434 0.9656 0.9537 0.8812 0.8831

LR 0.9421 0.9459 0.9614 0.9530 0.8776 0.8793
CART 0.9405 0.9532 0.9531 0.9522 0.8732 0.8763
AdaBoost 0.9298 0.9384 0.9491 0.9429 0.8517 0.8543
SVM-SGD 0.9100 0.9315 0.9376 0.9316 0.7983 0.8097

Figure 6 illustrates the learning curve for each classification model along with the
most important features for making a prediction. Additionally, the relative importance
score for each attribute is recorded in descending order. The most important attributes
are “Quiz Week1 Unitl Assessment”, “Quiz Week1 Unit2 Assessment”, “Announcements
Forum Views”, and “Introduce Forum Views”. Finally, it is seen that all models achieve
high accuracy using only 100 instances during the training phase.
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To further improve the predictive accuracy, a stacked generalization approach, namely,
stacking, was employed [29]. Stacking involves the creation of a strong and high-level
classification model with superior generalized performance combining a set of different
classifiers. To achieve an appropriate combination of the base predictions, a learning
algorithm was employed, while the model utilized the following steps in the final forecast:
(a) Level 0 data: all the base learners ran on the original dataset. (b) Level 1 data: after
the 0 level, the predictions made by the classifiers were considered new data. (c) Final
prediction: another learning process used the level 1 data as new inputs and as output,
and the final prediction was gained. The default parameters of the learning algorithms
were used during the stacked generalization for simplifying the process, and the k-nearest
neighbor (k-NN) algorithm [30] as meta-learner. The results are shown in Table 2.

Table 2. Stacking results.

Classifier Accuracy Recall Precision F1-Score Kappa MCC
Stacking 0.9604 0.9632 0.9730 0.9677 0.9165 0.9175

5. Conclusions

The main purpose of the present study was to employ a plethora of state-of-the-art
supervised ML algorithms for predicting student dropout in a MOOC. Several predictive
models were produced and evaluated in terms of six well-known metrics. In addition,
hyperparameter optimization was automatically performed to improve the performance
of the learning algorithms through random search. The results indicated a high degree of
accuracy based on data collected during the first week of the course. What is more, a stacked
generalization approach was applied to further improve the classification performance. It
was observed that using the default parameters of the learning algorithms on a stacked
generalization procedure, results better than any single tuned learning algorithm were
produced. Therefore, students who are prone to failure can be accurately predicted with
an accuracy value exceeding 96%. Additionally, students’ interaction data provide more
information than their demographic data.

Being able to know and predict early on the training cycle of those more likely to drop
out of the course is quite important for MOOC providers to create and implement timely
learner engagement strategies. More personalized content and support could be offered,
especially for people that relate their learning with career advancement and decreased
available time for learning; microlearning [31] and micro-credentials could be employed
for those people as well, opening up education to more people as they are supported
by natural flexibility and inclusiveness. A complementary list of alternative candidates
could be exploited so as to replace those who are likely to drop out. Moreover, alternative
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registration policies could be coined, and personalized learning paths could be offered
addressing different learning behaviors.
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