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Abstract: Polar codes, which have been proposed as a family of linear block codes, has garnered a
lot of attention from the scientific community, owing to their low-complexity implementation and
provably capacity-achieving capability. Thus, they have been proposed to be used for encoding
information on the control channels in the upcoming 5G wireless networks. The basic approach
introduced by Arikan in his landmark paper to polarize bit channels of equal capacities to those
of unequal capacities can be used to design only codewords of length N = 2n, which is a major
limitation when codewords of different lengths are required for the underlying applications. In the
predecessor paper, this aspect was partially addressed by using a 3× 3 kernel circuit (used to generate
codewords of length M = 3m), along with downsizing techniques such as puncturing and shortening
to asses the optimal design and resizing techniques based on the underlying system parameters. In
this article, we extend this research to include the assessment of multi-kernel rate-matched polar
codes for applicability over a much wider range of codeword lengths.

Keywords: polar codes; puncturing; shortening; multi-kernel; 5G

1. Introduction

As polar codes of length N = 2n might not always be suitable for an underlying sys-
tem, developing techniques to generate more versatile codeword lengths is very important
to realize their utilities in a wider range of practical systems. They are proposed to be
used for encoding/decoding data over the 5G control channels with certain utilitarian
criteria and challenges mentioned in [1]. In the latest version of 3GPP 5G NR specifica-
tions [2], three resizing techniques for polar codes have been used, namely, repetition
(upsizing) or puncturing and shortening (downsizing). In this article, we only investigate
the downsizing aspect. These techniques w.r.t 5G, however, have been proposed only over
codewords of length N = 2n. Additionally, we perform a comparative analysis with polar
codes generated by a 3× 3 polarization circuit (same as the one used in [3]), resulting in
codewords of length M = 3m, and use the 2× 2 and 3× 3 circuits to design multi-kernel
polar codes, as shown in the series of articles [4–10]. By assessing the error rate perfor-
mances and complexities of polar code designs generated by these different construction
and downsizing techniques, we determine the effect of different parameters and how to
optimally design polar codes for a given set of parameter values. This expands the scope
of practical applications of polar codes to include scenarios when nonconventional (2n)
codeword lengths are desirable.

The rest of the article is organized as follows. In Section 2, we provide an overview of
the polarization kernels of sizes 2 and 3, which correspond to the same circuits used in [3].
Additionally, the design technique for multi-kernel codes is also provided. In Section 3,
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a brief description of the downsizing techniques used in this article, namely, puncturing
and shortening is provided. In Section 4, a comparative analysis of downsized single kernel
codes to multi-kernel codes is presented, based on bit error rate (BER) performance and
complexity, to determine the conditions on system parameters for optimal design of polar
codes of desired codeword lengths. The open questions that have arisen owing to the
research conducted for this article are stated in Section 5. Finally, the concluding remarks
are provided in Section 6.

Notations and Remarks: N and M denote codeword lengths (corresponding to the
exponents n and m of 2 and 3, respectively, (i.e., N = 2n and M = 3m) of codewords
generated by 2× 2 and 3× 3 kernels, respectively, whereas K is used to denote codeword
lengths of multi-kernel codes (i.e., K = 2n × 3m) generated by 2× 2 and 3× 3 kernels. G
denotes generator matrix, with a subscript denoting the codeword length generated by
G. Rd denotes code rate. Z denotes the z-parameter (Bhattacharyya parameter) value of a
given bit channel, with a subscript denoting the channel number. z-parameter indicates the
inverse of the capacity of a bit channel (refer to [11] for details) and is used to determine
the effect of channel polarization. All the BER simulations have been performed over
additive white Gaussian noise channel (AWGNC) with binary phase shift keying (BPSK)
modulation scheme and z-parameter value Z = 0.5 for channel polarization. Amongst all
the available polar decoding options, successive cancellation (SC) decoder is used.

2. Polarization Circuits
2.1. 2× 2 Kernel Circuit

In his landmark paper [11], Arikan proposed the method of channel polarization to
design a family of block codes called polar codes. He proposed using a 2× 2 circuit (as
shown by the dashed red boxes in Figures 1 and 2) to polarize 2 bit channels of equal
capacities to 2 bit channels of unequal capacities.

We denote the z-parameter value of the real channel (~x to ~y in Figures 1 and 2) as Z.
The virtual bit channels obtained from the transformation by the 2× 2 polarization circuit
(three sets from ~u to ~̃x in Figure 1 or three sets from ~̃x to ~x in Figure 2) are denoted as Z1
and Z2 and are given by (1) and (2) over a binary erasure channel (BEC).

Z1 = 2Z− Z2 (1)

Z2 = Z2 (2)

where Z1 + Z2 = 2Z, resulting in the conservation of channel capacity after polarization.
Clearly as Z1 ≥ Z and Z2 ≤ Z, one virtual channel has higher capacity than the real
channel, while the other one has a lower capacity. Although the equality in Equations
(1) and (2) are valid just for BECs, the concept of channel transformation to polarize their
effective capacity holds true for any given channel model. Due to the recursive nature of
constructing polar code circuits using the 2× 2 kernel element, only codewords of length
N = 2n can be obtained. For more details, the reader is recommended to refer to Section
IIA of [3] or [11].

2.2. 3× 3 Kernel Circuit

The idea of channel polarization to transform multiple bit channels with equal ca-
pacities to the same number of bit channels with unequal capacities can be expanded to
any number of bit channels. In this subsection, we will look into polarizing 3 bit channels
simultaneously, using a 3× 3 circuit. There have been multiple proposals in the literature
as to how to polarize the three channels (or how to design a 3× 3 circuit) similar to the ones
either in the set of articles [4–10] or, alternatively, in [12–14] or [15]. Within the scope of this
article, we only use the circuit structure proposed in [12], owing to easier implementation
and proximity of design to Arikan’s original circuit, and it has also been used in [3]. It is
shown by the dashed blue boxes in Figures 1 and 2.
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Here, we denote the z-parameter value of the real channel (~x to ~y in Figures 1 and 2)
as Z and the corresponding virtual bit channels by a 3× 3 polarization circuit (two sets
from ~̃x to ~x in Figure 1 or two sets from ~u to ~̃x in Figure 2) as Z1, Z2, and Z3. Equations
(3)–(5) provide the corresponding z-parameter transformation over a BEC.

Z1 = 3Z− 3Z2 + Z3 (3)

Z2 = 2Z2 − Z3 (4)

Z3 = Z2 (5)

Clearly, as Z1 + Z2 + Z3 = 3Z, the channel capacity is conserved, and this results
in valid channel polarization. Thus, the aforementioned circuit can be used recursively
to design channel polarization circuits to generate polar codewords of length M = 3m.
For more details, the reader is recommended to refer to Section IIB of [3].

2.3. Multi-Kernel Circuit

For channel polarization, one need not be limited to the recursive usage of a single
kernel circuit to polarize bit channels. The polarization effect can also be achieved by
using multiple kernel sizes simultaneously within the same encoding/decoding circuits,
called multi-kernel polar codes. The concept of channel polarization using different kernel
designs within the same polar circuit and the theoretical analysis of channel polarization
aspects of such multi-kernel designs have been investigated in a series of papers [4–10].
In this section and within the scope of this article, we investigate multi-kernel polar codes
generated by the combination of circuit kernels of sizes 2 and 3 to obtain codeword lengths
of the form K = 2n × 3m. Using n = 1 and m = 1, we can obtain 6× 6 polarization circuits.
The generator matrices are denoted by G. In this section, the circuit design with 2× 2
kernels in the first stage and 3× 3 kernels in the second stage is denoted as the A version,
whereas the one with 3× 3 kernels in the first stage and 2× 2 kernels in the second stage is
denoted as the B version.

The circuit design for G6A = perm(G2 ⊗ G3) (where perm denotes the permutation
of rows of G to establish the correct connection between stages of polarization; perm =
bit-reversal for G2n ) is shown in Figure 1, with the dashed red and blue boxes encapsulating
the 2× 2 and 3× 3 polarization circuits, respectively.

The generator matrix for the circuit in Figure 1 is given as

G6A =



1 0 0 0 0 0
1 0 0 1 0 0
1 1 0 0 0 0
1 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1

 (6)

through which the codeword~x = [x1, x2, x3, x4, x5, x6] is generated from the input bit vector
~u = [u1, u2, u3, u4, u5, u6] by (7).

~x = ~u · G6A (7)

Using the same convention as in Sections 2.1 and 2.2, Equations (8)–(13) provide the
z-parameter transformation by the polarization circuit in Figure 1.
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Z1 = 6Z− 15Z2 + 20Z3 − 15Z4 + 6Z5 − Z6 (8)

Z2 = 8Z2 − 16Z3 + 14Z4 − 6Z5 + Z6 (9)

Z3 = 4Z2 − 4Z3 + Z4 (10)

Z4 = 3Z2 − 3Z4 + Z6 (11)

Z5 = 2Z4 − Z6 (12)

Z6 = Z4 (13)

Clearly, as, Z1 + Z2 + Z3 + Z4 + Z5 + Z6 = 6Z, the channel capacity is conserved, and
this results in valid channel polarization. Thus, the aforementioned circuit can be used
recursively to design channel polarization circuits to generate polar codewords of length
K = 6k.

Figure 1. Version A of the 6× 6 circuit for channel polarization.

The circuit design for G6B = perm(G3 ⊗ G2) is shown in Figure 2.
The generator matrix for the circuit in Figure 2 is given as

G6B =



1 0 0 0 0 0
1 0 1 0 0 0
0 0 1 0 1 0
1 1 0 0 0 0
1 1 1 1 0 0
0 0 1 1 1 1

 (14)

through which the codeword~x = [x1, x2, x3, x4, x5, x6] is generated from the input bit vector
~u = [u1, u2, u3, u4, u5, u6] by (15).

~x = ~u · G6B (15)

Using the same convention as before, Equations (16)–(21) provide the z-parameter
transformation by the polarization circuit in Figure 2.
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Z1 = 6Z− 15Z2 + 20Z3 − 15Z4 + 6Z5 − Z6 (16)

Z2 = 4Z2 − 2Z3 − 4Z4 + 4Z5 − Z6 (17)

Z3 = 2Z2 − Z4 (18)

Z4 = 9Z2 − 18Z3 + 15Z4 − 6Z5 + Z6 (19)

Z5 = 4Z4 − 4Z5 + Z6 (20)

Z6 = Z4 (21)

Here too, Z1 + Z2 + Z3 + Z4 + Z5 + Z6 = 6Z, implying conservation of channel
capacity resulting in valid channel polarization, and using it recursively can help design
polarization circuits to generate codewords of length K = 6k.

Figure 2. Version B of the 6× 6 circuit for channel polarization.

Using a different number of circuit elements in each stage or different order of kernel
elements in different stages, one can generate different polarization circuits for the same
codeword length K = 2n × 3m. Note from the set of Equations (8)–(13) and (16)–(21) that
they are different. This signifies that, as the order of kernel elements within the polarization
circuit differs, so do the z-parameter values of the virtual bit channels as well as the
generator matrices. Therefore, based on the required system parameter values such as K,
Rdm and Z, there exists an optimal choice of designing the polarization circuit or ordering
the kernel elements within a multi-kernel circuit design, such that the bit channels chosen
to encode the information bits have the maximum possible capacity. Within the scope of
this article, amongst the various algorithms available in the literature, we would use the
density evolution (DE) technique for polar code construction, as provided in the set of
articles [16–18] and is also used in [4]. Note that w.r.t. to Figures 1 and 2 the size of ~u and ~y
is constant and is equal to the codeword length. Based on Rd, a subset of Rd · K bits in ~u is
used to encode the information bits, whereas the remaining (1− Rd) · K bits are used to
encode the frozen bits (generally 0 s). The choice of the set of bit indices for the information
and frozen bits is also determined by the DE technique.
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3. Resizing Polar Codes

In this section, we provide a brief description of two downsizing techniques for polar
codes, namely, puncturing and shortening. These techniques are quite well known in the
research community, and multiple variations/approaches exist in the literature.

3.1. Puncturing

Puncturing of channel codes is a well-known technique to reduce the number of code-
word bits that are eventually transmitted over the channel. There exist some puncturing
techniques for polar codes in the literature, such as those in [19–21]. For the implementa-
tion in this article, the simplest approach of puncturing scheme, as discussed in [19], has
been used.

In puncturing, the punctured codeword bits are not transmitted over the channel,
i.e., the bits are entirely avoided during an ongoing transmission. The decoder typically
handles such punctured bits as bits erased by the channel. Thus, the choice of bits to
be punctured should be such that only the frozen bit channels at the encoder input are
affected by it, because decapitating any of the information bit channels would result in
an unnecessary loss of performance and degradation of the error-correcting capability of
the codes on top of introducing an error floor. Ideally, the bits with the lowest capacity (or
highest z-parameter values) should be targeted to minimize the loss of total capacity while
puncturing. For details regarding the encoding or decoding of punctured polar codes gen-
erated for analysis in this article, the reader is recommended to refer to Section IIIA of [3]
or [19].

Puncturing some bits results in degradation of total the capacity of input bit channels.
This fact is justified by the channel polarization method, in which the channel capacity
is conserved from input to output of the polarizing circuit. Thus, the overall reduction
in capacity corresponds to the total capacity of punctured bits. Therefore, it is justified to
use the least capacity bit channels for puncturing to minimize the loss of total capacity.
The effective code rate of the transmitted codewords is increased by puncturing, due to
the utilization of some bit channels for puncturing. This leads to a reduction in channel
capacity and consequently worse error rate performance.

3.2. Shortening

Similar to puncturing, shortening is another way of downsizing channel codes. Short-
ening is usually applied to codes of the systematic form; however, in the case of polar
codes, shortening can be easily applied to the nonsystematic form as well. There exist some
shortening techniques for polar codes in the literature, such as those in [19,22]. For the
implementation in this article, we focus only on the shortening of nonsystematic codes, as
shown in [19], for a fair comparison to downsizing by puncturing in Section 3.1.

Similar to puncturing, in the case of shortening, one or more codeword bits are not
transmitted over the channel, i.e., the bits are entirely avoided during an ongoing commu-
nication. However, contrary to puncturing, the decoder handles these nontransmitted bits
as bits known with complete confidence at the receiver instead of erased bits, i.e., they are
reconstructed at the receiver as apriori bits. Hence, it is advantageous to utilize bit channels
with the highest capacities for shortening to minimize error in the prediction/assignment
of apriori bits at the receiver. Using low-capacity channels for shortening would result in
unnecessary errors owing to falsely predicted bits at the receiver, thus resulting in an error
floor and loss in error-correcting capability. For details regarding the encoding or decoding
of shortened polar codes generated for analysis in this article, the reader is recommended
to refer to Section IIIB of [3] or [19].

Shortening some bits results in degradation of total the capacity of input bit channels,
due to the absence of highest-capacity bits being shortened; some lower-capacity bits need
to be used for encoding the information bits, i.e., the overall capacity of information bit
channels is reduced. This fact is justified by the channel polarization method, in which the
channel capacity is conserved from input to output of the polarizing circuit. The effective
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code rate of the transmitted codewords is increased by shortening. This leads to a reduction
in channel capacity and consequently worse error rate performance.

4. Analysis of Optimal Design Techniques

In this section, we perform a comparative analysis of polar codes over different sets of
parameter settings and assess them based on the error rate performances (Section 4.1) and
complexities (Section 4.2). From the discussions in Sections 2 and 3, we can conclude that
the following techniques for designing polar codes are at our disposal:

• A 2× 2 circuit of kernel size 2;
• A 3× 3 circuit of kernel size 3;
• Multi-kernel circuit composed of 2× 2 and 3× 3 circuits;
• Puncturing;
• Shortening.

In [3], we analyzed the performance of downsized (punctured/shortened) codewords
generated by the 2 × 2 kernel circuit, compared to codewords generated by the 3 × 3
kernel circuit and vice versa. In this article, we analyze the performance of downsized
(punctured/shortened) codewords generated by either 2× 2 or 3× 3 kernel circuits to
a corresponding multi-kernel design. We use two scenarios with differing codeword
lengths for such analysis. A summary of the corresponding parameter settings is provided
in Table 1. We perform the analysis over AWGNC and Z = 0.5, which corresponds to
designSNRdB ≈ −1.6 dB as per the metric for polar code construction shown in [23].

Table 1. Parameter settings for the simulation environment.

Scenario 1 Scenario 2
N M K N M K

Encoding/Decoding length 1024 729 648 512 729 432
Number of downsized bits 376 81 0 80 297 0

Z 0.5 0.5
Modulation Scheme BPSK BPSK

Coderates Rd {1/4 , 1/2 , 3/4} {1/4 , 1/2 , 3/4}

From the results in [3] and per the specifications provided in [2] for using downsized
polar codes for encoding over the 5G control channels, we observed that for low code
rates, puncturing tends to be the preferable downsizing option, while for high code rates,
shortening tends to be the preferable downsizing option. In [24], this aspect has been
validated for multi-kernel polar codes as well, using a downsizing type selection (DTS)
parameter, also based on DE, which provides a more accurate prediction of the optimality
of choice of downsizing technique based on the desired system parameter settings.

4.1. Error Rate Performance

In this section, we perform the comparative analysis using error rate performance as
the quantifier of optimality of code design and performance.

4.1.1. Scenario 1

In this subsection, we examine the error rate performance of multi-kernel polar codes
of length K = 648, compared to polar codewords of length N = 1024 generated using only
the 2× 2 kernel circuit (as in Figure 1 from [3]) and downsized (punctured/shortened) by
376 bits, as well as polar codewords of length M = 729 generated using only the 3× 3
kernel circuit (as in Figure 2 from [3]) and downsized (punctured/shortened) by 81 bits.
Code rate values of Rd = 1/4, 1/2, and 3/4, i.e., low, half, and high code rates are used for a
comparative analysis of the error rate performance. Using the DE technique, mentioned in
Section 2.3, we determine the optimal configuration for the arrangement of kernel designs
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within the polar code circuits for a given code rate value, i.e., GRd
648 = perm( f (G)). Details

of the figures corresponding to respective Rd and f (G) are provided in Table 2.

Table 2. Simulation cases for Scenario 1.

Figure 3 Figure 4 Figure 5

Coderates Rd 1/4 1/2 3/4

Arrangement GRd
648 G⊗4

3 ⊗ G⊗3
2 G⊗2

2 ⊗G3⊗G2⊗G⊗3
3 G⊗2

2 ⊗G3⊗G2⊗G⊗3
3

From Figures 3–5, the following conclusions can be made:

1. For the low code rate, Rd = 1/4, punctured N = 1024 codewords outperform the
shortened ones. The multi-kernel K = 648 codewords outperform all but punctured
N = 1024 codewords, with a ≈ 0.5 dB difference. One interesting observation is
w.r.t. downsized M = 729 codewords. Although at low Rd, one would expect the
punctured ones to be better than the shortened ones, the performance difference is
marginal with shortened ones narrowly outperforming the punctured ones. This
corresponds to the observations made in [3], where shortened M = 729 codewords
outperform the punctured ones even at low code rates.

2. For the half code rate, Rd = 1/2, shortened N = 1024 and M = 729 codewords
outperform the respective punctured ones. The multi-kernel K = 648 codewords
outperform nearly all but shortened N = 1024, with just a ≈ 0.25 dB difference.

3. For the high code rate, Rd = 3/4, shortened N = 1024 and M = 729 codewords
outperform the respective punctured ones. The multi-kernel K = 648 codewords
outperform all but shortened N = 1024 codewords, with just a ≈ 0.25 dB difference.

Figure 3. BER performance of Scenario 1 for Rd = 1/4.
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Figure 4. BER performance of Scenario 1 for Rd = 1/2.

Figure 5. BER performance of Scenario 1 for Rd = 3/4.

From all three plots in Scenario 1, we observe that with an exception at the low code
rate, the assumption that puncturing for low code rates and shortening for high code rates
are better options for downsizing holds true. When the number of bits used for downsizing
is relatively high, this assumption has higher validity, and the performance difference
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between the corresponding punctured and shortened codewords is higher. The downsized
N codewords are always better than their corresponding downsized M codewords. At low
and half code rates, both the punctured and shortened N codewords are better than both
the downsized M codewords. Although the number of downsized bits for N codewords is
much higher than M codewords in this scenario, it follows the observations in [3] about
2× 2 kernel being a better design choice than the 3× 3 kernel. A multi-kernel code design
is evidently a good design choice when the corresponding K codeword length is desirable.

4.1.2. Scenario 2

In this subsection, we investigate the error rate performance of multi-kernel polar
codes of length K = 432, compared to polar codewords of length N = 512 generated using
only the 2× 2 kernel circuit (as in Figure 1 from [3]) and downsized (punctured/shortened)
by 80 bits, as well as polar codewords of length M = 729 generated using only the
3× 3 kernel circuit (as in Figure 2 from [3]) and downsized (punctured/shortened) by
297 bits. Code rate values as in Section 4.1.1, i.e., 1/4, 1/2, and 3/4 are used. Furthermore,
using the DE technique, the optimal configuration f (G) for the multi-kernel design of
GRd

432 = perm( f (G)) is determined. Details of the figures corresponding to respective Rd
and f (G) are provided in Table 3.

Table 3. Simulation cases for Scenario 2.

Figure 6 Figure 7 Figure 8

Rd 1/4 1/2 3/4

GRd
432 G⊗2

3 ⊗G2⊗G3⊗G⊗3
2 G⊗2

2 ⊗G3⊗G2⊗G3⊗G2⊗G3 G⊗2
2 ⊗ G3 ⊗ G⊗2

2 ⊗ G⊗2
3

From Figures 6–8, the following conclusions can be made:

1. For the low code rate, Rd = 1/4, punctured N = 1024 and M = 729 codewords
outperform the corresponding shortened ones. This phenomenon of punctured M
being better than their shortened counterparts had not been observed in any plots
of [3]. Note that here, downsizing of M = 729 codewords was carried out by 297 bits,
whereas in [3], downsizing was performed by 217 bits, indicating that a higher number
of downsized bits improves the prediction of using code rate value for determining
optimal downsizing technique, as observed in Scenario 1 as well. The multi-kernel
K = 432 codewords outperform both the downsized M = 729 codewords but are
outperformed by both the downsized N = 512 codewords, with a performance gap
of ≈0.5 dB from the optimal design (i.e., punctured N = 512 codewords).

2. For the half code rate, Rd = 1/2, shortened N = 512 and M = 729 codewords
outperform the respective punctured ones. The multi-kernel K = 432 codewords
outperform both the downsized M = 729 codewords but are outperformed by both
the downsized N = 512 codewords, with a performance gap of ≈0.5 dB from the
optimal design (i.e., shortened N = 512 codewords).

3. For the high code rate, Rd = 3/4, shortened N = 512 and M = 729 codewords
outperform the respective punctured ones. The multi-kernel K = 432 codewords
outperform all but the shortened N = 512 codewords, with a ≈0.3 dB difference.
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Figure 6. BER performance of Scenario 2 for Rd = 1/4.

Figure 7. BER performance of Scenario 2 for Rd = 1/2.
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Figure 8. BER performance of Scenario 2 for Rd = 3/4.

From all three plots in Scenario 2, we observe that the assumption of downsizing by
puncturing for low code rates and by shortening for high code rates being better options
holds true. The downsized N codewords are always better than their corresponding
downsized M codewords. At low and half code rates, both the punctured and shortened
N codewords are better than both the downsized M codewords. In spite of the fact that,
in this scenario, the number of downsized bits for M = 729 codewords is much higher
than N = 512 codewords, the downsized N = 512 codewords perform better than the
downsized M = 729 ones, thus following the observations in [3] about 2× 2 kernel being a
better design choice than the 3× 3 kernel. A multi-kernel code design is evidently a good
design choice when the corresponding K codeword length is desirable.

4.2. Computational Complexity

In this section, we discuss the complexity of polar code design for both scenarios
1 and 2. The encoding and decoding complexity of 2× 2 polar codes is given as O(N ·
log2N), i.e., dependent on codeword length and number of stages within the polarization
circuit [11]. Similarly, it can be quantified for M (for 3× 3 circuit) and K (for multi-kernel
circuit). Effectively, at the encoder, the XOR gate (as seen in Figures 1 and 2) generates
a modulo 2 sum operation. At the decoder, this corresponds to one boxplus and one
summation operation of the log-likelihood ratios (LLRs). For simplicity, we consider one
XOR gate contributing one unit of complexity to the code design. Using this convention,
we state that the complexity of polar circuits shown in Figures 1 and 2 is 7 units.

The complexities of polar codes in scenarios 1 and 2 are tabulated in Table 4. Note
that higher values of complexity units indicate a more complex unit, i.e., worse design
choice. We observe that the complexity is directly proportional to the number of down-
sized bits. This is because, although the downsized (punctured/shortened) bits are not
transmitted/received across the channel, they still need to be encoded and decoded at
the transmitter and receiver, respectively. Thus, if a corresponding codeword length is
required, such that a multi-kernel circuit can directly generate it, then using a design based
on downsizing from a single kernel circuit results in a more complex design. Thus, a less
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complex alternative to downsizing single kernel polar codewords at a small performance
degradation could be an acceptable compromise if it suffices the desired quality-of-service
(QoS).

Table 4. Complexity comparison of the polar code designs.

Scenario 1 Scenario 2
N M K N M K

Encoding/Decoding length 1024 729 648 512 729 432
Number of downsized bits 376 81 0 80 297 0

Complexity units 5120 2916 2700 2304 2916 1728

4.3. Assessment

Based on the analysis performed in Sections 4.1 and 4.2, we can derive some con-
clusions regarding the comparisons of error rate performances and complexities of the
polar code design techniques implemented for simulation scenarios 1 and 2. The corre-
sponding summaries of observations are provided in Tables 5 and 6, respectively. We
use the multi-kernel design as a reference (0), with ++, +, −, or −− indicating better to
worse choices.

Table 5. Tabulated observations from Scenario 1.

Punctured N Shortened N K Punctured M Shortened M
BER at Rd = 1/4 ++ − 0 −− −−
BER at Rd = 1/2 0 + 0 −− 0
BER at Rd = 3/4 −− + 0 −− −

Complexity −− 0 −

Table 6. Tabulated observations from Scenario 2

Punctured N Shortened N K Punctured M Shortened M
BER at Rd = 1/4 ++ + 0 −− −−
BER at Rd = 1/2 + ++ 0 −− −
BER at Rd = 3/4 − + 0 −− 0

Complexity − 0 −−

Clearly, the desired code rate is a key parameter used to determine the optimal choice
of polar code design. Nevertheless, if a codeword length that can be obtained by a multi-
kernel design is required, then the multi-kernel design is a good approach, providing
near-optimal BER performance with reduced complexity. Additionally, it extends the
scope of polar codeword lengths that can be generated without the requirement of any
downsizing mechanism.

For instance, for code rates Rd = 1/2 and 3/4 in Scenario 1, multi-kernel design is
able to reach the performance of the optimal (shortened) 2× 2 kernel design, with a gap
of 0.25 dB with 47.3% complexity reduction (refer to Figures 4 and 5). Simultaneously, it
outperforms all other design techniques.

5. Future Work

Within the scope of research conducted for this article, we have polarization kernels of
sizes 2 and 3 to generate single and multi-kernel polarization circuit designs. Nevertheless,
the idea of channel polarization is not limited to only 2 × 2 and 3× 3 kernel sizes. It
would be interesting to study the comparative error rate performance with higher kernel
sizes such as 5, 7, etc. or even non-prime standalone kernel sizes (i.e., not composed of
smaller divisible kernel circuits), examples of which are available in [8]. Additionally, these



Electronics 2021, 10, 1717 14 of 16

higher-ordered kernel sizes can be used to generate polar codes of an even wider range of
codeword lengths without the need for resizing.

In this article, we only used the SC decoder to assess the comparative BER perfor-
mance; however, better variations exist such as the SC List (shown in [25]) or Flip (shown
in [26]) decoders. Soft decoding techniques such as belief propagation (BP) have also been
developed for polar codes. Recently, some interesting polar code construction techniques
have been proposed, such as using the information bottleneck method (shown in [27]) or
deep learning (shown in [28]). Additionally, some efficient simulation methods to ana-
lyze polar codes performance via importance-sampling techniques exist, such as those
provided in [29,30]. Analyzing the error rate performance over these different techniques
for downsized and multi-kernel designs can help identify the effects of specific system
parameter settings. This, in turn, would aid in the generalization of polar code design and
standardized use for practical applications.

6. Conclusions

In this article, we have discussed downsizing techniques such as puncturing, short-
ening, and using a different kernel size (such as 3) to design single- or multi-kernel polar
codes of length other than 2n form. The disadvantage of a limited choice of codeword
lengths is a major obstacle for utilizing polar codes over a wide range of applications.
Thus, when resizing is necessary, depending on availability, one may use alternatives to
the classical 2× 2 polar circuit design such as higher-ordered kernel sizes, by themselves
or within a multi-kernel framework, to generate polar codes without the need for resizing
at all. Additionally, certain design aspects may prove to be optimal for given underlying
system parameter settings. The threshold value of Rd = 7/16, mentioned in [2], used
for determining the downsizing choice, is not a very accurate assumption (also observed
in [24]), and one also needs to take into account other parameters such as codeword length,
the number of downsized bits, channel conditions, etc. as well to determine optimal code
design for the desired application. In the case of multi-kernel codes, the order of kernel
elements amongst the stages within the polar circuit is also a key design factor to be ac-
counted for optimal performance as the selection of sets of information/frozen bits would
vary for a different order of kernels. Using a multi-kernel design provides a higher degree
of freedom for choosing codeword lengths without the requirement for downsizing while
providing near-optimal performance.
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