Lumped Parameter Modeling Based Power Loop Analysis Technique of Power Circuit Board with Wide Conduction Area for WBG Semiconductors
Abstract
:1. Introduction
2. Conventional Power Loop Analysis Techniques
3. Proposed Power Loop Analysis Technique
3.1. Step 1—Multi-Node-Based Lumped Parameter Modeling
3.2. Step 2—Model Validation
3.3. Step 3—DPT Circuit Modeling
3.4. Step 4—Dynamic Power Loop Analysis
4. Analysis Results Based on Proposed Technique
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baliga, B.J. Power Semiconductor Devices, 2nd ed.; PWS Publishing Company: Boston, MA, USA, 1996; p. 373. [Google Scholar]
- Cha, K.-H.; Ju, C.-T.; Kim, R.-Y. Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application. Energies 2020, 13, 5351. [Google Scholar] [CrossRef]
- Ma, C.-T.; Gu, Z.-H. Review of GaN HEMT Applications in Power Converters over 500 W. Electronics 2019, 8, 1401. [Google Scholar] [CrossRef] [Green Version]
- Hudgins, J.L. Power Electronic Devices in the Future. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 11–17. [Google Scholar] [CrossRef]
- Huang, X.; Lee, F.C.; Li, Q.; Du, W. High-Frequency High-Efficiency GaN-Based Interleaved CRM Bidirectional Buck/Boost Converter with Inverse Coupled Inductor. IEEE Trans. Power Electron. 2016, 31, 4343–4352. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, X.; Zhou, W.; Sheng, K. An All-SiC High-Frequency Boost DC–DC Converter Operating at 320 °C Junction Temperature. IEEE Trans. Power Electron. 2014, 29, 5091–5096. [Google Scholar] [CrossRef]
- Huang, X.; Lee, F.C.; Li, Q.; Du, W. MHz GaN-based interleaved CRM bi-directional buck/boost converter with coupled inductor. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015. [Google Scholar]
- Texas Instruments. IGBT & SiC Gate Driver Fundamentals. 2019. Available online: https://www.ti.com/lit/slyy169 (accessed on 1 January 2019).
- Lidow, A. GaN Transistor for Efficient Power Conversion, 2nd ed.; Wiley: New York, NJ, USA, 2015; ISBN 978-1-118-84478-6. [Google Scholar]
- Jadli, U.; Mohd-Yasin, F.; Moghadam, H.A.; Pande, P.; Chaturvedi, M.; Dimitrijev, S. Modeling Power GaN-HEMTs Using Standard MOSFET Equations and Parameters in SPICE. Electronics 2021, 10, 130. [Google Scholar] [CrossRef]
- Cha, H.-R.; Kim, K.-M.; Song, M.-S.; Kim, R.-Y. PCB-Embedded Spiral Pattern Pick-Up Coil Current Sensor for WBG Devices. Energies 2020, 13, 5747. [Google Scholar] [CrossRef]
- Kim, U.-J.; Song, M.-S.; Kim, R.-Y. PCB-Based Current Sensor Design for Sensing Switch Current of a Nonmodular GaN Power Semiconductor. Energies 2020, 13, 5161. [Google Scholar] [CrossRef]
- Martínez, P.J.; Maset, E.; Martín-Holgado, P.; Morilla, Y.; Gilabert, D.; Sanchis-Kilders, E. Impact of Gamma Radiation on Dynamic RDSON Characteristics in AlGaN/GaN Power HEMTs. Materials 2019, 12, 2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, C.; Zhao, Z.; Cui, X. Inductance Calculation Method Based on Induced Voltage. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Wang, J.; Chung, H.S.; Li, R.T. Characterization and Experimental Assessment of the Effects of Parasitic Elements on the MOSFET Switching Performance. IEEE Trans. Power Electron. 2013, 28, 573–590. [Google Scholar] [CrossRef]
- Letellier, A.; Dubois, M.R.; Trovão, J.P.F.; Maher, H. Calculation of Printed Circuit Board Power-Loop Stray Inductance in GaN or High di/dt Applications. IEEE Trans. Power Electron. 2019, 34, 612–623. [Google Scholar] [CrossRef]
- Jørgensen, A.B.; Bęczkowski, S.; Uhrenfeldt, C.; Petersen, N.H.; Jørgensen, S.; Munk-Nielsen, S. A Fast-Switching Integrated Full-Bridge Power Module Based on GaN eHEMT Devices. IEEE Trans. Power Electron. 2019, 34, 2494–2504. [Google Scholar] [CrossRef] [Green Version]
- Reusch, D.; Strydom, J. Understanding the Effect of PCB Layout on Circuit Performance in a High-Frequency Gallium-Nitride-Based Point of Load Converter. IEEE Trans. Power Electron. 2014, 29, 2008–2015. [Google Scholar] [CrossRef]
- Yang, S.S.; Soh, J.H.; Kim, R.Y. Parasitic Inductance Reduction Design Method of Vertical Lattice Loop Structure for Stable Driving of GaN HEMT. In Proceedings of the IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, 25–28 November 2019. [Google Scholar]
- Zhang, Y.; Oo, Z.Z.; Wei, X.; Liu, E.; Fan, J.; Li, E. Systematic Microwave Network Analysis for Multilayer Printed Circuit Boards with Vias and Decoupling Capacitors. IEEE Trans. Electromagn. Compat. 2010, 52, 401–409. [Google Scholar] [CrossRef]
- Fu, R.; Grekov, A.; Peng, K.; Santi, E. Parasitic modeling for accurate inductive switching simulation of converters using SiC devices. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013. [Google Scholar]
- Wu, K.; Shiue, G.; Guo, W.; Lin, C.; Wu, R. Delaunay–Voronoi Modeling of Power-Ground Planes with Source Port Correction. IEEE Trans. Adv. Packag. 2008, 31, 303–310. [Google Scholar]
Symbol | Description |
---|---|
LCH | Parasitic inductance between C and DF |
LCL | Parasitic inductance between C and node N |
LESL | Equivalent series inductance of C (can be ignored) |
LDD | Parasitic inductance between DF and L |
LD | Parasitic inductance between L and the drain of DUT |
Lpk | Parasitic inductance in the DUT package |
LCS | Common source inductance |
LS | Parasitic inductance between ground of gate-driver and node N |
LG | Parasitic inductance in the loop of gate-driver |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-Y.; Cho, M.-S.; Kim, R.-Y. Lumped Parameter Modeling Based Power Loop Analysis Technique of Power Circuit Board with Wide Conduction Area for WBG Semiconductors. Electronics 2021, 10, 1722. https://doi.org/10.3390/electronics10141722
Lee G-Y, Cho M-S, Kim R-Y. Lumped Parameter Modeling Based Power Loop Analysis Technique of Power Circuit Board with Wide Conduction Area for WBG Semiconductors. Electronics. 2021; 10(14):1722. https://doi.org/10.3390/electronics10141722
Chicago/Turabian StyleLee, Gi-Young, Min-Shin Cho, and Rae-Young Kim. 2021. "Lumped Parameter Modeling Based Power Loop Analysis Technique of Power Circuit Board with Wide Conduction Area for WBG Semiconductors" Electronics 10, no. 14: 1722. https://doi.org/10.3390/electronics10141722
APA StyleLee, G. -Y., Cho, M. -S., & Kim, R. -Y. (2021). Lumped Parameter Modeling Based Power Loop Analysis Technique of Power Circuit Board with Wide Conduction Area for WBG Semiconductors. Electronics, 10(14), 1722. https://doi.org/10.3390/electronics10141722