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Abstract: With the development of wide-bandgap (WBG) power semiconductor technology, such
as silicon carbide (SiC) and gallium nitride (GaN), the technology of power converters with high
efficiency and high-power density is rapidly developing. However, due to the high rate-of-rise of
voltage (dv/dt) and of current (di/dt), compared to conventional Si-based power semiconductor devices,
the reliability of the device is greatly affected by the parasitic inductance component in the switching
loop. In this paper, we propose a power loop analysis method based on lumped parameter modeling
of a power circuit board with a wide conduction area for WBG power semiconductors. The proposed
analysis technique is modeled based on lumped parameters, so that power loops with various current
paths can be analyzed; thus, the analysis is intuitive, easy to apply and realizes dynamic power loop
analysis. Through the proposed analysis technique, it is possible to derive the effective parasitic
inductance component for the main points in the power circuit board. The effectiveness of the lumped
parameter model is verified through PSpice and Ansys Q3D simulation results.

Keywords: WBG devices; power loop; wide conduction area; lumped parameter modeling; para-
sitic inductance

1. Introduction

Power semiconductor devices such as MOSFETs and IGBTs are applied to various
power electronics applications as key devices in power converters. Power electronics is
a core technology applied to various power levels, from low-power fields of less than
1 kW to high-power fields of hundreds of kW. Accordingly, engineers and consumers in
various fields are demanding higher power density and efficiency for power electronics
devices. Conventional Si-based power semiconductor devices have continuously devel-
oped to meet these demands, but have reached technical and structural limitations [1–3].
Wide-bandgap (WBG) power semiconductor devices, such as silicon carbide (SiC) and
gallium nitride (GaN), which have recently appeared, have excellent material properties;
this realizes higher efficiency and power density of power electronics devices through
high-speed switching [4–11]. However, WBG devices are significantly affected by parasitic
inductance, compared to conventional power semiconductor devices, between switching
transitions due to their large rate-of-rise of voltage (dv/dt) and of current (di/dt) [9]. This
effect appears in the form of ringing and overshoot of the switching voltage, which causes
an increase in the loss of the switching devices and causes damage due to arm-short, in
extreme cases [12,13]. Figure 1 is an example of a breakdown of WBG semiconductors
by an abnormal switching voltage. Therefore, in order to apply WBG devices to power
converters, it is necessary to reduce the unexpected effects of dv/dt and di/dt by reducing
parasitic inductance. Therefore, to reduce parasitic inductance, it is important to ana-
lyze inductances in the dynamic power loop considering the current distribution for each
switching transient [14–17]. If the parasitic inductance is reduced without considering
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the dynamic power loop, the effective parasitic inductance that causes ringing and over-
shoot of switching voltage may not be effectively reduced even though the total parasitic
inductance decreases.
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Figure 1. A photograph of burned-out WBG semiconductors by an abnormal switching voltage.
(a) SiC MOSFET module. (b) GaN MOSFET.

The finite element method (FEM) is widely used to analyze circuit constants, such
as parasitic inductance, existing in a power circuit [18–20]. The FEM is a mathematical
technique for numerically solving differential equations in engineering modeling. Gener-
ally, FEM requires sufficient mesh division to ensure the high accuracy of circuit constant
analysis. However, since the increment of mesh partitioning causes a larger amount of
computation, large analysis costs are required. In references [18,19], FEM techniques were
introduced to reduce analysis costs while securing the accuracy of analysis of circuit con-
stants through effective mesh division. However, these FEM techniques are point-to-point
analysis methods that analyze circuit constants between two limited points and it is difficult
to present accurate analysis results for parasitic inductance in the power loop.

Various studies have been conducted to reduce or analyze parasitic inductance in the
switching power loop. In reference [21], a vertical lattice loop structure was proposed to
reduce parasitic inductance and presented the results of parasitic inductance analysis in a
power loop using FEM. After analyzing the power loop to improve the analysis accuracy
of the parasitic inductance, the parasitic inductance existing among the main elements in
the loop was extracted. However, when analyzing the power loop, only the analysis result
for a single static power loop, formed of two power semiconductors and a decoupling
capacitor, was presented; thus, the actual effective parasitic inductance was not accurately
presented. In addition, for simplified analysis of parasitic inductance, a single current path
between major devices is assumed. For this reason, when the power loop is formed with
a wide current conduction area, such as a power busbar or a copper plate in a printed
circuit board (PCB), the error in the effective parasitic inductance analysis increases due to
various current paths among the main elements in the loop. In reference [22], a method
of constructing two dynamic power loops formed according to the switching transient
was used and the accuracy of the effective parasitic inductance analysis was improved.
However, the various current paths between the major devices due to the wide current
conduction area were not considered.

In this paper, we propose a power loop analysis method based on lumped parameters
that consider various current paths to analyze the effective parasitic inductance in a PCB.
The proposed power loop analysis technique analyzes the dynamic power loop formed
during switching, then applies FEM, that extracts the parasitic inductance between main
devices using Ansys Q3D. In addition, to consider various current paths between main
elements in a power circuit having a wide current conduction area, the effective parasitic
inductance is extracted by selecting multiple points in which a current can flow. In order to
verify the accuracy of the effective parasitic inductance analysis of various current paths,
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a PSpice circuit model is constructed based on the extraction results and simulation is
performed using a single frequency voltage source. Circuit simulation is performed by
constructing a double pulse test (DPT) circuit model, using the extracted effective parasitic
inductance to analyze the current distribution in the dynamic power loop of the PCB during
switching. Finally, the influence of the effective parasitic inductance through changes in
current and magnetic flux during the switching transient period is analyzed. The sequence
of the proposed power loop analysis technique is established through a flow-chart and the
analysis result for the target PCB is specified.

2. Conventional Power Loop Analysis Techniques

Power loop analysis to analyze the effect of switching voltage due to parasitic induc-
tance generally consists of two processes. The first is the “DPT circuit modeling” process.
After selecting a power loop and analyzing the parasitic inductance through FEM, a DPT
equivalent circuit including the parasitic inductance is constructed based on the analysis
result. The second is the “Power loop analysis” process, which analyzes the influence of
parasitic inductance by performing circuit analysis on the DPT circuit constructed in the
previous step [14–17,21,22]. The DPT circuit usually consists of a device under test (DUT),
WBG MOSFET, diode DF, inductor L and decoupling capacitor C, as shown in Figure 2. At
this time, since L is usually designed to be large enough, it is regarded as a constant current
source. If necessary, DF is sometimes replaced by DUT for analysis of the reverse recovery
characteristics. Table 1 shows the description of various parasitic inductance components
in the DPT circuit.
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Figure 2. Equivalent circuit of DPT with parasitic inductance.

Table 1. Description of various parasitic inductance components in Figure 1.

Symbol Description

LCH Parasitic inductance between C and DF
LCL Parasitic inductance between C and node N
LESL Equivalent series inductance of C (can be ignored)
LDD Parasitic inductance between DF and L
LD Parasitic inductance between L and the drain of DUT
Lpk Parasitic inductance in the DUT package
LCS Common source inductance
LS Parasitic inductance between ground of gate-driver and node N
LG Parasitic inductance in the loop of gate-driver

Figure 3 shows the static power loop applied in the reference [21]. As shown in the
figure, a static power loop consisting of DF, DUT and C was selected and inductance
analysis was performed for LCL, LDD, LD, LS and LCH. Lpk and LCS were ignored for
convenience of analysis. However, such an analysis of parasitic inductance by a static
power loop has a problem, in which the current flow during actual switching cannot be
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reflected. Therefore, the effective parasitic inductance that affects the switching voltage
cannot be accurately analyzed. For example, the vertical lattice loop structure can be
properly designed if the current flow from LCH to LCL and the current flow from LDD
to LS have an opposite direction to cause magnetic flux cancellation. After that, if the
parasitic inductance is analyzed through FEM, the result of the decreased total parasitic
inductance can be carried out. However, the current flow during the actual switching
period is generated differently from the static power loop, so that the desired magnetic
flux cancellation does not occur suitably. For this reason, even if the vertical lattice loop
structure is properly designed, the effective parasitic inductance that causes ringing and
overshoot during switching is not effectively reduced.
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Figure 3. Single static power loop.

Figure 4 shows the dynamic power loop applied in reference [22]. As shown in the
figure, each power loop is selected by reflecting the current flow and di/dt formed by
the turn-on and turn-off of the DUT. After that, the integrated dynamic power loop is
constructed and the parasitic inductance is analyzed to derive a valid analysis result. If the
vertical lattice loop structure of [21] is applied based on the dynamic power loop, the current
flow is accurately reflected during actual switching, so it is possible to design a vertical
lattice loop structure in which a desired magnetic flux cancellation occurs. Therefore, to
analyze the effective parasitic inductance that affects the switching, a power loop analysis
based on a dynamic power loop is required.
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3. Proposed Power Loop Analysis Technique

The power loop analysis technique proposed in this paper includes two pre-processing
steps, compared to a conventional technique. The first is the “Multi-node-based lumped
parameter modeling” process and the second is the “Model validation”. Figure 5 shows
the flow-chart of the proposed technique.

3.1. Step 1—Multi-Node-Based Lumped Parameter Modeling

In Step 1, various current paths in a wide conduction area formed among the main
elements are analyzed. Figure 6a–c shows the analysis process at the top layer of the PCB



Electronics 2021, 10, 1722 5 of 14

prototype, where the DPT circuit is implemented. First, as shown in Figure 6a, select a
starting point and arrival point where current can be conducted. After that, select points
considering all current flow paths to conduct from the starting point to the arrival point.
At this time, points are selected to represent the direction of current branched by clearance.
Then, as shown in Figure 6b,c, select a point by considering the step-by-step current path.
Figure 6d shows the selected points through the process. Figure 7a,b show the same process
as the sequence in Figure 6 at the bottom layer of the PCB prototype. Figure 7c shows the
selected points through Figure 7a,b.
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In the case of the points selected in Figures 6d and 7c, however, dense points exist
in the adjacent area. Here, since each point represents the direction of current branched
by clearance, it is not efficient to have dense points in adjacent areas. Therefore, if the
same current analysis is possible even if an arbitrary point is erased, an efficient result
can be obtained by merging the points [9]. Figure 8a shows a method to simplify the
selected point. Simplify the three points into one point by connecting adjacent points with
a triangle and selecting the midpoint of the triangle as a new point. Select a point that can
equally represent the current flowing to each vertex of the triangle and erase it, as shown
in Figure 8a. Through this process, the point can be simplified, as shown in Figure 8b,c.
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3.2. Step 2—Model Validation

In Step 2, a simulation model is constructed by connecting the simplified point in
Figure 8b,c through inductance to validate the lumped parameter model derived in the
previous step. The validity of the lumped parameter model is verified through a com-
parison of PSpice results and Q3D simulation results. In addition, to compare results in
the same situation, the PSpice simulation operation conditions are set equal to the Q3D
analysis frequency.

Figure 9 shows the current density and current flow extracted through Q3D simulation.
Figure 10a shows the circuit in which the point selected in Figure 8b is connected by
parasitic inductance. In addition, Figure 10b shows the current magnitude and current
direction for each parasitic inductance when the input current applied to Figure 10a
is maximized. The input current is a sine waveform and the frequency is 100 MHz.
Comparing the results of Figures 9 and 10, it can be confirmed that the current flow and
the magnitude are almost identical and, from these results, the feasibility of the modeling
of Step 1 can be verified. If the circuit simulation result is not similar to the Q3D simulation
result, repeat the point design in Step 1 until the two simulation results are similar.

In the same process, modeling results of the bottom layer are verified. Figure 11 shows
the Q3D simulation results at the high and low side of the bottom layer. Figures 12a and 13a
are circuit models in which the points in Figure 8c are connected by parasitic inductance. By
comparing Figures 11–13, the validity of the modeling results can be confirmed. Through
this procedure, the validity of the lumped parameter model for interpreting the parasitic
component existing as a distributed constant is verified.

3.3. Step 3—DPT Circuit Modeling

In this step, a DPT circuit modeling process is described using only the essential
points for dynamic power loop analysis among the points of the lumped parameter model.
Figure 14 shows the essential points for analyzing the DPT circuit among the points in
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Figure 8b,c. Here, the essential points mean the points that can represent the current path
among the main elements constituting the DPT circuit. Therefore, the erasure of a point
should proceed so that only the essential points must remain.
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source of the high switch and the drain of the low switch. Among them, the path between
Vout and the source of the high switch is selected only as the straight line connecting the two
points with the shortest distance and the adjacent point. For example, when considering
the current path between Vout (point 1) and the source of the high switch (point 10), the
path from point 1 to point 2, 6 and 10 can reflect most of the current in the upper area of
point 2. Figure 15 shows the DPT circuit in which the points in Figure 14 are connected by
parasitic inductances. In PSpice simulation, Roam SCT3030AR is used as the switching
device, the load inductor is set to 100 µH and the DC voltage is set to 100 V.
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3.4. Step 4—Dynamic Power Loop Analysis

Finally, in Step 4, the process of analyzing the power loop through the DPT circuit
derived in the previous step is performed. Figure 16 shows the lumped parameter-based
parasitic inductance model in one conductor. Here, L is the parasitic inductance, I is the
current flowing through L and V is the voltage generated by L, corresponding to overshoot
and ringing switching voltage. ∅ represents the magnetic flux formed by I. V is expressed
by Equation (1), according to the Faraday’s law. When the amount of change in magnetic
flux, that changes during an arbitrary period, is expressed as ∆∅, it can be defined as
Equation (2).

V = −d∅
dt

= −L
dI
dt

(1)

∆∅ = −L·∆I (2)
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As shown in Equation (1), the magnitude of V induced by the parasitic inductance is
proportional to the amount of instantaneous change in ∅. Therefore, through the amount of
∆∅ in Equation (2), it is possible to know how much voltage overshoot and ringing occurs
due to the corresponding parasitic inductance during the same switching period. With
this relationship, we analyze the power loop in Figure 15, after performing the simulation
of the DPT circuit. First, to analyze the power loop, the switching transient period needs
to be defined. Figure 17 shows the simulation waveforms of turn-on and turn-off of the
low switch. Here, IL is the load inductor current, vgs,l is the gate-source voltage of the low
switch and id,h and id,l are the drain currents of the high and low switches, respectively.
The switching transient period is defined as the time in which the switch drains current
rises and reaches the peak.

Next, analyze the amount of current change for each parasitic inductance during the
switching transition. Figure 18 shows the current change for each parasitic inductance
during the defined switching transient period. At the top layer, the current change is the
largest between point 10 and point 11, as shown in Figure 18a,b. At the bottom layer, a
relatively large current change is formed between the decoupling capacitor (points 5–17
and 23–35) and the high and low switches (points 18 and 36), as shown in Figure 18c,d.
Through this process, it is possible to analyze the most important elements of parasitic
inductance that cause overshoot and ringing during the switching transient period.
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Figure 17. Switching transient waveform. (a) Turn-on. (b) Turn-off.
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4. Analysis Results Based on Proposed Technique

The validity of the power loop analysis technique proposed in this paper is verified
through the analysis results. Figure 19 shows the amount of change in the magnetic flux in
Equation (2), according to the parasitic inductance component of each layer during turn-on
and turn-off switching. Through this result, it is possible to grasp the degree to which
the effective parasitic inductance affects voltage overshoot and ringing during switching
transitions. For example, in Figure 19a, the effective parasitic inductances L14, L10, L6 and
L18 are mainly shown, which means that these effective parasitic inductances are the main
factors that cause voltage overshoot and ringing during switching transient. Therefore, it
can be seen, from the analysis results, that reducing the effective parasitic inductances on
the analyzed main path is most effective in improving voltage overshoot and ringing.
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5. Conclusions

In this paper, a lumped parameter-based power loop analysis technique for the effec-
tive parasitic inductance analysis of a PCB is proposed. The proposed analysis technique
consists of four steps, including a process for considering various current paths among the
main elements in a power circuit with a wide current conduction area and a process for
analyzing parasitic inductances.

To analyze the effective parasitic inductance, a dynamic power loop was first formed
and the parasitic inductance formed among the main elements was extracted. The accuracy
of the effective parasitic inductance analysis under various current paths was verified
through a comparison between the PSpice and the Q3D results. To analyze the current
distribution in the dynamic power loop of the PCB, a DPT circuit simulation model was
constructed using the extracted effective parasitic inductance. Finally, the main effective
parasitic inductance was analyzed through the amount of change in magnetic flux for
each inductance.

The proposed analysis technique can identify various current paths in a PCB with a
wide current conduction area. Through this, it is possible to contribute to the provision of
guidelines for efficient arrangement and number of decoupling capacitors and effective
parasitic inductance reduction.
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