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Abstract: MEC technology provides a distributed computing environment in 5G mobile networks
for application and service hosting. It allows customers with different requirements and professional
competencies to use the services offered by external suppliers. We consider a service access control
framework on 5G MEC networks that is efficient, flexible, and user-friendly. Its central element is the
MEC Enabler, which handles AAA requests for stakeholders accessing services hosted on the edge
servers. The JSON Web Token (JWT) open standard is a suitable tool for the MEC Enabler to manage
access control credentials and transfer them securely between parties. In this paper, in the context
of access control, we propose the token reference pattern called JSON MEC Access Token (JMAT)
and analyze the effectiveness of its available protection methods in compliance with the standard
requirements of MEC-hosted services in 5G networks.
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1. Introduction

The basic features that characterize 5G networks are the quality requirements for
communication: high throughput, low latency, high device density, and high network
reliability and availability, see [1]. These properties allow for the implementation of many
network services previously unavailable in mobile networks. To facilitate the implementa-
tion of high-quality mobile network services dedicated to specific business domains and
enable the provision of services by external providers, one integrated the MEC technology
(Multi-Access Edge Computing) [2] with 5G. As a result, a new version of the mobile
network has been created, namely 5G MEC [3,4]. It ensured the development of narrowly
specialized web services and led to the concept of 5G MEC vertical industries, i.e., web
service packages implemented in mobile networks and tailored to the requirements of
different sectors of the economy [5].

In 5G MEC mobile networks, the interests of several independent groups of stake-
holders meet. They use the facilities resulting from the quality parameters of the 5G
network, the possibility of independent implementation of services offered by the MEC
technology. They also take other advantages of solutions using 5G MEC networks, such as
saving bandwidth and other network resources, resource latency, and increased security [5].
There are the following four main categories of service market participants in the 5G MEC
mobile networks:

¢ End-Users (EU). They are the parties who are using or will use the services provided
in the 5G MEC environment in their professional activity or as consuming services.

e  Service Providers (SP). They are all entities that are deploying service solutions into
MEC hosts. Most of them deliver MEC applications that might run in multiple
instances, on multiple or even on a single MEC host server. The services hosted within
the MEC Platforms can support multi-tenancy, can be isolated [6] or can cooperate
and mutually share resources.
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*  Network Providers (NP). They are physical (MNO—Mobile Network Operator) and vir-
tual (MVNO—Mobile Virtual Network Operator) providers of wireless communications
services that own or control the radio access layer and connect with external networks.

*  MEC Providers. They are the entities that enable the MEC environment for 5G net-
works hosted by Network Providers. They can be both external organizations and
Network Providers themselves.

The 5G MEC mobile networks can handle a wide range of use cases and services
resulting from the needs of vertical industries [5]. Managing networks and services ac-
cess control and supporting differentiation of availability becomes therefore necessary to
maintain a stable state of the network during high traffic load with the necessary quality
of service and constraints resulting from the security requirements of priority devices
and services [7]. Therefore, the crucial security issue that must be addressed in 5G MEC
networks is the management of security credentials, especially access permissions granted
or obtained by the stakeholders assigned to different categories listed above.

There is much recent literature on authentication in mobile networks and access
control systems. They show general access control schemes and detailed network-based
authentication protocols. They draw attention to the presented solutions’ functional and
performance aspects as the number of steps, transparency, privacy-preserving, anonymity,
suitability to mobile applications, or the Internet of Things (IoT). They also consider if
a protocol provides mutual or multi-party authentication, is multi-factor, or includes
authorization. However, in the context of our present studies, the crucial aspect is if the
solution is suitable for MEC-hosted applications and 5G MEC-based services. In Table 1

we briefly present and compare several related papers which consider such solutions.

Table 1. Related authentication solutions. Applicability to 5G MEC: *—lowest, *****—highest.

Approach MEC Features Summary
SDN-based This paper proposes an SDN-based handover authentication scheme for MEC in cyber-physical

th ?S © . - secret key distribution, systems. An authentication handover module in the SDN controller is applied for key distribution
:élherex:e 1[c8a] ron authentication and authentication management. The parties apply the 3-way handshake protocol to achieve

mutual authentication and secret key confidentiality.

Identity-Based

The paper focuses on achieving mutual authentication with anonymity and untraceability.

Anonymous . mutual authentication, It presents a single message exchange round identity-based anonymous authenticated key
Authentication anonymity, untraceability agreement protocol for the MEC environment. The protocol achieves mutual authentication and
Scheme [9] assures both user anonymity and untraceability.

The paper proposes two solutions: Token-based Cookie transfer, 3rd-party Authentication and
3rd-Party .

Authentication [10]

low latency, token-based

Token-based State transfer, 3rd-party Authentication for resolution of authentication and
application mobility issues while achieving low latency.

Capability-based
access control [11]

compatibility (OAuth 2.0,
Verifiable Credentials)

The paper proposes a capability-based access control technique for sharing Web resources, based
on Verifiable Credentials (VCs) and OAuth 2.0. It proposes a new form of OAuth 2.0 access token
based on VCs.

The paper proposes a transparent security design called MECsec to secure the MEC with low latency

gﬁs‘? ie[cllzlty o i?xvnla;f}gicﬁ’t (OIDC) in the cellular network. It contains three main components: cellular-based OpenID Connect (OIDC)

g p Y authentication, bitmap-based authorization/accounting, and two-tier hash-based access control.
Privacy-Preserving o lightweight, mutual This paper proposes a lightweight mutual authentication protocol for MEC environments based on
Protocol [13] authentication Elliptic Curve Cryptography, one-way hash functions and concatenation operations.

Authentication
Architecture [14]

lightweight, identity-based

The authors design a new authentication architecture for MEC environment, which provides an
anonymous identity-based scheme suitable for lightweight devices.

Multi-Server

mutual authentication,

This paper proposes a user authentication protocol in the MEC environment providing anonymous

Authentication o scalabili mutual authentication between mobile devices and application servers operating on the MEC platform
Protocol [15] ty while ensures that the trusted MEC server can securely track users on behalf of service providers.
Scalable The paper proposes a Slice Specific Authentication and Access Control mechanism that makes use

authentication and
access control [16]

slicing support,
IoT applicable

of the flexibility provided by virtualization technologies. This mechanism allows the authentication
and access control of IoT devices to be delegated to the 3rd parties providing these devices.

5G reference
security
architecture [17]

general approach,
risks identification

This paper gives the system reference architecture and overall security and privacy solutions for 5G
applications. Based on the three major application scenarios of eMBB, uRLLC, and mMTC. It also
provides specific suggestions for coping with security and privacy risks.

MEC
Enabler-based
solution [18]

bkt

scalability, sovereignty,
compatibility (OAuth 2.0),
adaptability (ABAC)

The paper proposes the high-level security architecture of 5G MEC networks, which provides
security solutions for the network’s components and establishes secure access to all cooperating
entities. The solution is based on the MEC Enabler, a new network’s module, which manages
security credentials required to access resources of MEC-hosted services.

This paper

B

high security,
compatibility JWT, JWS)

For the security architecture proposed in [18], this paper defines the token reference pattern called
JSON MEC Access Token (JMAT) suitable for MEC-hosted services in 5G networks.
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A complex challenge in 5G MEC mobile networks is to provide a system for the
distribution of access rights to resources and services that could meet extreme requirements
expected by the stakeholders. Such a system should be efficient, scalable, and secure. In
our earlier paper [18], we proposed the high-level security architecture of access control
for 5G MEC mobile networks. We defined the components of the architecture and its
security domains. Its crucial element is the MEC Enabler which implements access control
management. We decided to use a security token system to transfer access credentials. Such
a solution gives stateless, scalable, decoupled, transparent, and secure digital objects to
transfer information among the network entities. Moreover, it is mobile-ready and suitable
(in contradiction to cookies) for cross-domain applications. This paper concentrates on
practical aspects of the proposed 5G MEC access control security architecture. First, we
shortly present the model from paper [18], supplemented with details of information
transfer between network modules in the authentication protocol. Next, we propose a
complete JWT-based (JSON Web Token) system of access control management dedicated to
5G mobile networks using MEC technology. Finally, we present an empirical evaluation of
components we use to provide secure access to 5G MEC systems. We present our results in
the following steps:

*  We give an outline of the 5G MEC security architecture and its security domains.

e We specify the authentication protocol which uses the MEC Enabler to generate and
distribute security tokens.

e We present how the proposed “MEC Enabler” fits in the 5G architecture and its
functions in the 5G MEC security architecture.

*  We describe several existing JSON tokens schemes and the JMAT, which is the pro-
posed token version suitable for 5G MEC access control service.

e  Finally, we empirically compare the size of JMAT tokens and the time taken to generate
and encrypt these tokens with an assortment of encryption algorithms and signing
modes. It checks if the application in the proposed solution does not disturb MEC
services” quality requirements, such as expected latency or data transfer overhead in
5G networks.

The rest of the paper is organized as follows. Section 2 presents the outline of 5G MEC
security architecture, introduces the security areas in the 5G MEC mobile network and its
central element for access control, the MEC Enabler. Section 3 presents an overview of
security credentials suitable for use in the MEC Enabler for the authorization process of
different stakeholders in the 5G MEC architecture. It also includes the state of the art and
analysis of JWT-based security solutions as examples of general token-based applications
for secure network authentication. Section 4 refers to the specification and characteristics
of the JSON MEC Access Token (JMAT) with the division of its structure components and
possible methods of its protection. The MEC Enabler uses the described token for repre-
senting security claims between a user and a service. Section 5 gives results of performance
tests made on different hardware platforms to estimate the computational efficiency of
the proposed JWT-based security solution. The prepared test shows computation time
dependence for selected protection algorithms with representative parameters. The last
Section 6 outlines conditions to practically apply the MEC Enabler with JMAT as an access
control tool in 5G MEC. In this Section, there are also directions for future development of
the security architecture for access control in the 5G MEC mobile networks and potential
improvement for JMAT implementation.

2. The Outline of the 5G MEC Access Control Architecture and the MEC Enabler

Proposed in this paper token-based authentication framework is an element of the
complete security architecture of 5G MEC considered in paper [18]. This section will briefly
present the main components of this framework, focusing on the domain responsible for
access control to MEC server-hosted services. Our security architecture model consists of
ten security domains that coexist and cooperate, providing security services in all aspects
of the 5G MEC mobile network functioning. Let us remark that such an approach is an
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extension of the access control-oriented 5G security architecture defined in the paper [19],
which now covers, additionally to 5G networks, the MEC technology requirements.

Thus, the 5G MEC security architecture consists of the following ten security domains,
see [18]. Below we present their definitions and short descriptions, see Figure 1.

e NAS (Network Access Security): this domain guarantee security of user data by
protection (confidentiality and integrity) of signaling and user data. It is realized for
Control Plane (CP), Data Plane (DP), and User Equipment (UE) network.

e NDS (Network Domain Security) this domain is responsible for the protection of
signaling and user data exchange between several network areas.

e UES (User Equipment Security): it is responsible at the user’s side for hardware and
software security, including user access to the mobile equipment.

e AS (Applications Security) it is responsible for the protection of communication (se-
cure) between applications in UE and applications offered by the Service Provider. It is
under the control of the end-user or the Service Provider (in the Application sub-Plane).

e AKM (Initial Authentication and Key Management): the security features that en-
able network functions to communicate securely. It implements authentication and
key management mechanisms, which allows the realization of the unified authentica-
tion framework.

®  SCM (Security Credentials Management) includes the relevant key management
and service authentication between UE and the external data-transmitting network.
In our model, the MEC Enabler governs this security domain.

e SIO (Security Interoperability) (also through MEC) this domain supports the open-
ness of security capability between external Service Provider and the 5G network
entity. It also includes a set of features that allows the stakeholders to know the status
of security features.

* NSS (Network Slices Security) it is responsible for security of slices, for example for
isolation, authorization and access control.

e  MECS (MEC Security): it is responsible for the protection of software that belongs to
the Service Provider, the hardware used for the realization of the MEC host and edge
server, and for virtualization platform (VM).

*  CLS (Cloud Security) includes all solutions to protect resources and communication
inside the home domain (both the operator’s and the cloud). This domain extends the
resources offered by MEC-hosted services to the external cloud resources.
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Figure 1. The high-level access control security architecture in 5G MEC.
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The number of the domains we consider is higher than those in [20], where six
security domains for the 5G network are defined. The security architecture proposed
in [18] integrates four network environments: 5G CN (Core Network), 5G RAN (Radio
Access Network), MEC (Multi-access Edge Computing), and a new module—the MEC
Enabler. The MEC Enabler places the role of an AAA server in front of the MEC (it
verifies requests). The MEC Enabler is also responsible for creating access tokens, which are
necessary for the configuration of the MEC network. After positive authorization and token
creation, it is possible to establish a connection with MEC infrastructure and requested
services. The whole architecture is presented in Figure 2. The mentioned procedure, which
is based on access tokens, is also one of the solutions which are analyzed and accepted by
ETSI (European Telecommunications Standards Institute) [20]. One of the recommended
forms of token implementation is JSON (JavaScript Object Notation) Web Tokens with
digital signature protection, see the series of the RFC documents: [21-25]. Integration of
the MEC Enabler in the MEC environment will reduce the management procedure and
decrease the usage of all resources for non-allowed connections at the beginning. The MEC
Enabler will be responsible for service authentication and credentials management for the
UE and network’s components, realizing:

¢ services for users which are properly authorized in the network,

*  services for the protected communication (via protected links or slice),

*  main security service which allows access to the MEC applications and services,
*  management of access rights (for example by tokens or credentials),

¢ giving exchange credentials process for services realizing 5G MEC use cases,

*  enabling services over the cloud or external operator’s domain.

MEC ENABLER
Administration Slice Service Credentials
Module MANO Management Management
et Attribute Based : .I UFI’F MEC
Access Control Billig HaouE Configuration
f
|
\ NEF UPF MEC Orchestrator
I I
UPF UPF
5G Core MEC MEC
elements elements
5G MEC

Figure 2. The new network architecture with the MEC Enabler.

The MEC Enabler extends some of the roles from the MEC; for example, it stores access
policy based on some additional context such as information about clients, network slices,
and others. Moreover, implementing a token-based authorization method by the MEC
Enabler allows it to track all requests to the MEC resources and become a trusted party
for several networks and MEC operators. On the other hand, mentioned functionalities
needs from the MEC Enabler its integration with Network Exposure Function and MEC
Orchestrator. Communication between MEC Enabler and MEC Orchestrator is necessary
to verify MEC applications policies and privileges and control internal network access in
the MEC area (UPF MEC). Thanks to this interface which can be realized by Common API
Framework (CAPIF) [26] it is possible to establish a connection with MEC applications
and configure all network elements. Communication between the MEC Enabler and the
NEF is needed mainly for UPF Core configuration; its specification is presented in the
3GPP (3rd Generation Partnership Project), but it can also be done by CAPIF interface.
Connection with both sides (edge computing and network) allows the MEC Enabler to
store some necessary information about the MEC use and slice management. Therefore,
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the MEC Enabler can send management commands for both slice and MEC services if
necessary. Because mentioned functionalities are likely independent, for its realization, the
MEC Enable needs to contain several functional blocks which cooperate to complete the
access control service for the MEC-hosted applications. These modules are, see Figure 2:

¢ Administration Module: this module supports all management operations, and its
responsible for configuration of other modules.

¢  Slice MANO (Management And Network Orchestration): this module is responsible
for the management of the slice creation, updates, binding, and other operations which
are connected with a slice life cycle. Another functionality of it is the reservation of
slice resources for services, according to network segment information, service type,
or any others, [27].

e Attribute-Based Access Control: the primary role of this module is to hold and
expose policy information that can be related to MEC services, network access, slices,
and others defined policy information from the MEC ecosystem [28].

®  Service Management: this module is responsible for verification of available services,
their current use, and the number of resources dedicated to them. Using this module
will also make it possible to manage the MEC’s services lifecycle using the MEC
orchestrator API in some specific use cases. However, management functionalities
will be available after implementation of an additional load balancer, and analyzer of
service placement [29].

¢  Credentials Management: it creates tokens used for authorization of the MEC re-
sources. It is also responsible for token refreshment or deactivation according to the
MEC service needs [30].

e Billing Module: the role of this module is to keep billing information and collect
information about MEC usage. Information from this module can be used for the real-
ization of different business models (for example, resource reservation or usage) [31].

e  UPF MEC Configuration: this module is responsible for UPF MEC configuration,
including proper network slices binding [32]. According to the network policy, it can
also match operators slices with MEC resources in some use cases.

*  AAA: the role of this module is authentication, authorization, and accounting of all
requests which are sent to MEC services [33]. If verification done by this module
is positive, other modules start preparing network configuration by generating ac-
cess tokens and API communication. Otherwise, if verification is negative, network
configuration will not be applied, and finally, access to the MEC resources will not
be possible. It is one of the main functionalities, which significantly improves the
protection of network and MEC resources by the MEC Enabler.

The MEC Enabler can contain more logical blocks. However, this paper focuses on
realizing AAA service with Credentials Management and their role in the 5G MEC secure
ecosystem. By default, we assume that the AAA module receives the correct information
about the network sliced structure, the services offered, and the appropriate security
policy with its security parameters. We focus our presentation on the syntax of security
credentials, their protection against security attacks, and the Credentials Management
processing efficiency. A more detailed explanation of the MEC Enabler role in the 5G
authentication process is presented in Figure 3, and [34] and all these steps are included in
Algorithm 1:
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Algorithm 1 The authentication procedure with the MEC Enabler, see Figure 3.

PROCEDURE BEGIN:

1.

Registration request is sent from User Equipment (UE) to Access and Mobility
Management Function (AMF).

2. Start of the Primary Authentication between UE and Authentication Server Func-

tion (AUSF) according to the 5G procedure [35].
UE establishes an NAS security context with AMF.
UE initiates the establishment of a new PDU Session by sending an NAS message.
AMF selects V-SMF (Visited Session Management Function) and sends the PDU
Session context request.
V-SMF sends a PDU Session context response.
H-SMF (Home Session Management Function) obtains subscription information
from the UDM and verifies that UE request is compliant.
H-SMF sends an EAP Request/Identity message to UE.

. UE sends an EAP Response/Identity message.

10. H-SMF selects UPF and establishes N4 Session.

11. H-SMF forwards request to UPF.

12. UPF forwards the request containing EAP Response/Identity message to the MEC
Enabler AAA server (ME:AAA).

13. ME:AAA, after verification, sends a token request to the MEC Enabler Credentials
Management (ME:CREDENTIALS MANAGEMENT).

14. ME:CREDENTIALS MANAGEMENT sends tokens to ME:AAA needed for fur-
ther authorization to the MEC.

15. ME:AAA authorizes a new configuration for the UPF Core (via the Network Ex-
posure Function), allowing establishing a data plane connection between UE and
UPF CORE.

16. ME:AAA sends information about an authorized session to the MEC Enabler UPF
MEC CONFIGURATION module (ME:UPF MEC CONFIGURATION).

17.  ME:UPF MEC CONFIGURATION module configures UPF MEC (via the MEC
Orchestrator) to establish a new data plane connection to the MEC application
(MEC:App).

18. UE establishes an End-to-End connection with the requested MEC:App.

PROCEDURE END:

To summarize, the MEC Enabler is a high-level concept applicable in different ways.

Microservices and modular monolith could be used as a primary design pattern for building
such a service. Good scalability should be provided to manage current and future traffic
and the number of devices and incoming requests per second. CQRS (Command Query
Responsibility Segregation) with loose data consistency and caching patterns should apply
to archive the MEC Enabler’s proper performance in general. This paper does not consider
exact implementation details for the MEC Enabler, especially related to deployment. It
only introduces the main MEC Enabler modules and the functions they perform to define
the basics of the implementation requirements of the respective modules.
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Figure 3. The authentication procedure with the MEC Enabler (Algorithm 1).

3. The Overview of Security Credentials Suitable for MEC Enabler

One of the core functionalities of MEC Enabler is an authorization of operations
requested by different entities to multiple edge services. Moreover, this process also
includes configuration of network access after positive verification [18]. Authorization for
a large combination of parameters can be done using the Attribute-Based Access Control
(ABAC) model. It provides grained access control for large-scale systems [36] and satisfies
the most important expected requirements of MEC computing architecture [37]. Therefore,
ABAC is widely used in many distributed systems such as Cloud Computing [38,39], Big
Data [40,41] or Internet of Things [42—44] and authors of MEC Enabler also decided to use it.
For proper operation of the ABAC system, it is needed to have a definition of information
structure which will be exchanged between entities and verified with main policy [45].
One of the famous and proven implementations of secure access token which is used for
different applications and platforms [46] is JSON Web Token (JWT) [25].

According to the specification [25], “JSON Web Token (JWT) is a compact, URL-safe
means of representing claims to be transferred between two parties”. The JWT uses
JavaScript Object Notation (JSON) to represent these claims, and the result is a small
and straightforward token used by protocols such as OpenlD Connect 1.0 or OAuth 2.0.
Generally, the JWT can be used to:

*  Propagate identity between interested parties.
*  Propagate user permissions between interested parties.
¢  Transfer data in a secure way between interested parties over an unsecured channel.

The reasonable questions are when we should use JWT and why? The first case that
should be considered is authorization. It is the most common scenario for using JWT.
Once the user is authenticated, each request will include the JWT, allowing the user to
access routes, services, and resources permitted with a particular token. Single Sign-On is a
feature that widely uses JWT presently because of its small overhead and ability to be easily
used across different domains. Solution based on JWT can have only one authorization
server that deals with Login/Registration and generates the token. In this approach, all the
subsequent requests will not have to go to the authorization server as only the Auth-server
will have the private key, and the rest of the servers will have the public key to verify the
signature. It is useful for corporate systems where the authorization server is in a secure
environment, e.g., a user needs to be connected to the intranet to log in. However, once
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they are logged in, the public servers can verify and proceed on. A similar setup can be
used for OAuth implementation. The best part is that there is no connection between the
auth-server and the rest of the servers other than the pre-defined public key. The second
usage case of JWT is Information Exchange. JSON Web Tokens are a good way of securely
transmitting information between parties. Because JWTs can be signed, for example, using
public/private key pairs, it assures the entity’s authenticity and the non-repudiation of its
actions. Moreover, because the signature is calculated using the header and the payload,
verifying if the content has been tampered with is also possible.

The JWT (see Figure 4) defines the token format and uses additional specifications
to handle signing and encryption. This collection of specifications is known as JOSE
(JavaScript Object Signing & Encryption) and three of the most popular components are
JSON Web Token (JWT) [25], JSON Web Signature (JWS) [21], and JSON Web Encryption
(JWE) [22]. JWT is a standard format of token that can contain the signed or encrypted
payload. When a token is signed, it applies JWS; when encrypted, it applies JWE. Token
format of JWTs includes parts separated by a dot character (“.”). Each part is additionally
encoded in Base64. The first part, called JOSE Header, specifies the type of JWT (JWS or
JWE) and the used cryptographic primitives.

[ Header

|

Payload I Signature ]

JWE

y Initialization . Authentication
[ Header l Encryption Key l Necior l Ciphertext I - ]

Figure 4. JWS and JWE components.

The JWS token consist of three parts: the JOSE Header, the JWS Payload, and the
JWS Signature. The JWS Payload includes defined information, called claims, such as a
username, user IDs, user roles, and many more. Finally, the JWS Signature is a hash of
header, payload, and secret. JWS claims are signed with a signature (private key) that
the interested parties can verify with a secret signing key (public key). It ensures that the
claims have not been tampered with when transferred between parties. The contents of
the JWS token are Base64 encoded and not encrypted. Thus, the JWS should be used to
exchange non-sensitive information in the claim or the token payload. Thanks to the JWS
approach, the rogue client or Man-in-the-middle can see the data as its Base64 encoded.
If the rogue client or Man-in-the-middle tries to change data, the signature verification
will fail. The server will validate the message’s signature to ensure that the client did not
modify the claims. If the server detects any modification, it can take appropriate action,
such as deny the request or block the client.

The JWE scheme encrypts the content (JWT claims) and creates JWE Authentication
Tag for the claims with the authenticated encryption algorithms. Thanks to the JWE
approach, the rogue client or Man-in-the-middle cannot see the data because of encryption
with a secret key. If the rogue client or Man-in-the-middle tamper the payload, the JWE
Authentication Tag verification will fail, and the server will discard the signature. Man-
in-the-middle attacks cannot modify it since the verification would fail. Naturally, the
JWE [22] and JWA [24] standards offer many cryptographic algorithms that can be used. In
this work, we focused on the ones selected to show which will best meet the requirements
for token generation by MEC Enabler.
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Usage of JWT allows defining a very complex policy with a dynamic number of
entities and parameters. On the other hand, according to the authors of [47,48] and our
results of experimentations described in the following sections, an increasing number of
attributes significantly impacts on time for token creation and verification.

One of the methods to decrease the time of token verification was proposed in [49],
and it assumed to use an alternative policy searching operation called ABAC-SRM. Another
option for minimizing the time of token processing can be using a shorter key or a different
protection method. Results describing the relation of token time validation for different
key sizes and protection methods can be found in [50] and for the specific python-based
implementation in Section 5 of this paper.

Subject of alternative or additional encryption methods for ABAC tokens was men-
tioned in [51] where the authors proposed usage of blockchain to improve their protection.
Another proposed security extension to the ABAC model is C-ABAC [52] which provides
additional encryption for objects and policy in distributed IT platforms. Moreover, imple-
mentation of JWT and ABAC technologies is presented in cloud or application services
and starts appearing in network configuration systems. The needs of dynamic changes in
Software-Defined Networks (SDN) and complex and growing policy can be resolved using
the mentioned access control methods [53]. It can be suitable both for access control at the
edge of the mobile network [54], and at network nodes along the flow path [55].

Presented examples of JWT token usage for many platforms and systems and the
methods and securing them, confirm its maturity and rightness of using this technology in
the MEC Enabler solution. Moreover, authors of [56] propose an architecture that connects
multi-tenancy cloud solutions and applies a similar idea of protection. MEC is very close
to cloud solutions, which is why our proposal to implement the MEC Enabler with JWT
and ABAC system is an opportunity to manage authorization at the Edge Computing and
be in line with current trends, too.

Therefore, the token structure has been adequately adjusted to the requirements of
MEC services. The JMAT has been developed as a JWT dedicated to usage in MEC. Its
detailed structure will be discussed later in this article.

4. The Design of JWT Authentication Token Used by MEC Enabler (JMAT)

The central part of the JSON MEC Authentication Token is a payload. Listing 1 shows
an example token, which consists of the following fields:

* id: an identifier of the entity that sent the request (principal).

* actor: type and context of the principal, possible values are defined by each application
independently, e.g., user, tester.

¢ token_preferences.life_time: the timespan while the token can be accepted. It might
be shorter than the (time_of_end_of_life - time_of_generation) value to support the
token refreshment.

¢ token_preferences.nonce: the random value that prevents the reply attack.

¢ appid: a unique name of the application.

e slice.id: an identifier of the slice used by the service inside the application.

¢ slice.slice_type: an array of attributes describing the slice that might be used by the
application or by the control plane.

e slice.service: an array of services’ identifiers that can be accessed by the principal
using this slice. Those services are part of the application that is mentioned in this
JMAT token.

e access: authorization access decision, for the scope of this article, it is the Boolean
value, but might be extended to another set of possible decisions.

e time_of generation: timestamp of the response generation, might be saved as an
integer number.

. time_of_end_of_life: the access is valid before this timestamp, might be saved as an
integer number.
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Listing 1: The structure of the payload of JMAT.

1 {

2 "id":"John",

3 "actor":"user",

4 "token_preferences":{ "life_time":"123456","nonce":"123456789"},
5 M"appid":"Applicationl",

6 "slice":[{

7 "id":"Slicel",

8 "slice_type":["eco","secure"],

9 "service":["Servicel","Service2", "Service3",b"Service4d"]
10} 4

11 "id":"Slice2",

12 "slice_type":[{}],

13 "service":["Service5", "Service6", "Service7"]

14}

15 "id":"Slice3",

16 "slice_type":[{}],

17 "service":["Service8" ,"Service9", "ServicelO","Servicell"]
18 }1,

19 "access":"Granted!",

20 "time_of_generation":1606339425998,

21 "time_of_end_of_1ife":1606339426898

22}

The payload of the token is created based on the user’s policy file. This file contains
data about the user and the application to which the user has access. The user rights to the
application are closely related to the structure of the MEC application (see Figure 5).

Figure 5. The MEC Application structure.

Every application has a unique identifier representing the type of access to it (restricted
or anonymous) and slices deployed among the application. It can include many simple
services responsible for a particular functionality (e.g., billing operations, management,
etc.). There is also a possibility to store parameters for selected services in the user’s entry.
Those parameters are encoded with Base64 format and might contain, e.g., API keys to
the service. Moreover, such a structure allows other tokens to be nested in a basic token
and used in access control between services located in different slices. The policy file is
delivered to the MEC Enabler from the MEC Environment Orchestrator. The article does
not focus on creating this file in the MEC environment (for the research, it was assumed
that the finally generated file is delivered to MEC Enabler).

Naturally, created tokens must have properly protected content. In our simulations
we consider five versions of tokens using various encryption and token signing modes
listed in RFC:

e  Unprotected (marked as U in the Tables): the payload of JMAT represented as
plaintext—only for input data size compare,
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e encrypted with AES-CBC, signed with HMAC using SHA-256, AES Key Wrap [24]
(marked as A128),

¢ encrypted with AES-CBC and signed with HMAC using SHA-256, symmetric key
encrypted with RSA-OAEP [24] (RSACQ),

e  signcrypted with AES-GCM, symmetric key encrypted with RSA-OAEP [24] (marked
as RSAG),

e only signed with HMAC using SHA-256 [21] (marked as SHA).

We selected such modes because we would like to check the efficiency of high-speed
and short-lifetime solutions (SHA), a typical symmetric-based solution recommended
by [24]—A128. Additionally, we would like to compare results with RSA-based solutions
as an example of an asymmetric cryptography approach. All of them are supported by
python library jwcrypto [57]. It uses cryptography library [58] and as a default cryptography
backend (cryptographic primitives provider and implementation) the OpenSSL library [59]
that supports AES-NI instructions [60].

In Table 2 there are sizes of tokens containing access credentials for a different number
of applications and slices and with a different number of parameters.

Table 2. The size (in kB) of JMAT for different number of applications, slices, and parameters: before
and after signcrypting or signing only.

No. No. of Apps No. of Slices No. of Par. U A128 [kB] RSAC[kB] RSAG [kB] SHA [kB]

1 16 64 64 335.84 246.77 247.05 247.03 447.87
2 32 64 64 335.84 246.67 246.95 246.93 447.87
3 64 16 64 84.12 62.27 62.55 62.53 112.24
4 64 32 64 168.05 123.75 124.03 124.01 22415
5 64 64 16 87.48 63.04 63.32 63.31 116.72
6 64 64 32 170.25 124.23 124.51 124.49 227.08
7 64 64 64 335.87 246.87 247.16 247.14 447.90
8 64 64 128 667.01 490.44 490.72 490.70 889.42
9 64 64 256 1329.25 977.14 977.43 977.40 1772.41
10 64 128 64 671.42 492.25 492.53 492.52 895.30
11 64 256 64 1342.62 983.77 984.05 984.03 1790.24
12 128 64 64 335.81 246.48 246.76 246.73 447.83
13 256 64 64 335.85 246.64 246.93 246.91 447.88

We see that these numbers strongly affect the size of a token. For specific applications,
one must consider an optimal choice of these numbers to optimize an overhead in access
control data transmission. Another conclusion from the data given in Table 2 is that com-
plete protection reduces the data size since proposed encryption and signature standards
apply data compression with the Deflate algorithm. In contrast, data signature alone does
not use such an additional algorithm. The signcryption strongly reduces data transmission
overhead; however, it increases a computational overhead (see Table 3).

Table 3. Time of JMAT generation and verification (64 applications, 64 slices, 64 parameters) calcu-
lated for 500 samples, i9 10900 processor.

Alg.  keygen. [ms] std.dev.[ms] var. gen.[ms] std.dev.[ms] var. valid.[ms] std.dev.[ms] var.

A128 0.02 0.004 0.20 11.33 0.083 0.01 4.65 0.371 0.08
RSAC 62.76 42.671 0.68 11.43 0.448 0.04 5.49 0.374 0.07
RSAG 56.73 39.116 0.69 11.03 0.249 0.02 5.12 1.144 0.22

SHA 0.02 0.006 0.27 222 0.814 0.37 5.84 1.052 0.18

The choice of the algorithm may depend on the type of service the user wants to access.
For example, anonymous access does not require a high level of protection. Nevertheless,
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the generation of an appropriate token format and the use of a cryptographic algorithm
requires time, which in the context of a large volume of traffic from users may be a
bottleneck. Thus, performance testing is essential in such a situation.

5. Generation and Validation of JMAT: Numerical Results

Performance tests have been done within Virtual Machine with Linux OS. Tests were
implemented in the Python language (version 3.9). For time measurements the function
time.perf_counter_ns() was used. The resolution of the counter in such a configuration
is 100 ns.

Table 3 presents basic statistical parameters (a mean value m, a standard deviation
0, and a variation ratio v = o /m, see [61]), for three performance parameters related to
JMAT, which are time of key generation, token generation, and token validation. The key
generation process uses pseudo-random number generators, so the variation between the
time generation of keys is quite high. It is evident for RSA methods, where it is necessary
to test the primality of the generated numbers. As in the 1st and 4th row of Table 3, the
symmetric key generation time is small compared to the token generation time. This is not
the case with asymmetric cryptography (rows 2 and 3 in Table 3). For the most frequently
used key length of 2048 bits, the token generation’s key generation ratio is around 5. Table 4
shows the time of RSA key generation for several key lengths and the corresponding token
generation time. The first time grows with key length (exponentially with the number
of keys to choose from), known from the RSA theory. We see that for very short keys
(substandard length of 1024 bits), the time of key generation time is comparable with the
time of token generation. Thus, the key and the token can be generated together. For the key
length of 3072 bits, which is recommended for “top secret” by the American Committee on
National Security Systems (see [62]), the key generation process dominates over the token
generation. Thus, we have the following recommendations for the key generation for JMAT.

¢ For symmetric cryptography, key generation can be done together with token generation.

¢ For asymmetric cryptography, key generation needs its separate computational thread
or even a separate key generation server.

¢  For security reasons, the key generator in the MEC Enabler platform can be imple-
mented without special hardware or software solutions, but it must be especially
protected against data leakage.

The time of tokens generation and tokens validation for tokens of a fixed structure
(number of components) in most cases is stable. The variability parameter is below 0.05
for generation and around 0.15 for validation. A more significant variability parameter
for SHA generation comes from a tiny result to measure. External effects such as thread
switching have a substantial impact than in more time-consuming scenarios. The token
generation time linearly depends on the token’s length and used algorithm. The token
validation time slightly depends on the token’s protection method.

Table 4. Time of asymmetric key and JMAT generation (64 applications, 64 slices, 64 parameters).

Key Size [Bits] Key Generation [ms] Token Generation [ms] Ratio
1024 12.33 11.08 111
2048 59.75 11.23 5.32
3072 226.81 11.34 20.00
4096 545.61 11.35 48.05
8192 6670.35 11.68 571.33

Figure 6 shows the total time spent on the key generation, token generation, and token
validation. Analogously, Figure 7 shows the time spent on the key generation and token
generation. The algorithm A128 has better performance than RSAC and RSAG. The SHA
algorithm without encryption is even faster than the A128 algorithm. However, the SHA
algorithm does not provide confidentiality of the message. RSA-based algorithms are up to
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5-times slower than A128. The token generation algorithm spends O(1) time generating
the token, where 7 is the number of applications available for a particular user. It was
archived using index-based data storage.
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The size of a created token is a valid metric for multiple use cases because even simple
operations such as storing or transferring the token depend on its size. Table 2 one can
read that output tokens can have smaller and larger sizes than the original payload. Using
the compression turned on for all encrypted JMAT scenarios can provide a smaller token
than the original payload. The used library [57] does not support the compression for the
SHA algorithm, so the plaintext was uncompressed in this scenario. The Deflate algorithm
was used because the standard supports it. Using compression provides obvious transport
and storage benefits; it increases security as well. The compressed plaintext has higher
entropy per bit than the non-compressed version of the message. When entropy per bit
rises, then the plaintext is less predictable for an attacker. From this perspective, there is no
substantial security argument for compressing the plaintext with the SHA scenario because
it does not encrypt the plaintext.

The token has some overhead from the Base64 encoding, which allows the transfer of
the token within text protocols such as HTTP. This encoding, unfortunately, adds about
33% to the total token size. Small tokens have a relationally significant overhead that comes
from the JWE and JWS standards.

To summarize the process of token-based authentication in 5G MEC architecture,
there is a need to mention one particular parameter, which is very important for this edge
environment-latency. According to assumptions for 5G and defined specific use cases
for MEC [63], this parameter should be reduced even to a value of 1 ms. Of course, this
limitation is mainly for a response from service after establishing the connection, and service
operation time is not included in this value. On the other hand, an authentication process
will impact the whole process and balance security level and time consumption. Analysis of
our work shows that using JMAT, it is possible to achieve a good time for token validation,
even with a single CPU thread and python instructions. When the token validation process
is done with a multi-thread program executed on a standard CPU equipped with 4 cores
(8 threads), this time can be close to 0.6 ms. Another aspect for reducing the time of
token creation and validation, which should be considered in the future, is a programming
language used for those operations. Therefore, our experimentations prove the possibility
of using the token-based method for authentication in MEC Enabler, even though there are
still areas of possible improvement.

6. Conclusions and Future Work

Realizing services based on the 5G MEC paradigm will impressively improve data
transmission quality and network efficiency compared to a typical 5G mobile network. On
the other hand, usage of MEC technology will also bring challenges, the need for more
resource protection and control, and especially requirements for higher security levels.

Due to many stakeholders in the edge service provision model and at the same
time the dynamic ability to launch services, the edge computing system should allow for
authentication based on multiple information: owner, service id, type of request, and many
others. The other aspect of edge computing is resource limitations, so it is also essential to
reduce the number of service requests to only those adequately authenticated. One way
to limit unwanted connections to the MEC infrastructure and at the same time increase
security is to use the MEC Enabler. This element establishes a connection to the MEC
infrastructure only after successful authentication of the request. Both the MEC and the
network resources are used only for valid requests.

Furthermore, such a function of access control based on different levels (network/ap-
plication) requires an authentication mechanism based on many parameters. One possible
realization for a complex AAA system is the ABAC method. As part of this document,
state of the art was done for various systems using ABAC and JWT for network authentica-
tion. In addition, it was proposed to include it in MEC Enabler and as a form of private
transmission to use a token compatible with the JWT model. Moreover, the authors of this
document defined necessary fields for the MEC Enabler and named it JMAT. Analyzes of
JMAT token for authorization of the MEC resources were done and proved.
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Additionally, to check the possible security methods for JMAT and analyze their use
in the edge model, performance tests were done. It was assumed to validate various combi-
nations of the key lengths and encryption methods. Performance tests have been launched
on different platforms. They have shown that even using python-based software, the speed
of generation and verification of a multi-attribute token is sufficient for use in the MEC
Enabler in a case when those operations will be done on a multi-thread program. In further
works, it is also planned to compare the results using the latest libraries written in other
programming languages, allowing multiple threads simultaneously. Interesting might also
be checking results based on Elliptic Curve Cryptography, which might have different
performance results for the key generation. In addition to extending the performance tests,
the authors of MEC Enabler plan to develop its additional functionalities and attempt to
integrate them with the MEC ecosystem.
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Abbreviations

The following abbreviations are used in this manuscript:

3GPP 3rd Generation Partnership Project

5G fifth generation cellular network technology
AAA Authentication, Authorization and Accounting
ABAC  Attribute-Based Access Control

AES Advanced Encryption Standard

AKM Initial Authentication and Key Management
AMF Access and Mobility Management Function
API Application Programming Interface

AS Applications Security

AUSF Authentication between UE and Authentication Server Function
CAPIF  Common API Framework

CDC Cipher Block Chaining

CLS Cloud Security

CN Core Network

cp Control Plane

CPU Community Protection Units

CQRS Command Query Responsibility Segregation

DP Data Plane

EAP Extensible Authentication Protocol

eMBB enhanced Mobile Broadband

ETSI European Telecommunications Standards Institute
EU End-Users

HMAC Hash Message Authentication Code
H-SMF Home Session Management Function
JMAT JSON MEC Access Token

JOSE JavaScript Object Signing and Encryption
JSON JavaScript Object Notation

JWE JSON Web Encryption

JWS JSON Web Signature

JWT JSON Web Token
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MANO Management And Network Orchestration
MEC Multi-Access Edge Computing

MECS  MEC Security

mMTC  massive Machine Type Communication
MNO Mobile Network Operator

MVNO  Mobile Virtual Network Operator

NAS Network Access Security

NDS Network Domain Security

NP Network Providers

NSS Network Slices Security

OAEP  Optimal Asymmetric Encryption Padding
PDU Protocol Data Unit

RAN Radio Access Network

RSA Rivest Shamir Adleman algorithm

SCM Security Credentials Management

SDN Software-Defined Network

SHA Secure Hash Algorithm

SIO Security Interoperability
SMF Session Management Function
SP Service Provider

SRM Security-Related Metadata
UDM Unified Data Management
UE User Equipment

UES User Equipment Security
UPF User Plane Function

URL Uniform Resource Locator
uRLLC  ultra-Reliable Low-Latency Communication
VM Virtualization Machine Platform

V-SMF  Visited Session Management Function
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