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Abstract: This article presents a single-shunt measurement of a three-level inverter using a modified
space-vector modulation to reconstruct the three-phase load current. The proposed method was
implemented on a digital signal processor (DSP), and the algorithm was verified in the laboratory
experiment. Through the work, it was proven that the single-shunt three-phase current measurement
could be performed using the space-vector modulation for three-level inverters in an analogous
way to ordinary three-phase inverters. Three-phase current reconstruction for ordinary three-phase
inverters was performed using the ordinary space-vector modulation with eight vectors, but for
three-level inverters, 21 vectors were available. When the inverter was working on the edges between
two vectors, the modulation disturbances appeared as current spikes. This problem was solved
using the modified SVM performed by shifting the SVM signals. Carefully designed signal shifting
(vector injection) demonstrated an excellent reconstruction of the three-phase load currents that were
single-shunt measured.

Keywords: single shunt; three-level inverter; SVM modification; current reconstruction; vector injection

1. Introduction

Inverters are used widely for motor control applications that are based on performance,
control principles, motor type, etc. [1–3]. Considering control principles, motor drives can
be divided into two groups: scalar- and vector-modulated, and controlled motor drives.
Scalar modulations are used in applications such as conveyor belts, passenger elevators,
grinders, etc. [3]. The main advantage of scalar control is its simplicity [1,2], and it is
usually used in low-cost and low-performance drives [1]. Vector control is usually applied
for applications in which better dynamic responses and high performances are required [4].
Two-level inverters are usually used, due to their simplicity, price, high reliability, and
performance. Introducing the multilevel architecture into the inverter’s operation principle
reduces the harmonic distortion and switching stress in the inverter circuit. Different
topologies have been reported for multilevel inverters, such as diode-clamped (neutral
clamped) inverters [5,6], capacitor-clamped (flying capacitors) inverters [7,8], and cascaded
multicell inverters with a separate DC source [7,9]. Diode-clamped inverters split the
DC-link voltage into n levels by n−1 series-connected bulk capacitors, where the middle
point between the two capacitors is called a neutral point. Two additional diodes clamp
the switch voltage to n−1, the level of the DC-link voltage. Capacitor-clamped inverters
use independent capacitors to clamp the device voltage. Cascaded multicell inverters
consist of a series connection of single-phase inverters with separate DC sources. With
such topology, the resulting phase voltage is equal to the sum of the voltages generated by
the different cells.

To reduce the costs of a device, a single-shunt measurement can be used instead
of current measurement using two or three shunts (or hall sensors). In addition, this
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measurement principle can be implemented for safety reasons as a second (redundant)
measurement system. To achieve this, space-vector modulation must be modified, since
the current measurement inside the boundary area (between two vectors) is not accurate
enough when ordinary space-vector modulation is used. When using the single-shunt
current measurement, it shall be considered that the switching stress, harmonic distortion,
DC link voltage utilization, and current measurement accuracy are adequate. Two switch
events are desired from a switching stress point of view. Symmetric SVM signals are desired
from the harmonic distortion, DC link voltage utilization, and current measurement points
of view. In such case, the average current value occurs in the middle of the time interval
between the two SVM edges.

Several different methods have been identified to achieve this for three-level invert-
ers [10–19]. Due to the hardware limitations of the current-measuring circuits, accurate
current measurement is not possible while an arbitrary voltage vector is positioned close to
the sector boundary [13–15] or region boundary inside the vector’s diagram of three-level
inverters [19,20] by using ordinary space-vector modulation. Current measurement inside
a boundary area is solved most often using modification algorithms based on SVM signal
shifting [21], which are not often used for multilevel inverters, or additional voltage vector
injection [22–24]. Paper [20] presents an estimation algorithm in combination with vector
injection, used to solve a problem with boundary areas while only one current measure-
ment is possible. A predictive algorithm [25], a hybrid solution combined with space-vector
modulation and the SVM method [26], and current reconstruction strategy with online
current offset compensation [27] could also be used for a single-shunt current-measurement
approach. A tristate pulse-width modulation technique for single-shunt current recon-
struction could be used when hardware and software resources are limited [28]. By proper
design of the current measurement circuit, DC link voltage utilization could improve drasti-
cally. There are several papers that describe different approaches for current-measurement
circuit design [29,30].

This paper deals with the development of a modified space-vector modulation (SVM)
to reconstruct the three-phase load current by using the single-shunt measurement. The
proposed method is based on the algorithms developed for two-level inverter circuits,
presented in [13–16]. To solve a problem with boundary areas, SVM signals have been
shifted in order to reduce additional vector injection. Section 2 describes the basic op-
eration of a three-level DC–AC converter, and proposes SVM patterns to achieve space
vector modulation. Such organized modulation principle suffers with inaccuracy on the
vector’s boundaries, so the modified SVM patterns enable the single-shunt current mea-
surements inside the boundary areas. For this reason, the SVM signals were shifted, as is
discussed in Section 3. The three-level DC–AC converter’s design is described in Section 4.
Section 5 deals with experimental verification of the proposed single-shunt space-vector
modulation approach.

2. Three-Level Inverter Basics

A basic schematic of the three-level inverter is shown in Figure 1. Each phase consists
of four MOSFETs and two bypass diodes. To avoid a possible short circuit, three switching
states are allowed for each phase (leg), as shown in Table 1. With different combinations of
switching states in each phase, 27 basic voltage vectors can be produced. Three of them
represent the zero vectors.

A vector diagram for the three-level inverter is shown in Figure 2a. Vectors
⇀
V1 −

⇀
V6,

if drawn with the start point in the reference frame origin, form an inner hexagon with
their vector end. Such vectors can be achieved using two different combinations of switch-
ing states.
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Table 1. Switching states of a three-level DC–AC converter.

S1x Sx1 Sx2 S2x Ux0 Notation

1 1 0 0 UDC/2 P
0 1 1 0 0 0
0 0 1 1 −UDC/2 N
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Vectors
⇀
V7 −

⇀
V18 form an outer hexagon with their vector end. The outer hexagon

can be divided into six sectors, which are areas inside the hexagon shifted by 60◦ and
starting from 0◦. Each sector inside the vector diagram can be divided into four triangular
areas called regions. Space-vector modulation for a three-level inverter can be achieved
by applying a different SVM pattern for each region formed from the three nearest basic
voltage vectors. With such an approach, the SVM pattern for each region is symmetric.

The modulation index for the three-level DC–AC converter can be calculated as follows:

mi =
√

3 ·
Ure f

UDC
(1)
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where Uref represents the reference voltage vector length and UDC represents the DC link
voltage. To determine a region, the modulation index components shall be determined
as follows:

mi,x =
√

3 ·
Ure f

UDC
sin(60◦ − θ) (2)

mi,y =
√

3 ·
Ure f

UDC
sin(θ) (3)

where θ stands for the reference voltage vector angle transferred to Sector 1. The reference
voltage vector positioned in the first sector is shown in Figure 2b. Based on the modulation
index components, the region is determined as shown in Table 2.

Table 2. Region decision.

mi,x mi,y mi,x + mi,y Region

<0.5 <0.5 <0.5 1
<0.5 <0.5 >0.5 2
>0.5 - - 3

- >0.5 - 4

The first sector is divided into four regions, as shown in Figure 3. An arbitrary voltage
vector can be generated with linear combination of two or more basic voltage vectors and
null vectors. To keep the SVM switching pattern symmetric, two or three nearest basic
voltage vectors in combination with or without null vectors are used for each region.
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The reference voltage vector shown in Figure 3 is positioned inside Region 3. With

linear combination of the nearest vectors
⇀
V1,

⇀
V7, and

⇀
V13, the reference voltage vector can

be achieved as follows:
⇀
Vre f =

⇀
V1 +

⇀
V7 +

⇀
V13 (4)

Controlling the duration of the basic voltage vectors
⇀
V1,

⇀
V7, and

⇀
V13, a reference

voltage vector can be generated anywhere inside Region 3. Expressions for the basic
voltage vector length calculation inside Sector 1 are shown in Table 3.

In an equivalent way, a time calculation can be done for other regions using different
linear vector combinations. Table 4 shows the time calculations for all regions inside
Sector 1. Transferring the reference voltage vector to the first sector, the same expression
from Table 4 can be applied to other sectors. The SVM patterns of all sectors and regions
are presented in Figure 4. The vector sequence and current-sampling positions are shown
for each SVM pattern. Current-sampling positions are marked with colored arrows in
Figure 4, where a red arrow marks the first sampling point, a blue arrow marks the second
sampling point, and a green arrow marks the third sampling point only in Region 2, due to
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the fact that all three phase currents can be measured within a switching period, which will
be explained in the next section. The time calculation for Region 3 can be obtained using
Expression (4). In an equivalent way, a time calculation can be done for other regions using
different linear vector combinations. Table 4 shows the time calculations for all regions
inside Sector 1.

Table 3. Basic voltage vectors used inside Sector 1.

Voltage Vector Duty Cycle Expression
⇀
V1 d1 = 1

3
t1
Ts

d1 ·UDC · ej0

⇀
V2 d2 = 1

3
t2
Ts

d2 ·UDC · ej π
3

⇀
V7 d7 = 1√

3
t0
Ts

d7 ·UDC · ej π
6

⇀
V13 d13 = 2

3
t2
Ts

d13 ·UDC · ej0

⇀
V14 d14 = 2

3
t1
Ts

d14 ·UDC · ej π
3

⇀
V0 d0 = t0

Ts
0 · d0 ·UDC

Table 4. Time calculation for different regions.

Region t1 t2 t0

1 t1 = 2 ·mi · Ts · sin(60◦ − θ) t2 = 2 ·mi · Ts · sin(θ) t0 = Ts − t1 − t2
2 t1 = Ts · (1− 2 ·mi · sin(θ)) t2 = Ts · (1− 2 ·mi · sin(60◦ − θ)) t0 = Ts − t1 − t2
3 t1 = Ts − t2 − t0 t2 = Ts · (2 ·mi · sin(60◦ − θ)− 1) t0 = 2 ·mi · Ts · sin(θ)
4 t1 = Ts · (2 ·mi · sin(θ)− 1) t2 = Ts − t1 − t0 t0 = 2 ·mi · Ts · sin(60◦ − θ)

To take a sample of current measurement during a switching period at the right
moment, the active basic voltage vector needs to be known. Based on that, it can be
determined which phase current is measured. When the values of two-phase currents are
known, we can determine the third phase current easily. Figure 5 presents the described
current reconstruction principle shown for Sector 1 and Region 1, where the first current

sample is measured during vector
⇀
V1 and the second current sample is measured during

vector
⇀
V2. At a certain time instant, the instantaneous value of current iv is sampled and

multiplied by (−1), and at the next time instant, the instantaneous value of current iu
is sampled. Table 5 shows which current is measured for each basic voltage vector. As
can be seen, the current measurement is not possible to perform for basic voltage vectors
⇀
V13 −

⇀
V18, since the current is not flowing through the shunt resistor, therefore the third

current iu is determined using Kirchoff’s current law.
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Table 5. Current measurement.

Voltage Vector Switching State Current Measurement

⇀
V1

P00 Iu
0NN −Iu

⇀
V2

PP0 −Iw
00N Iw

⇀
V3

0P0 Iv
N0N −Iv

⇀
V4

0PP −Iu
N00 Iu

⇀
V5

00P Iw
NN0 −Iw

⇀
V6

P0P −Iv
0N0 Iv

⇀
V7 P0N −Iv

⇀
V8 0PN −Iu

⇀
V9 NP0 −Iw

⇀
V10 N0P −Iv

⇀
V11 0NP −Iu

⇀
V12 PN0 −Iw

⇀
V13 PNN -
⇀
V14 PPN -
⇀
V15 NPN -
⇀
V16 NPP -
⇀
V17 NNP -
⇀
V18 PNP -
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3. Proposed SVM Pattern-Modification Method

As previously described in Section 2, two current samples are measured inside a
switching period between two SVM edges. The problem occurs when the time between the
two SVM edges becomes too short for current measurement due to the hardware limitation
and measurement signal settling time, described in [4–8]. The time between two SVM
edges becomes too short if the arbitrary voltage vector is close to the sector or region
boundaries. Such critical areas are shown in Figure 6.
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In such boundary cases, the conventional method from Section 2 cannot serve for the
single-shunt current-measurement approach, since current samples cannot be taken twice
within a switching period, and can only be used inside a normal operating area. Different
methods are proposed for solving boundary-area problems in the literature [3–15]. Most
of the proposed methods use the vector-injection approach. While injecting additional
vectors, asymmetry to the SVM pattern is introduced, which will cause higher current
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ripple and negative impact to the harmonic distortion at the end. There is also an additional
problem with current measurement precision using asymmetric SVM signals, as the average
current value may occur in different positions between two SVM edges, which requires a
more complex calculation to determine the correct sampling time. Without that, it could
happen that a current ripple is measured instead of the average current. To overcome
these problems, the proposed method for boundary areas reduces vector injection to the
minimum. This method uses SVM shifting, like the classic method for two-level inverters.
The SVM-shifting method differs for different regions, where the basic idea is to shift
one or more SVM signals to ensure enough time for current measurement, which will be
explained later in this section. Boundary-area design is determined with a minimum time
window for current measurement [3–5]. With proper boundary-area design, two current
samples can be measured inside the whole boundary area. Using the proposed method, all
three-phase currents can be measured inside Region 2, which reduces vector injection and
avoids SVM shifting.

3.1. SVM Pattern Modification Inside Region 1

Figure 7a shows Region 1 inside Sector 1, divided into a few characteristics areas:
normal operating area, boundary area 1, boundary area 2, and an unreachable area. With

the linear combination of the basic voltage vectors
⇀
V1 and

⇀
V2, an arbitrary voltage vector

is obtained, as also shown in Figure 7a.
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The SVM pattern for a normal operating area is shown in Figure 7b. Inside the normal
operating area, time durations t1 and t2 are long enough for accurate current measurement
between two SVM edges. The time duration is long enough if it is longer than Tmin, which
depends on the hardware design, deadtime, and settling time. Reducing time Tmin, the
unreachable area is reduced, and a larger arbitrary voltage vector can be generated. It is
desired that Tmin is as short as possible.

Moving close to the boundary area, the time between two SVM edges becomes shorter
than Tmin. In such a case, there is not enough time for current measurement, due to the
hardware limitations. Figure 7c shows the case in which the arbitrary voltage vector is

aligned with the basic voltage vector
⇀
V1. In such a case, time t2 is equal to zero, and

current measurement is only possible during vector
⇀
V1, which is not enough for current

reconstruction. An analogous situation is shown in Figure 7d, in which the arbitrary

voltage vector is aligned with basic voltage vector
⇀
V2. In such case, time t1 is equal to zero

and current measurement is only possible during vector
⇀
V2.

To overcome a problem with current measurement while the arbitrary voltage vector
is inside the boundary area 1 in Region 1, the SVM modification pattern is proposed, as
shown in Figure 8a,b.
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Figure 8. (a) SVM modification pattern while t2 < Tmin; (b) SVM modification pattern while t1 < Tmin.

If time t2 is shorter than Tmin, the SVM signal with the smallest duty cycle is shifted

to the right to ensure enough time for current measurement during vector
⇀
V2, as shown

in Figure 8a. In case t1 is shorter than Tmin, the SVM signal with the largest duty cycle is

shifted to the left to ensure enough time for current measurement during vector
⇀
V1, as

shown in Figure 8b.
The proposed SVM modification method does not solve a problem with an unreach-

able area and boundary area 2. Inside an unreachable area, the SVM duty cycle is large and
similar for all three phases. Inside the boundary area 2, the SVM duty cycle is short and
similar for all three phases. The SVM shift approach is not useful inside an unreachable
area and boundary area 2, since the SVM signal cannot be shifted with values lower than
0% and higher than 100%. Using similar SVM patterns, shown in Section 2 for Regions 2, 3,
and 4, a problem with an unreachable area can be solved. Boundary area 2 inside Region 1
is not covered with this method.

Figure 9b shows the proposed SVM pattern modification that allows us to generate
an arbitrary voltage vector inside an unreachable area using the same vector combination
as used for Region 2. Table 6 shows the formulas used for the proposed SVM pattern
modification shown in Figure 9b.
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Table 6. Time calculation for the proposed SVM pattern for Region 2 applied inside the inner hexagon.

Parameter Formula

t0 1.5 · Tmin
t2 6√

3
Ure f ,y
UDC

Ts − t0

t1 3 · Ure f ,x
UDC

Ts − 1
2 t2 − 3

2 t0
tz Ts − t1 − t2 − t0

Setting time t0 to a fixed value that is longer than Tmin allows us to measure current

during vector
⇀
V7 the whole time. If t1 is longer than t2, a second current measurement

is done during vector
⇀
V1, otherwise the current measurement is done during vector

⇀
V2.

Setting time t0 to a fixed value has a negative side effect, which is limiting the minimum
and maximum reachable arbitrary voltage vector angles. In other words, the proposed
SVM pattern and usage of the same vector combination as for Region 2 does not solve the
problem with the whole unreachable area inside Region 1.
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Figure 9a shows the area that still cannot be reached despite the proposed SVM pattern
shown in Figure 9b. Such areas are marked with yellow and orange colors. The proposed
SVM patterns shown in Figure 9c,d can be used to cover these areas as well. The orange
area can be covered with the SVM pattern shown in Figure 9c, and the yellow area can be
covered with the SVM pattern shown in Figure 9d. The linear vector combinations used to
cover the orange and yellow areas are also presented in Figure 9a, where injected vectors
can be seen. The expressions of the proposed SVM pattern modification in Figure 9c are
presented in Table 7. Table 8 shows the formulas used for the proposed SVM pattern
modification shown in Figure 9d.

Table 7. Time calculation for the proposed SVM pattern for Region 3 applied inside the inner hexagon.

Parameter Formula

t0 1.5 · Tmin
t1 3 · Tmin

tinjec t0 − 6√
3

Ure f ,y
UDC

Ts

t2 3
2 ·

Ure f ,x
UDC
· Ts − 1

2 t1 − 3
4 ·

(
t0 + tinjec

)
tz Ts − t1 − t2 − t0 − tinjec

Table 8. Time calculation for the proposed SVM pattern for Region 4 applied inside the inner hexagon.

Parameter Formula

t0 1.5 · Tmin
t2 3 · Tmin
t1 3 · Ure f ,x

UDC
· Ts − 1

2 t2 − 3
2 · t0

tinjec tinjec =
√

3 Ure f ,y
UDC

Ts − 1
2 (t2 + t0)− t1

tz tz = Ts − t1 − t2 − t0 − tinjec

3.2. SVM Pattern Modification Inside Region 2

Figure 10a shows Region 2 inside Sector 1, divided into a few areas in an equivalent

way as described for Region 1. With the linear combination of basic voltage vectors
⇀
V1,

⇀
V2, and

⇀
V7, an arbitrary voltage vector is obtained, as also shown in Figure 10a. The SVM

pattern for the normal operating area inside Region 2 is shown in Figure 10b.
Region 2 differs from other regions, since all three-phase currents can be measured

within a switching period, which gives us more flexibility for current measurement.
Figure 10c shows the case in which the arbitrary voltage vector is positioned inside

the boundary area 1, close to Region 3. In such a case, time t2 is shorter than Tmin. The

current can still be measured twice within a switching period, during vectors
⇀
V1 and

⇀
V7,

even when time t2 is shorter than Tmin. Figure 10d shows the case in which the arbitrary
voltage vector is positioned inside the boundary area 1, close to Region 4. In such a case,
time t1 is shorter than Tmin.

In addition, the current can be measured twice within a switching period during

vectors
⇀
V7 and

⇀
V2. Figure 10e shows the case in which the arbitrary voltage vector is

positioned inside the boundary area 1, close to Region 1. In such a case, time t0 is shorter
than Tmin. The current also can be measured twice within a switching period, during

vectors
⇀
V1 and

⇀
V2. Based on the time window between the SVM edges, the current

sampling position can simply be changed to a position where current measurement is
possible, and with such an approach, SVM modification can be avoided.

Such an approach is not possible in some parts of the boundary area. These parts are
marked with the orange area in Figure 10a. In such areas, only one current measurement is
possible. The previously described method for Region 1 can be used to solve a problem
within the orange area.
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shunt measurement; (b) SVM pattern for Sector 1 and Region 2 inside the normal operating area;
(c) SVM pattern while t2 = 0 s; (d) SVM pattern while t1 = 0 s; (e) SVM pattern while t0 = 0 s.

3.3. SVM Pattern Modification Inside Region 3

Figure 11a shows Region 3 inside Sector 1, divided into areas like those described for

Regions 1 and 2. With the linear combination of basic voltage vectors
⇀
V1,

⇀
V7, and

⇀
V13, an

arbitrary voltage vector is obtained, as also shown in Figure 11a. The SVM pattern for the
normal operating area inside Region 3 is shown in Figure 11b. Figure 11c shows the case

in which the arbitrary voltage vector is aligned with the basic voltage vectors
⇀
V1 and

⇀
V13.

Since current does not flow through the shunt during vector
⇀
V13, current measurement is

possible only during vector
⇀
V1, which is not enough for current reconstruction. Figure 11d
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shows the case where the arbitrary voltage vector is positioned inside the boundary area 1,
close to Region 2. In such a case, time duration t2 is shorter than Tmin. The current through

the shunt can be measured twice within a switching period during vectors
⇀
V7 and

⇀
V1.
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As can be seen, the problem inside Region 3 occurs while the arbitrary voltage vector

is aligned or close to vectors
⇀
V1 and

⇀
V13. The SVM-shift approach, like that described for

Region 1, can be used, which will cause injection of the new basic voltage vector. Figure 11e
shows the SVM shifting approach for Region 3. The idea is to shift the SVM signals in such
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a way that the arbitrary voltage vector stays unchanged, and at the same time, enough
time shall be ensured for current measurement. This is possible when two SVM signals are
shifted at the same time: The SVM signal for phase W needs to be shifted to the right, and
the SVM signal for phase V needs to be shifted to the left. SVM shifting causes injection

of vector
⇀
V12 like that shown in Figure 11e. The equations used for time calculation are

shown in Table 9.

Table 9. Time calculation for the proposed SVM pattern for Region 3 applied inside the outer hexagon.

Parameter Formula

t0 1.5 · Tmin
tinjec t0 − 2

√
3 · Ure f ,y

UDC
· Ts

t2 3 Ure f ,x
UDC

Ts − Ts − 1
2 ·

(
t0 + tinjec

)
t1 2 · Ts − 1

2

(
t0 + tinjec

)
− 3 Ure f ,x

UDC
Ts

When the arbitrary voltage vector is positioned close to Regions 2 and 3, which is
shown with the orange area inside Figure 11a, the previously proposed SVM-shift method
cannot be used, since time durations t0 and t2 are shorter than Tmin. In such a case, the SVM
pattern described for Region 1 is used, shown in Figure 9c. Using the proposed SVM-shift
method for Region 3, the unreachable area could not be reached, which will reduce the
maximum available modulation index.

3.4. SVM Pattern Modification Inside Region 4

Figure 12a shows Region 4 inside Sector 1 divided into areas like those described for

Regions 1–3. With the linear combination of basic voltage vectors
⇀
V2,

⇀
V7, and

⇀
V14, an

arbitrary voltage vector is obtained, as also shown in Figure 12a. The SVM pattern for the
normal operating area inside Region 4 is shown in Figure 12b. Figure 12c shows the case
in which the arbitrary voltage vector is positioned inside the boundary area 1, close to
Region 2. In such a case, time duration t1 is shorter than Tmin. The current can be measured

twice within a switching period, during vectors
⇀
V7 and

⇀
V2. The case in which the arbitrary

voltage vector is aligned with the basic voltage vectors
⇀
V2 and

⇀
V14 is shown in Figure 12d.

Since current does not flow through the shunt during vector
⇀
V14, current measurement is

possible only during vector
⇀
V2, which is not enough for current reconstruction.

The problem inside Region 4 occurs while the arbitrary voltage vector is aligned or

close to vectors
⇀
V2 and

⇀
V14. A similar SVM shift approach like that described for Region 3

is used and shown in Figure 12e.
The SVM signal for phase V needs to be shifted to the left, and the SVM signal for

phase U needs to be shifted to the right. SVM shifting causes injection of vector
⇀
V8, as

shown in Figure 12e. The equations used for the time calculation are shown in Table 10.

Table 10. Time calculation for the proposed SVM pattern for Region 4 applied inside the
outer hexagon.

Parameter Formula

t0 1.5 · Tmin

tinjec

√
3Ure f ,y−3Ure f ,x

UDC
Ts + t0

t1

√
3Ure f ,y+3Ure f ,x

UDC
Ts − t0 − Ts

t2 2Ts − t0 − 2
√

3 Ure f ,y
UDC

Ts

If the arbitrary voltage vector is positioned close to Regions 2 and 4, which is shown
with an orange area inside Figure 12a, the previously proposed SVM-shift method cannot
be used, since time durations t0 and t1 are smaller than Tmin. In such a case, the SVM
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pattern described for Region 1 is used, as shown in Figure 9d. Using the proposed SVM
shift method for Region 4, the unreachable area could not be reached, which will reduce
the maximum available modulation index.
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4. Hardware Implementation

A digital signal processor is used for SVM signal generation, ADC current measure-
ment, space-vector modulator calculation, single-shunt current-measurement reconstruc-
tion, and communication with a PC. Figure 13 shows a block scheme of all the proposed
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tasks for control of the three-level inverter. The voltage reference vector length and fre-
quency are obtained through serial communication from the PC.
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Figure 13. The block scheme of a three-level inverter.

After calculation of the space-vector modulation, the SVM signals are set and voltage
is applied to the load. Based on the calculated space-vector-modulation parameters, two
current measurements are taken using the current-measurement circuit and the current
reconstruction is then executed, and the results are sent to the PC. Results are shown
graphically in a runtime using the software X2C Scope.

4.1. Electronic Circuits

The three-level inverter was designed for a power range up to 100 W. It is switched
with the frequency of 16 kHz. The shunt resistor and current measurement circuit ensure a
current-measurement range up to 16 A, with the minimum settling time window equal to
3.2 µs. The three-level inverter is loaded with a symmetric RL load (LU = LV = LW = 560 µH,
RU = RV = RW = 5.1 Ω). Based on the proposed block diagram in Figure 12, the power stage
was designed and built as shown in Figure 13.

4.1.1. Power Stage Circuit

The three-level inverter was supplied from two 12 V power supplies connected to DC
link capacitors. The power stage consisted of four MOSFETs (IPB120N08S4-03) and two
bypass diodes (V30DM120HM3) per phase as a basic part of a three-level inverter, and dual
isolated gate drivers were used for MOSFET driving. The shunt resistor was connected to
the neutral point of the three-level inverter (RSh = 5 mΩ) for current measurement.

4.1.2. Current-Measurement Circuit

One of the crucial parts dealing with single-shunt measurement is the current-measurement
circuit. With the quality of current-measurement circuit design, utilization of the DC link
voltage can be influenced by reducing the minimum settling time Tmin needed for mea-
surement. Figure 14 shows the implemented current-measurement circuit. The current-
measurement circuit must fulfill the following requirements:

• The output signal is a DC signal with maximum range up to 3 V.
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• The current-measurement range is 20% greater than the maximum expected, to ensure
current measurement for the whole current range with enough assurance.

• The bandwidth is greater than 1 MHz.
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Figure 14. Current-measurement circuit.

The current-measurement circuit used is a differential amplifier. The DC offset for the
current-measurement circuit shown in Figure 14 is determined with the following expression:

Uo f f set =
R0 + R1

R0 + R1 + R2

(
1 +

R3

R0 + R1

)
·UP (5)

and the operational amplifier gain can be calculated as follows:

AV =

(
1 +

R2

R0 + R1

)
(6)

The operational amplifier DC offset was set to 1.7 V, and the gain to 16.69 (R0 = R1 = 510 Ω,
R2 = 32 kΩ, R3 = 16 kΩ, Up = 3.3 V). The selected operational amplifier (OPA365AIDBVR)
had a gain bandwidth of 50 MHz, which gave us a bandwidth for current measure-
ment greater than 1 MHz. The output filter time constant was set to 10 ns (Rf = 100 Ω,
Cf = 100 pF).

4.1.3. Digital Signal Processor

A control board (F28335 control card, Texas Instruments) with a digital signal pro-
cessor (TMS320F28335ZJZA) was used for three-level inverter control. The DSP was
equipped with:

• High-performance 32-bit CPU (TMS320C28x);
• 12-bit Analog–digital converter (ADC);
• Six-channel DMA controller (for ADC, ePWM, etc.);
• Up to 18 PWM outputs;
• Serial port peripherals, etc.

Figure 15 shows the docking station with control board and DSP.
The DSP unit can achieve ADC measurement with an 80 ns conversion rate. The

control board with docking station is capable of communicating with the PC through serial
communication. The key features of this module are fast ADC conversion, a high enough
number of SVM channels, flexible ADC triggering, and the possibility to achieve different
communication protocols very easily.
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Figure 15. Docking station with control board and DSP.

4.1.4. Power Supplies

DC–DC power supplies with galvanic isolation were used for safety reasons. MOSFET
drivers were supplied with a double-output 12 V isolated power supply (R1DA-121212/P,
RECOM Power). The docking station with control board and DSP was supplied with
external 5 V (TES 5-1212, TRACO Power). The docking station was equipped with a
voltage regulator that supplied the DSP with 3.3 V.

5. Experimental Results

The described single-shunt current-measurement algorithm was verified using the
test-bench system shown in Figure 16. The current through the shunt was measured
twice inside the switching period, as described in Sections 2 and 3, using DSP. Then, the
DSP reconstructed the phase currents and forwarded the results to the PC through serial
communication. Using an X2C Scope, results were shown graphically in runtime.
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Figure 16. Measurement test-bench used for verification of the proposed SVM algorithm.

5.1. Experimental Test-Bench

The proposed algorithm was verified using the test-bench system shown in Figure 16.
For verification purposes, the phase currents were measured using oscilloscope measure-
ment (as a reference system), and compared to the reconstructed currents obtained through
the serial communication, as described in Section 4. Measurements for the proposed
algorithms with and without modification were performed at the same operating points.

5.2. Measurement Results

The designed three-level inverter was tested under laboratory conditions. To verify the
single-shunt current-reconstructions’ measurement results, these were compared with the
reference currents measured with the oscilloscope. Measurements were done for different
values of modulation index as a function of the load frequency (at 25, 50, and 75 Hz). Test
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cases were chosen to cover the critical cases in the vicinity of the sector and region of
vector’s boundaries as described in previous sections.

The results obtained when ordinary space-vector modulation (SVM) was used showed
the expected current spikes close to the sector and region boundaries. Figures 17 and 18
show the current-reconstruction results and current measured by current sensors on the
scope. Figure 17a–f show the measurement results when the load frequency of 25 Hz was
applied. The maximum absolute current spike appeared when the modulation index was
designated to mi = 0.6 (Figure 17e) and it was measured at iu,v,w,spike = 3.4 A.
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Figure 17. Single-shunt reconstruction of a three-phase current without SVM modification for f = 25 Hz: (a) mi = 0.4; (c) mi = 
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Figure 17. Single-shunt reconstruction of a three-phase current without SVM modification for f = 25 Hz: (a) mi = 0.4;
(c) mi = 0.6; (e) mi = 0.8; scope-measured real three-phase currents for f = 25 Hz: (b) mi = 0.4; (d) mi = 0.6; (f) mi = 0.8.
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Figure 18. Single-shunt reconstruction of a three-phase current with SVM modification for f = 25 Hz: (a) mi = 0.4; (c) mi = 0.6;
(e) mi = 0.8; scope-measured real three-phase currents for f = 25 Hz: (b) mi = 0.4; (d) mi = 0.6; (f) mi = 0.8.

Figure 18a–f show the measured results when modified SVM was applied (Section 3).
In this case, the current reconstruction was also feasible in the boundary region using
the single-shunt current-measurement signal, as was described in the previous sections.
The current spikes almost disappeared, as can be seen in Figure 18c, and the signal was
measured at iu,v,w,spike = 0.17 A. In addition, as was mentioned previously, the modified
SVM caused an increase in the load current ripple. In the case of ordinary SVM, the current
ripple was measured at ∆iu = 0.16 A peak-to-peak (pp) (Figure 17d), when the modulation
index was set to mi = 0.6 (worst case). Due to the vector injection in the case of modified
SVM, the current ripple increased to ∆iu = 0.16 A peak-to-peak (pp) (Figure 18d). Rather
than comparison of the absolute values of the current ripple, which was also dependent
of the load inductance, it can be concluded that modified SVM caused the double current
ripple in the vicinity of the sector and region boundaries when modified SVM was applied.

Figures 19 and 20 show the current reconstruction when the load frequency of 50 Hz
was required. The results when ordinary SVM was applied are shown in Figure 19a–f,
and when modified SVM was applied, are presented in Figure 20a–f. In a similar way
to a load frequency of 25 Hz, the results obtained for a load frequency of 50 Hz also had
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an expected current spike close to the sector and region boundaries, with the measured
maximum absolute current spike at iu,v,w,spike = 3.4 A (Figure 19e); and when modified SVM
was used, the current spike was practically unmeasurable (iu,v,w,spike = 0.18 A, Figure 20e).
These performance parameters are indicated in Table 11.
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Figure 19. Single-shunt reconstruction of a three-phase current without SVM modification for f = 50 Hz: (a) mi = 0.4; (c) mi = 
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Figure 19. Single-shunt reconstruction of a three-phase current without SVM modification for f = 50 Hz: (a) mi = 0.4;
(c) mi = 0.6; (e) mi = 0.8; scope-measured real three-phase currents for f = 50 Hz: (b) mi = 0.4; (d) mi = 0.6; (f) mi = 0.8.
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Figure 20. Single-shunt reconstruction of a three-phase current with SVM modification for f = 50 Hz: (a) mi = 0.4; (c) mi = 0.6;
(e) mi = 0.8; scope-measured real three-phase currents for f = 50 Hz: (b) mi = 0.4; (d) mi = 0.6; (f) mi = 0.8.

Figures 21 and 22 show the results of current reconstruction when the load frequency
of 75 Hz was applied. Figure 21a–f show the three-phase currents’ reconstruction results
when the ordinary SVM was used (Section 2). The modulation index was chosen so that
the current reconstruction is visible on the boundary areas of the sectors and regions. The
current spike was measured at iu,v,w,spike = 3.15 A (Figure 21e). Figure 22a–f show the results
obtained when the modified SVM algorithm was applied as described in Section 3. The
current spike was negligible, and it was measured at iu,v,w,spike = 0.15 A (Figure 22e).
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Table 11. Performance index for measurement results.

Frequency
[Hz]

Modulation
Index

mi

Measurement
without SVM
Modification

If- rms,SVM,non-modified [A]

Measurement
with SVM

Modification
If- rms,SVM,modified [A]

Scope
Measurement

If-rms [A]

Maximum
Absolute

Peak-Current Error
If-peak,error [A]

Relative
Error
ε [%]

25
0.4 0.662 0.655 0.689 0.52 4.93

0.6 1.012 1.020 1.070 2.09 4.67

0.8 1.472 1.470 1.450 3.40 1.38

50
0.4 0.658 0.652 0.684 0.52 4.68

0.6 1.007 1.006 1.060 2.17 5.09

0.8 1.456 1.394 1.430 3.28 2.52

75
0.4 0.647 0.647 0.675 0.52 4.15

0.6 0.960 0.983 1.040 2.30 5.48

0.8 1.435 1.407 1.410 3.15 0.21
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Figure 21. Single-shunt reconstruction of a three-phase current without SVM modification for f = 75 Hz: (a) mi = 0.4; (c) mi 

= 0.6; (e) mi = 0.8; scope-measured real three-phase currents for f = 75 Hz: (b) mi = 0.4; (d) mi = 0.6; (f) mi = 0.8. 
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Figure 21. Single-shunt reconstruction of a three-phase current without SVM modification for f = 75 Hz: (a) mi = 0.4;
(c) mi = 0.6; (e) mi = 0.8; scope-measured real three-phase currents for f = 75 Hz: (b) mi = 0.4; (d) mi = 0.6; (f) mi = 0.8.
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Figure 22. Single-shunt reconstruction of a three-phase current with SVM modification for f = 75 Hz: (a) mi = 0.4; (c) mi = 
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Figure 22. Single-shunt reconstruction of a three-phase current with SVM modification for f = 75 Hz: (a) mi = 0.4; (c) mi = 0.6;
(e) mi = 0.8; scope-measured real three-phase currents for f = 75 Hz: (b) mi = 0.4; (d) mi = 0.6; (f) mi = 0.8.

The obtained results (Figures 17–22) showed that the proposed modification algorithm
solved the problem with current measurement inside critical areas, and removed current
spikes’ occurrence, so the proposed modification algorithm can be used for single-shunt
current-reconstructions’ measurement.

The relative error was calculated as follows:

ε =

∣∣∣∣∣ I f−rms − I f−rms,PWM,modi f ied

I f−rms

∣∣∣∣∣× 100 (7)

where I f−rms is the phase current measured by the scope, and I f−rms,PWM,modi f ied represents
the single-shunt-measured phase current when the SVM modified algorithm was used.

6. Discussion

The method presented here enabled the single-shunt current measurement for re-
constructing the three-phase load current using a modified SVM approach. The method
reduced vector injection to the minimum, and using the property of Region 2, even avoided
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SVM shifting by switching between current-sampling positions, while the vector was
still in Region 2. The method used the symmetric SVM patterns to avoid the harmonic
distortion. While using vector injection to solve problems close to the boundary between
the inner and outer hexagons, the measurement had an effect on the current ripple due
to the introduced asymmetry. Since the current was measured in the middle of two SVM
edges while using asymmetric SVM patterns, a measurement error was introduced, which
can be seen in the measurement results where smaller spikes appeared. This happened
because the measured current was not equal to the average current in the sampling period.
To decrease the measurement error, exact expressions for the sampling position could be
investigated, and reconstructed currents could be improved even further.

7. Conclusions

The goal of the presented control method was to develop a measurement system
for single-shunt three-phase current reconstruction using SVM for a three-level inverter.
Due to the current spikes appearing on the sector and region boundaries, a modified
SVM was proposed to extract these. Using the described principle, a three-shunt or
three-Hall-sensor measurement circuit for three-level inverters could be replaced with
a single-shunt current-measurement circuit without negatively affecting the inverter’s
performance. The functional laboratory test-bench system of a three-level inverter was
designed, and the proposed method was verified for different modulation indices, and also
at different load-frequency requirements. The results obtained using the proposed single-
shunt measurement method were similar to the real current, comparing the measured
and reconstructed current shape and RMS value, with maximum relative error for the
RMS phase current around 5%. Smaller current spikes occurred around the boundary area
between the inner and outer hexagons on the reconstructed phase currents, with maximum
absolute current error up to 0.4 A peak-to peak caused by measurement inaccuracy due
to the vector injection. The proposed modified space-vector modulation was verified for
modulation index values from 0.15 to up to 0.92. Current-measurement precision could be
improved by adjusting the position when current-measurement samples are taken, which
should reduce the maximum absolute current error.

Author Contributions: H.K. designed the hardware for the three-level inverter under the guidance
of L.K., and also performed all the measurements presented here. The analysis of the electronic
circuits and necessary software were designed under the guidance of M.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research Agency (ARRS).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors acknowledge financial support from the Slovenian Research Agency
(Research Core Funding No. P2-0028) and the company Mahle Electric Drives Slovenia d.o.o. The
authors also acknowledge Dušan Drevenšek from the Mahle Electric Drives Slovenia team for his
helpful guidance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Finch, J.W.; Giaouris, D. Controlled AC Electrical Drives. IEEE Trans. Ind. Appl. 2008, 55, 481–491. [CrossRef]
2. Dementyev, Y.N.; Kojain, N.V.; Bragin, A.D.; Udut, L.S. Control system with sinusoidal PWM three-phase inverter with a

frequency scalar control of induction motor. In Proceedings of the 2015 International Siberian Conference on Control and
Communications (SIBICON), Omsk, Russia, 21–23 May 2015.

3. Srilad, S.; Tunyasrirut, S.; Suksri, T. Implementation of a Scalar Controlled Induction Motor Drives. In Proceedings of the
2006 SICE-ICASE International Joint Conference, Busan, Korea, 18–21 October 2006.

4. Hongyun, J.; Ming, C.; Wei, H.; Wei, L.; Xiaonfan, F. Investigation and Implementation of Control Strategies for Flux-Switching
Permannet Magnet Motor Drives. In Proceedings of the 2008 IEEE Industry Applications Society Annual Meeting, Edmonton,
AB, Canada, 5–9 October 2008.

http://doi.org/10.1109/TIE.2007.911209


Electronics 2021, 10, 1734 27 of 27

5. Marchesoni, M.; Tenca, P. Diode-clamped multilevel converters: A practicable way to balance DC-link voltages. IEEE Trans. Ind.
Electron. 2002, 49, 752–765. [CrossRef]

6. Nami, A.; Zare, F.; Ledwich, G.; Ghosh, A.; Blaabjerg, F. A new configuration for multilevel converters with diode clamped
topology. In Proceedings of the 2007 International Power Engineering Conference (IPEC 2007), Singapore, 3–6 December 2007.

7. Rodriguez, J.; Lai, J.-S.; Peng, F.Z. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind.
Electron. 2002, 49, 724–738. [CrossRef]

8. Lin, J.; Weiss, G. Multilevel converter with variable flying capacitor voltage used for virtual infinite capacitor. In Proceedings of
the 2017 International Symposium on Power Electronics, Novi Sad, Serbia, 19–21 October 2017.

9. Li, J. Design and Control Optimisation of a Novel Bypass-embedded Multilevel Multicell Inverter for Hybrid Electric Vehicle
Drives. In Proceedings of the 2020 IEEE 11th Symposium on Power Electronics for Distributed Generation Systems (PEDG),
Dubrovnik, Croatia, 28 September–1 October 2020.

10. Kim, H.; Jahns, T.M. Current Control for AC Motor Drives Using a Single DC-Link Current Sensor and Measurement Voltage
Vectors. IEEE Trans. Ind. Appl. 2006, 42, 1539–1547. [CrossRef]

11. Matsuura, K.; Ohishi, K.; Haga, H.; Ando, I. Fine motor current control based on new current reconstruction method using one
DC-link current sensor. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society,
Yokohama, Japan, 9–12 November 2015.
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