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Abstract: Indoor localization schemes have significant potential for use in location-based services
in areas such as smart factories, mixed reality, and indoor navigation. In particular, received signal
strength (RSS)-based fingerprinting is used widely, given its simplicity and low hardware require-
ments. However, most studies tend to focus on estimating the 2D position of the target. Moreover, it
is known that the fingerprinting scheme is computationally costly, and its positioning accuracy is
readily affected by random fluctuations in the RSS values caused by fading and the multipath effect.
We propose an indoor 3D localization scheme based on both fingerprinting and a 1D convolutional
neural network (CNN). Instead of using the conventional fingerprint matching method, we transform
the 3D positioning problem into a classification problem and use the 1D CNN model with the RSS
time-series data from Bluetooth low-energy beacons for classification. By using the 1D CNN with the
time-series data from multiple beacons, the inherent drawback of RSS-based fingerprinting, namely,
its susceptibility to noise and randomness, is overcome, resulting in enhanced positioning accuracy.
To evaluate the proposed scheme, we developed a 3D positioning system and performed compre-
hensive tests, whose results confirmed that the scheme significantly outperforms the conventional
common spatial pattern classification algorithm.

Keywords: 1D conventional neural network; 3D localization; indoor positioning; BLE signal

1. Introduction

Indoor localization schemes, which are also termed as positioning schemes, have
received significant attention recently because of their potential for use in areas such as
smart factories, mixed reality, indoor navigation, security and advertising services [1]. In
general, indoor localization can provide the following benefits: better user experience for
navigating indoor spaces, where GPS is not practical; enabling smart building operations
and enhancements; improving the efficiency of robots or unmanned aerial vehicles (UAVs)
in smart factories, and allowing users to find equipment with ease [2,3]. However, most
studies so far have focused on estimating the two-dimensional (2D) position of the target.
However, it is also essential to determine the three-dimensional (3D) position, that is, the
height as well, of the target (for instance, the height of a robot’s arm or UAV in a smart
factory, height of equipment in a building, and height of security features).

Most current indoor localization technologies are based on time, angle, or electromag-
netic wave data; these are also known as the time of arrival, angle of arrival and received
signal strength (RSS) schemes, respectively [4,5]. Among the various indoor localization
schemes available, the RSS-based scheme is used widely owing to its simplicity and low
hardware requirements. RSS-based methods can be divided into two categories: those
involving trilateration based on the range estimated from the RSS values and the finger-
printing method, which is based on RSS fingerprint matching. Considering the variations
in the RSS values in indoor spaces, however, it is difficult to accurately determine the
distance information from the RSS data.
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Previous studies on indoor localization suggest that several methods use the finger-
print matching scheme as the basic scheme for the localization of the target. The main idea
is to first build a fingerprint database that collects the surrounding signatures at every pre-
defined location in the areas of interest. Subsequently, the position of the target is estimated
by matching the measured fingerprint with the database. Many researchers have striven
to exploit the RSS value signatures for RSS-based fingerprinting techniques owing to the
simplicity and low hardware requirements of the process. The first fingerprinting method
based on a Wi-Fi device was introduced in [6]. The authors determined the fingerprints
of the RSS value and then used a deterministic method, namely, the k-nearest neighbors
technique, for position estimation. Subsequently, RSS measurements from other transmitter
devices, such as RFIDs [7], Zigbee [8] and Bluetooth devices [9], have also been used for
localization based on the fingerprinting technique. Moreover, classical machine learning
methods such as the support vector machine model have been employed with the RSS
fingerprinting technique [10]. In [11], a probabilistic Bayesian method was introduced to
determine the difference between the test and saved RSS values. The main challenge in
the case of RSS-based fingerprinting localization methods is that their positioning accu-
racy is readily affected by the random fluctuations in the RSS values caused by fading
and the multipath effect. In addition, the complexity of the matching algorithm as well
as that of classical machine learning algorithms increases significantly as the number of
positions to be estimated increases. Thus, one requires more storage space and additional
computing resources.

With the emergence of graphical processing units (GPUs), the convolutional neural
network (CNN) became a focus of research interest again in 2012 [12]. Significant advances
were made in image processing through the development of CNNs such as AlexNet, Zfnet,
and GoogLeNet [13,14]. Since CNNs exhibit improved performance by extracting more
features from raw data during image classification, many researchers have tried to use
them with one-dimensional (1D) signals such as temporal signals. Moreover, a 1D CNN
was developed recently to reduce the computational complexity for 1D signals [15,16].

In this paper, we propose an indoor 3D localization scheme based on both fingerprint-
ing and a 1D CNN. Instead of using the conventional fingerprint matching method, in the
proposed scheme, the 3D positioning problem is transformed into a classification problem,
and a 1D CNN model that uses the RSS time-series data from Bluetooth low-energy (BLE)
beacons is used for classification. The contributions of this study can be summarized
as follows:

1. We propose an indoor 3D localization scheme based on both fingerprinting and
a 1D CNN. While most of the studies so far have focused on estimating the 2D
positional information of the target, we propose a 3D localization scheme based on the
fingerprinting technique. We convert the 3D positioning problem into a classification
problem by dividing the 3D space into a set of unit cubic grids and process the RSS
time-series BLE signal as a 1D signal in order to solve the localization problem using
a 1D CNN.

2. We develop a 3D positioning system, which consists of BLE beacons and a Rasp-
berry Pi receiver, for evaluating the performance of the proposed scheme. Using
the developed system, time-series RSS data are collected from the beacons at each
location, and the collected data are divided into training and testing datasets for the
1D CNN model.

3. We evaluate the performance of the proposed scheme through comprehensive tests.
First, the convergence and accuracy of the 1D CNN scheme are evaluated, and
the effects of data preprocessing and the kernel size on the proposed scheme are
investigated. Next, we compare the classification accuracy of the proposed scheme
with that of the conventional common spatial pattern (CSP) algorithm.

The remainder of this paper is organized as follows. In Section 2, we briefly review
some relevant literatures and compare their strength and weakness. In Section 3, we
introduce the characteristics of the BLE signal and describe the developed 3D localization
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system. In Section 4, the indoor 3D localization scheme based on both fingerprinting and
a 1D CNN is proposed. The performance of the proposed scheme is evaluated through
tests, whose results are described in Section 5. Finally, the conclusions of this study are
summarized in Section 6. Note that abbreviation and description in this manuscript are
summarized in Appendix A (see Table A1).

2. Related Works

In indoor fingerprint positioning, it is more common to use WI-FI signal as the
measurements. Baoqi Huang et al. introduced an eight-layers DNN model for indoor
Wi-Fi signal fingerprinting localization in [17]. In signal processing, they utilized stacked
auto encoders to extract representative features from the collected data and defined a
special loss function to train DNN. However, positioning errors were beyond 2 m in indoor
environment. In [18], Yifan Wang et al. developed a Wi-Fi fingerprint location recognition
DNN method based on geometric distribution of fingerprint points to estimate the user’s
position, and then exploited the constrained Kalman filter algorithm and the hidden
Markov model to optimize the final results. However, this fuse method led to complexity
of algorithm and has a large error in the specific location. Although Wi-Fi signals have
the physical characteristics like high transmit power, more bandwidth, and large coverage,
the cheaper and more low-power BLE sensor is used in related fields. In [19], Charu Jain
et al. compared a variety of machine learning methods based on BLE signal in solving floor
classification problem. However, they cannot cover the more developed neural network.
Since University of Toronto Geoffrey E. Hinton’s research group won the championship
through the constructed CNN network, AlexNet, in the 2012 ImageNet Large-Scale Visual
Recognition Challenge [13], CNN has not only attracted the attention of many researchers
in the image field, but also it keeps going to conquer the battlefield in other fields. In [20],
Danshi Sun et al. utilized CNN to achieve positioning in multi-floor large-area indoor
environment. They converted the BLE RSS value into “fingerprint image” to train the
2D CNN and to predict floor categories, and then combining with magnetic field data to
locate the transmitter’s position. In [21], they carried out a PSO-aided 2D CNN architecture
for the indoor positioning system, in which PSO is used for optimal parameter selection.
However, both of them restructured the time-series BLE signal vector into image-liked
matrix. This will lead to high time complexity and unwarranted execution time of the
localization method. In [22], Kodai Tasaki et al. developed a 3D CNN based on BLE RSS
value to against statistically fluctuated signal due to random wireless channels. By taking
the spatiotemporal structure of RSSI data set into consideration, the results showed a good
result in fingerprinting than 2D CNN. However, it needs a spatial correlation for all the
obtained RSS values, and special and complex operations in constructing the input dataset.

For indoor localization, the information of height is also important factor in industrial
or commercial scenarios, the above-mentioned articles work well in floor and 2D posi-
tioning, but they did not focus on much 3D position information. In addition, due to the
temporal feature of collecting BLE signal data, it is necessary to develop a 1D CNN to fully
take advantage of the temporal signal. In this paper, we use the 1D CNN algorithm to
accomplish the 3D spatial position classification problem, which will achieve more accurate
and efficient positioning. In addition, this method has excellent positioning accuracy on
small spatial environment.

3. System Description
3.1. Received Signal Strength (RSS) of BLE Signal

The received power of a BLE signal in indoor environments decreases as the distance
of propagation increases. Therefore, the RSS is reflective of the distance between the
transmitter and receiver. In conventional RSS-based ranging schemes, the log-normal path
loss model is generally used, and the RSS value is expressed as follows [23]:

RSS[dBm] = 10× log
Pr

Pre f
, (1)
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where Pre f is the reference power, Pr is the received power (calculated as Pr = Pt × Gt ×
Gr × (λ/4πd)2), and Pt is the transmitted power. Gt and Gr denote the antenna gains of
the transmitter and receiver, respectively. λ is the wavelength of the radio wave and d is
the distance between the transmitter and receiver.

When the RSS value at 1 m is used as the reference power value, we can calculate the
distance, d, from the current RSS value as follows [24]:

d[m] = 10(P0−RSS)/10n (2)

where P0 is the RSS value at 1 m, and n is the path loss parameter, which is different in
various spaces: 1.4–1.9 for corridors and 2 for large open rooms [25]. Figure 1 shows the
results of our real experiments to investigate the changes in the RSS value with the travelled
distance, which will be the basic characteristic element that we will use to distinguish the
different positions. As can be seen from the figure, the RSS values of the two beacons are not
the same, even though both beacons are of the same model and from the same manufacturer.
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Figure 1. Changes in BLE RSS value with distance during experiments.

3.2. Developed 3D Localization System

Owing to the presence of shadow areas and the multipath effect in indoor environ-
ments, the deployment of BLE beacons affects the signal reception, which, in turn, affects
the positioning accuracy. According to the layout principle proposed in [26], a spacing
of 4–6 m is optimal for Bluetooth placement plans when no obstacle exists between the
transmitter and receiver. Therefore, we arranged 8 BLE beacons at the top corners of a 3D
space with dimensions of 4.0 m × 2.0 m × 3.0 m (length × width × height) in a general
office building in our university. Figure 2 shows a schematic of the 3D localization system,
including the coordinates and deployment locations of the of BLE beacons.

Figure 3 shows an overview of the data flow for the developed 3D positioning system.
In this system, we used a third-generation Raspberry Pi (Model B) as the BLE signal
receiver and data uploader. The entire process was divided into three stages. First, the BLE
signal receiver scans the beacon signals in the surroundings and extracts the RSS value of
the received packet from the beacon frame and beacon ID. Once the RSS value has been
determined, the Raspberry Pi functions as the gateway device to upload the extracted data
to the local database. A timestamp corresponding to the moment of reception is also added
to update its own real-time clock from the network time protocol server over the Wi-Fi
router device. Finally, the data are used to train the neural network and predict the 3D
position of the receiver.
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4. Proposed Scheme
4.1. System Framework

Without a loss of generality, a 3D space can be divided into a set of unit cubic grids.
The considered space is divided into M unit cubic grids, which can be considered as
M distinct spatial locations. When N BLE beacons are used, a time-series of the RSS
values from the N beacons can be collected at each location, and the collected data can be
labeled as J = {1, 2, . . . , m, . . . , M}. Note that each label indicates the premeasured 3D
coordinates of the corresponding cubic grid. The RSS measurement result at location m, Xm,
is combined with its label, m, to form a training sample, (Xm, m), for the proposed scheme.
The time-series of the RSS values at location m from the n-th beacon can be expressed as
Xm

n = (x1, x2, ., xl , .., xL), where xl is the l-th RSS value and L is the length of the time-series
of the RSS values.

In this study, we used N (=8) BLE beacons and divided the space into M (=16) grids
with a unit size of 1 m × 1 m × 1 m, as shown in Figure 4. Therefore, the RSS value vector
from the 8 beacons at a certain position, m, can be expressed as Xm = [Xm

1 , Xm
2 , . . . , Xm

8 ]T ,
where T represents the transpose operation, and the time-series of the RSS values for all
the positions is expressed as X = [X1, . . . , Xm, . . . X16]. Note that the input for the training
phase is denoted as (XTr, J), while Xpr represents the input data for the prediction to
evaluate the performance of the proposed scheme. In the prediction phase, the location of
the target is estimated based on its RSS value, Xpr. The layout of the proposed scheme is
shown in Figure 5. As can be seen from the figure, the scheme consists of two phases: the
training phase and the positioning phase. The 1D CNN model is trained using the training
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dataset in the training phase. Next, the trained model is used to predict the location of the
target from the input data, Xpr.
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4.2. Data Preprocessing

Generally, it is essential to perform data preprocessing for efficient model convergence
when using a neural network. The following data preprocessing methods are employed in
the proposed scheme.

4.2.1. Homogenization of RSS Values

Theoretically, a signal scanning process should be enough to obtain the RSS values of
all the available BLE sensors in the surrounding environment. In actual implementations,
however, no signal scanning process can obtain all the signals because of differences in
the signal strength through the different propagation channels and the resulting packet
loss. In addition, the receiver may not be able to obtain the same number of temporally
consecutive data values from all the beacons owing to the differences in the sampling
time. If the length of the samples for each label is not the same, a bias can occur in the
training phase. Therefore, it is essential to construct a homogeneous dataset from the
heterogeneous dataset. Hence, we constructed RSS value vectors of the same length from
consecutive samples to ensure that the input data requirement for the 1D CNN was met. In
the proposed scheme, the minimum principle is adopted to prepare the valid signal frame
for training the 1D CNN. This means that we chose the sample with the minimum length
as the benchmark for all the samples at all 16 sampling positions.
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4.2.2. Elimination of Outlier Values

Outliers are generated when the sensor is switched on or off or when there is signif-
icant interference, such as that from human activity. To reduce the effect of outliers, the
interquartile range (IQR) method has been introduced [27]. The idea of this method is to
first rank the data and then choose the interquartile points, denoted as Q1, Q2 and Q3, in
ascending order. Then, using the first quartile point, Q1, and the third quartile point, Q3,
the reliable interquartile range can be obtained as follows:

IQR = Q3 − Q1, (3)

After obtaining the IQR, the first and second inner limitation (IL) values can be
calculated as follows:

1st IL: Q1 − 1.5 × IQR, (4)

2nd IL: Q3 + 1.5 × IQR, (5)

If the RSS value is bigger than the second IL value or smaller than the first IL value, it is
regarded as an outlier, while the data values that lay within the confidence interval, that is,
between the first and second IL values, can be trusted, as shown in Figure 6. Therefore, we
can construct a training dataset of the form (XTr, J) from the raw observations (XR, J). This
process ensures that the trained model is not polluted by unstable BLE RSS outlier values.
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4.2.3. Data Normalization

The BLE RSS values typically ranged from −70 dB (lowest) to −30 dB (highest).
However, we normalized the scale of the RSS values because the input values should be
limited to the range (0, 1) for ensuring that the CNN training efficiency and coverage speed
are high [28]. The min–max normalization method was adopted for this [29]:

x′i =
(xi − xmin)

(xmax − xmin)
(6)

where xmin is the minimum RSS value of the data collected from a beacon. Note that the
measured values of all the beacons were normalized independently for every location,
instead of normalizing the measured values together.

4.3. 1D CNN Model

In the case of conventional schemes, the theoretical relationship between the RSS
value and the distance is used to estimate the location of the target. It is known that
theoretically the time-series of the RSS values for a specific location does not change
significantly over time. Based on this characteristic, many researchers have introduced
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RSS-based fingerprinting schemes based on statistical features such as the entropy, mean,
and variance of the time-series of the RSS values to estimate the location. However, this
requires designing and extracting features related to the temporal characteristics of RSS
values based on the specific situation and thus is not a universal approach [30–32].

Since CNNs show excellent performance with respect to the extraction of additional
features from raw data during image classification, many researchers have attempted to
use them with 1D signals such as temporal signals. Moreover, a 1D CNN was recently
developed to reduce the computational complexity for 1D signals. Since the 3D positioning
problem was transformed into a classification problem and the RSS time-series of the BLE
signals was considered a 1D signal in the proposed scheme, a 1D CNN was adopted for
solving the problem. Figure 7 shows the general process of 1D convolution. Randomly
initialized filters, which also termed as kernels, perform convolution extraction, and then
scan the entire input data along a certain stride. The extracted outputs make up the
feature map.
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In the next section, the 1D CNN model of the proposed scheme is described in detail.
We used five different layers, which are the convolutional layer, pooling layer, dropout
layer, fully connected (FC) layer, and output layer.

4.3.1. Convolutional Layer and Pooling Layer

The function of the convolutional layer is to extract the feature map. In the convolu-
tional layer, filters that are randomly generated using different initialization values traverse
every sample, Xm, of the input training dataset, (XTr, J), along a specific stride and extract
features from it. In this manner, the feature map is obtained as the output of the convolution
layer, as shown in Figure 7. The number of filters used affects the resolution of the feature
output. Generally, the higher the number of filters used, the higher the number of features
extracted from the original signal and thus the higher the resolution. The hyperparameters
of the convolution layer include the convolution filter size and the stride size, and these
determine the size of the feature map. For example, a convolution layer without padding
produces an output volume of [16× 1× 12] if it uses 12 filters, whose window size is 3,
and the stride step is 2 and input volume is [32× 1].

The output of the convolutional layer exhibits information redundancy and thus a high
computing cost. The function of the pooling layer is to down-sample and resample the input
data to extract additional features and compress the data to improve the computational
efficiency. The pooling function abstracts the input data within the window interval and
regards the output as a representative value for the pooled RSS features, as shown in
Figure 8. The main parameter of this layer is the stride size, which determines the width of
the information extracted.
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Both max pooling and average pooling are commonly used pooling functions. The
max pooling function calculates the maximum value of the RSS value vector within the
window, while the average pooling function calculates the mean value of the window.
According to the relevant theory, during feature extraction, errors arise primarily because
of two factors: (1) the increase in the variance of the estimates caused by the restricted
neighborhood size and (2) the offset of the estimated mean value caused by the parameter
error of the convolution layer. In general, the average pooling function can reduce the first
error, while the max pooling function can reduce the second error. Hence, the max pooling
function is used in the proposed scheme. For the entire network, this merely meant the
down-sampling of the results obtained from the upper layer and reducing the number of
training parameters to avoid overfitting.

4.3.2. Dropout Layer, FC Layer, and Output Layer

The dropout layer is used to solve the problem of overfitting in deep learning [33].
The underlying idea of the dropout layer is to randomly disconnect nodes at a given rate.
In the proposed scheme, this layer is placed after the convolutional layer to improve the
network diversity. After cross-validation, the best results were obtained when the implicit
node dropout rate was set to 0.5.

The output of the max pooling layer is stored in a long vector after passing through the
flatten layer, and the data become one-dimensional and is used as the input of the FC layer.
The FC layer is usually at the tail of the CNN, and it is similar to the most common artificial
neural network named the Dense layer. In the FC layer, all the neurons are fully connected
by weight, and each neuron has a class score. The cumulative sum of the neurons is the
input to next output layer.

The SoftMax function, which is used widely for multiple classifications, is employed
as the output activation function in the output layer. In the case of the considered system,
the class with the highest probability amongst the 16 categories is taken as the estimated
label for the corresponding input. Since the sum of the probabilities for all the classes is
equal to 1, we can estimate the location of the target in terms of the spatial coordinates by
performing the regression, as follows:

∑16
i=1 P(i)× C, (7)

where C is the set of all the predefined coordinates for all the 16 reference locations, and
P(i) is the estimated probability of each class. ReLU was selected as the activation function
for all the applicable layers except the output layer, where the SoftMax function was used.
Adam was used as the optimization algorithm instead of the classical stochastic gradient
descent method to update the network weights iteratively based on the training data [34].
The categorical cross-entropy loss function was adopted because it is well suited for tasks
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involving multiple classifications. The parameters for the 1D CNN model are listed in
Table 1.

Table 1. Parameters for 1D CNN model.

Parameter Value

Hidden layers 4
Hidden activation ReLU
Output activation SoftMax

Optimizer Adam
Loss function Cross-entropy

4.3.3. Summary of 1D CNN Model of Proposed Scheme

In a typical CNN, the data type is generally a single-channel grayscale image or a
three-channel color image. Analogously, the data used in this study can be considered
multichannel monoscale (gray) images. However, in contrast to the case for actual images,
the total number of beacons was taken to be the number of channels for training the 1D
CNN model. In other words, the number of channels was set to 8 because 8 BLE beacons
were used. The RSS value sequences from all the BLEs were divided into individual
samples, with each consisting of 32 RSS values, in a sequential and nonoverlapping manner
based on the chronological order of reception.

In order to ensure a wider feature extraction range, which is expected to yield more
features, in the case of the input data, we did not go directly to the pooling layer after
performing one convolution. Instead, we performed the convolutional extraction twice,
which means after the first convolution layer, we added second convolution layer to
execute feature extraction again. Thus, in this manner, we not only limited the number of
parameters but also improved feature extraction.

To begin with, all the input samples are in the form of [P× 32× 8], where P is the
number of samples, 32 is the RSS value length of one sample, and 8 is the number of
BLEs. It can be processed by two times of conventional operation with 32 filters, of which
window size is 3 and stride is 1 in default and no padding used, and then output map size is
[P× 28× 32]. After that, the dropout layer is added to mitigate the effects of overfitting. By
being made to pass through the max pooling layer with size 2, stride 2 and no padding used,
the local features in the form of [P× 28× 32] are down-sampled to local features in the
form of [P× 14× 32]. Next, the data passes through the flatten layer and are converted into
1D vector data of the form [P× 448] and then fed to the FC layer. After the data has passed
through the FC layer, the output layer with the SoftMax function is used to determine the
label corresponding to the predicted result. As a summary, conventional filter size and max
pooling size are 3 and 2, separately, the stride size are 1 and 2 successively, both of them
were no padding used and the number of datapoints in the training batch was set at 32, the
number of parameters for the entire network was 12,698 from model own statistics.

5. Performance Evaluation

The performance of the proposed scheme was evaluated through comprehensive
tests. First, the convergence and accuracy of the 1D CNN scheme were evaluated, and the
effects of data preprocessing and the kernel size on the proposed scheme were investigated.
Next, the location estimation performance of the proposed scheme was evaluated. We
compared the classification accuracy of the proposed scheme with that of the conventional
CSP algorithm. All the tests were performed using Python 3.8 on a desktop equipped with
an Nvidia GeForce GTX 1650 GPU and an AMD FX(tm)-6300 3.50 GHz six-core central
processing unit. FeasyBeacon 5Mart FSC-BP104, which is a Bluetooth 5.0 BLE smart beacon
with a TI CC2640R2F chipset and works at an ISM frequency of 2.4 GHz, was used [35].
We set the data transmission interval to 100 ms and the transmission power to +5 dBm. In
addition, we set the broadcast mode as the transmission format, and the broadcast packets
followed the specifications designed by the company.
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5.1. Loss and Accuracy Performance of Proposed Scheme

The effectiveness of the proposed scheme was evaluated based on the loss function
and accuracy of the training process. The validation process was performed for up 20
epochs. During the tests, approximately 200 samples were collected at each predefined
location, and the length of the RSS value for each sample was set to 32. The complete dataset
of 3200 samples was randomly divided as follows: 70% training data, 10% validation data,
and 20% test data. The order of the samples in the training data set was randomly shuffled.

Figure 9 shows the loss and accuracy performance of the proposed scheme. As can be
seen from the figure, both curves changed significantly and converged at approximately
Epoch 3. Since the convergence rate was high, it can be concluded that the dataset was
suitable for the proposed scheme.
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5.2. Effect of Data Preprocessing on Proposed Scheme

A major benefit of neural networks is that prior knowledge of the noise distribution is
not required. Noisy RSS value measurements can be used directly to train the network,
and the neural network is capable of characterizing the noise and compensating for it to
determine the target position with accuracy. To estimate the effect of outlier preprocessing
on the training of the 1D CNN model, comparative tests were performed; the results
are shown in Figure 10. As can be seen from the figure, the dataset subjected to outlier
preprocessing resulted in better loss and accuracy performance than that not subjected
to it. In addition, it can be seen from the loss function curve that the convergence point,
for the dataset not subjected to outlier preprocessing is at approximately Epoch 10. Thus,
convergence in this case took three times longer than that for the dataset subjected to
outlier preprocessing (approximately, Epoch 3). This means that noisy interference or
outlier values can add to the complexity of network learning and that data preprocessing
is necessary for efficient model training.
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lier values.

5.3. Effect of Kernel Size on Proposed Scheme

The effect of the kernel size used for convolution was also evaluated to optimize the
performance of the 1D CNN. We used kernel sizes of 3, 6 and 12 to test the 1D CNN model
in terms of loss and accuracy. The results are shown in Figure 11.
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As can be seen from the figure, the performance deteriorated as the kernel size was
increased. Specially, both the loss and the accuracy were the worst for the kernel size
of 12. On the other hand, for the kernel sizes of 3 and 6, the performances were similar.
This means that a large convolution window is not preferable for extracting more reliable
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features from a large set of widely fluctuating RSS values. In addition, a large window also
increases the computational burden. Thus, the size of the convolution kernel was set to 3.

5.4. Position Estimation Performance

After the completion of the training and validation processes, we evaluated the
performance of the proposed scheme in 3D position estimation using the test dataset, Xpr.
Since the 1D CNN model provides the probability of each possible category of the target’s
location, the coordinates of the target can be calculated using Equation (7). To allow for a
visual comparison of the estimated and actual positions, we tested 340 samples from all
16 categories. The results are plotted in Figure 12. In the figure, the green stars are the
estimated positions of the target while the red crosses represent the actual positions. As can
be seen from the figure, the proposed scheme could estimate the 3D position accurately.
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Next, we compared the classification accuracy of the proposed scheme with that of
the conventional CSP algorithm. Figure 13 shows the comparison of the results obtained
using the proposed scheme and the CSP algorithm for all the classifications. As shown
in the figure, the 1D CNN model outperformed the CSP algorithm in the case of every
position category.
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Figure 14 shows the cumulative distribution functions (CDFs) of the estimated coor-
dinate errors for the 1D CNN and CSP schemes. As can be seen from the figure, the 1D
CNN scheme significantly outperforms the CSP scheme. The localization errors of the
two schemes are also compared in Table 2. As per the test results, the mean error of the
proposed 3D localization scheme based on the 1D CNN is 0.25 m, while that for the CSP
scheme is approximately 2 m.
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Table 2. Comparison of positioning errors of 1D CNN and CSP schemes.

- Maximum Error/m Mean Error/m

1D CNN 0.75 0.25
CSP 2.95 2.01

The reason the proposed scheme exhibits higher accuracy may be the independence of
the data obtained from the beacons. During the experiments, we deployed 8 BLE beacons at
different locations, and the Raspberry Pi receiver collected 32 distinct RSS values from each
BLE transmitter beacon for one location. This means that the proposed scheme exploits the
time-series data of each beacon using the 1D CNN while ensuring that the data from the
multiple beacons remain independent.

6. Conclusions

In this paper, we proposed an indoor 3D localization scheme based on both fingerprint-
ing and a 1D CNN. In the proposed scheme, instead of using the conventional fingerprint
matching method, the 3D positioning problem is transformed into a classification problem,
and a 1D CNN is used with the RSS time-series data from the BLE beacons to determine
the target locations. By using a 1D CNN with the time-series data from multiple beacons,
the inherent drawback of RSS-based fingerprinting, namely, its susceptibility to noise and
randomness, could be overcome, resulting in enhanced positioning accuracy. To evalu-
ate the proposed scheme, we developed a 3D positioning system, including BLE signal
reception and uploading process, introduced multiple signal preprocessing methods and
performed comprehensive tests in real scenarios. One the one hand, we evaluated our
proposed 1D CNN model itself. On the other hand, in terms of the positioning accuracy, the
results showed that the proposed scheme significantly outperforms the conventional CSP
classification algorithm. The accuracy of the proposed scheme in 3D location classification
was almost 100%, while that of the conventional CSP scheme was only 70%. Moreover,
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the mean error of the proposed 3D localization scheme based on the 1D CNN was 0.25 m
while that of the CSP scheme was approximately 2 m. Our proposed scheme can be used in
small-area indoor environment and improves the practicality of 3D positioning. In future
work, we plan to investigate the coverage problem of Bluetooth signals, hoping to find the
optimal coverage solution, and we will discuss the impact on the computational complexity
of the model and stability as the number of nodes varies.
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Appendix A

Abbreviation and description in this manuscript are summarized in Table A1.

Table A1. Abbreviation and description.

Abbreviation Description

1D CNN One-Dimensional Convolutional Neural Network
2D CNN Two-Dimensional Convolutional Neural Network

3D Three-Dimensional
BLE Bluetooth Low Energy
CSP Common Spatial Pattern

Conv. Convolution Layer
CDF Cumulative Distribution Function
FC Fully Connected

GPS Global Positioning System
GPU Graphical Processing Units

ID Identity
IQR Interquartile Range
IL Inner Limitation

ISM Industrial Scientific Medical
RSS Received Signal Strength
Q1 First Interquartile Point
Q2 Second Interquartile Point
Q3 Third Interquartile Point

RFID Radio Frequency Identification
ReLU Rectified Linear Unit
UAV Unmanned Aerial Vehicles
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