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Abstract: In the application of video surveillance, reliable people detection and tracking are always
challenging tasks. The conventional single-camera surveillance system may encounter difficulties
such as narrow-angle of view and dead space. In this paper, we proposed multi-cameras network
architecture with an inter-camera hand-off protocol for cooperative people tracking. We use the YOLO
model to detect multiple people in the video scene and incorporate the particle swarm optimization
algorithm to track the person movement. When a person leaves the area covered by a camera
and enters an area covered by another camera, these cameras can exchange relevant information
for uninterrupted tracking. The motion smoothness (MS) metrics is proposed for evaluating the
tracking quality of multi-camera networking system. We used a three-camera system for two
persons tracking in overlapping scene for experimental evaluation. Most tracking person offsets at
different frames were lower than 30 pixels. Only 0.15% of the frames showed abrupt increases in
offsets pixel. The experiment results reveal that our multi-camera system achieves robust, smooth
tracking performance.

Keywords: multi-camera; cooperative tracking; PSO; gait recognition

1. Introduction

Video surveillance has attracted widespread attention in the field of biometrics in
recent years. Because gait is a biometric feature that can be effectively recognized at a long
distance and without attention. In real applications, appearance changes due to changes in
viewing angles or walking directions are one of the main difficulties in gait recognition.
This is because people can walk freely in any direction within the field of view of a single
camera. When people walk out of one camera and then enter another camera, in addition
to continuously capturing the same target, the angle of view will also change. When the
angle of view is changed, the accuracy of character tracking and gait recognition will be
greatly reduced.

This problem can be solved by integrating multiple views of information from multiple
cameras [1]. However, in reality, the development and deployment of multiple views
system is a challenging task.

When using a single fixed camera, the foreground person in the image is detected as
the region-of-interest (ROI), then continue to track [2]. In some works, they also used YOLO
to track the person in their camera vision [3]. For a multicamera system, person tracking
is much more complex. Many issues may have to be considered, like as: multicamera
spatial arrangement [4], FOV overlapping cameras [5,6] or non-overlapping cameras [7,8],
whether to use pan-tilt-zoom (PTZ) cameras [9,10], how to perform cooperative multicam-
era tracking when the target leaves the coverage of a camera [11,12] and the method of
passing tracked object feature between different camera [13,14].
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In this paper, we present a distributed camera network for cooperative gait recognition.
With this camera network, the progressive background modeling, robust foreground
detection and for multi-target tracking by particle swarm optimization (PSO) algorithms
are designed for real-time robust person identification.

2. Materials and Methods
2.1. Cameras Network

A robust gait recognition system by distributed cameras network relies on moving
object detection and tracking. Firstly, the system detects persons by performing preprocess-
ing on the newly received image to determine the number of moving persons. Then, the
system tracks the moving persons by creating a template of these persons and running a
tracking algorithm to determine the person’s locations. Finally, the system performs gait
recognition. Through cooperative tracking of distributive cameras, the system ensures
continuous reliable person identification when a person in question leaves an area covered
by a camera and enters an area covered by another camera.

A cameras network would model frame-to-frame correspondence, correspondence
in overlapping or non-overlapping camera views and track the feature identity when a
person leaves/re-enter camera view. The topology structure of the camera’s network can
be one of the following types in Figure 1 in real cameras network deployment.
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is the target. 
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Using a camera network to track the target object has two advantages. First, the depth
information of images can be retrieved to solve the problem of the target being occluded.
Another advantage is that the coverage of multiple cameras is wider than that of a single
camera. The tracking mode of the camera network is roughly divided into three types: (1)
Object tracking of images in different hours, (2) object tracking of overlapped FOVs and (3)
object tracking of nonoverlapped FOVs.

Techniques such as graph generation [15] and person reidentification model [16] can
help the system construct 3D models without manual calibration and the models can be
used to facilitate multi-camera object tracking in overlapped FOVs (Figure 2). All the
aforementioned approaches are to calculate the absolute position of a detected object and
adopt the resultant absolute position as a feature to determine whether the detected object
is the target.

In the aforementioned multicamera tracking methods, object tracking is performed
using the overlapped images captured by fixed cameras. Benito-Picazo et al. [17] use fixed
cameras and PTZ cameras to capture overlapped images for object tracking. The methods
use a surveillance system that employs both static and active cameras with panning, tilting
and zooming functions. The most noticeable difference between this type of multicamera
tracking technique and other tracking techniques is that the multicamera system can rotate
and enlarge surveillance images by using active cameras. Thus, the multicamera system
can more effectively monitor the objects of interest in a surveillance environment and
achieve comprehensive active surveillance.
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Because of the deployment complexity and resource constraints, the camera network-
based tracking method with highly overlapping FOVs cannot be realized easily in reality.
The cameras network we designed was aimed to expand view coverage instead of overlap-
ping FOVs. Therefore, in the proposed camera network-based tracking method, we must
strive to extract the information of the extracted object, namely time, velocity, motion path
and object features, to obtain the relative positions of the monitored object captured by
different cameras. This study also focused on developing an object tracking approach in
which the FOVs of multiple cameras are partially overlapped to ensure continuous and
robust tracking.

The setup of multiple cameras influences the extent to which the coverage areas are
overlapped. For example, if the areas monitored by cameras are mostly overlapped, the
collected depth information of the target object can be relatively accurate; however, data
redundancy is also likely. By contrast, if the areas covered by cameras do not overlap with
one another [18], the scenario is similar to that of using a single fixed camera. To find a
balance between the two aforementioned setups, we use a setup with partially overlapping
coverage areas (Figure 3).
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The setup we chose has two advantages. When coverage areas of cameras are over-
lapped, depth information can be obtained. Moreover, the FOVs for the coverage areas can
be expanded. Differing from most multicamera systems that require high levels of overlap
to accurately set parameters and construct 3D models, this study focused on expanding
the view coverage of the designed system. Therefore, construction of 3D scenes and depth
information were not required. The system only has to draw demarcations for coverage ar-
eas that were overlapped in a binary image. This indicated that the system obtains labeled
regions of cameras by simply extracting corner features and matching those features. This
study used corner features to acquire the information of overlapped images. To determine
a corner feature, the difference between the brightness of the central detection pixel (x, y)
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and that of the neighboring pixels was calculated. Figure 4 shows the corner detection in
different camera views.
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2.1.1. Moving Person Detection

During the person detection part, besides some traditional methods like foreground
object extraction to obtain the moving object, we can also use a neural network to do the
same work. Because these devices will be applied to the edge, they will be constrained by
the limited power and low performance. Therefore, we focus on some neural networks
such as Mobilenet and Tinier-YOLO which can be performed well on the edge side. We
take Tinier-YOLO [19] to introduce the method of feature extraction and Figure 5 shows
the structure of Tinier-YOLO.
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Tinier-YOLO came from Tiny-YOLO-v3; when the image enter the network, it will
go through three parts. The first part of Tinier-YOLO is the same as Tiny-YOLO-v3 and
the remaining part will replace the bottleneck layer of the original network into the Fire
Module. This is to solve the performance downgrading because of too many convolutional
layer in Tiny-YOLO-v3 without lowering the accuracy. The Fire Module in the middle part
will connect to each other to pass feature and process parameters compression. In addition,
it will combine the feature map with the one obtained from last Fire Module in order to get
a bounding box result at the detection layer of Output1. Furthermore, the Fire Module in
the later part will combine the feature map obtained from middle part to get the result of
fine-grained feature.

Fire Module is a convolutional network based on SqueezeNet; it is comprised of the
squeeze part and the expand part to compress and expand the data, respectively. Squeeze
part will replace the 3 × 3 convolutional layer with 1 × 1 one to improve performance
without lowering too much accuracy. Moreover, the expand part will use 1 × 1 and 3 × 3
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convolutional layer to compute the result from squeeze part and then combined them to be
the final output of the Fire Module.

Fire Module uses dense connections between each other to construct a feed-forward
network. This kind of structure can let the later part of the convolutional layer reuse the
feature generated by the front part and reduce the resource we need. By applying this
technique, we can deploy Tinier-YOLO to our edge devices. When the Fire Module in the
middle part finishes its computation, it will go through a Passthrough Layer. In this part,
we output the training result into a 13 × 13 feature map and then upsample it by 2× to
feed the data to the later Fire Module. At last, we send the final feature map to the PSO
module to process person tracking. The result will be like Figure 6.
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2.1.2. Person Tracking

After completing object detection, the system collected the template features of the
extracted moving object. The system searched for the target object and identified the
target’s position among a continuous series of images. We ran the aforementioned PSO
algorithm [20] to detect and track the moving object. Figure 7 exhibits the process of
object tracking.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 15 
 

 

layer in Tiny-YOLO-v3 without lowering the accuracy. The Fire Module in the middle 
part will connect to each other to pass feature and process parameters compression. In 
addition, it will combine the feature map with the one obtained from last Fire Module in 
order to get a bounding box result at the detection layer of Output1. Furthermore, the Fire 
Module in the later part will combine the feature map obtained from middle part to get 
the result of fine-grained feature. 

Fire Module is a convolutional network based on SqueezeNet; it is comprised of the 
squeeze part and the expand part to compress and expand the data, respectively. Squeeze 
part will replace the 3 × 3 convolutional layer with 1 × 1 one to improve performance 
without lowering too much accuracy. Moreover, the expand part will use 1 × 1 and 3 × 3 
convolutional layer to compute the result from squeeze part and then combined them to 
be the final output of the Fire Module. 

Fire Module uses dense connections between each other to construct a feed-forward 
network. This kind of structure can let the later part of the convolutional layer reuse the 
feature generated by the front part and reduce the resource we need. By applying this 
technique, we can deploy Tinier-YOLO to our edge devices. When the Fire Module in the 
middle part finishes its computation, it will go through a Passthrough Layer. In this part, 
we output the training result into a 13 × 13 feature map and then upsample it by 2× to feed 
the data to the later Fire Module. At last, we send the final feature map to the PSO module 
to process person tracking. The result will be like Figure 6. 

 
Figure 6. The Bounding Box of Person Detection. 

2.1.2. Person Tracking 
After completing object detection, the system collected the template features of the 

extracted moving object. The system searched for the target object and identified the tar-
get’s position among a continuous series of images. We ran the aforementioned PSO al-
gorithm [20] to detect and track the moving object. Figure 7 exhibits the process of object 
tracking. 

Feature 
Extraction

Template 
Creation

PSO Tracking Frame 
Refresh

Detected 
person

Tracking 
person

 
Figure 7. Person Tracking. Figure 7. Person Tracking.

When performing PSO-based tracking, particles were randomly distributed in an
image during initialization. The system then determined the optimal solution according
to the positions of current particles and corrected the positions for subsequent iterations.
Multiplying the number of particles by the frequency of iterations yields the number of
comparisons. In this study, we performed 10 iterations on 50 particles to achieve particle
convergence, which was equivalent to 500 comparisons. Compared with universal search,
PSO can perform more efficient searches and comparisons.

To acquire efficient and accurate search results, particles were not distributed through-
out the entire image once the position of the target was determined. Instead, the particles
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were distributed in a limited manner around the current target. By utilizing the objects
movement continuity, the system distributed particles within the predicted target range to
more efficiently track the target object.

2.2. Cooperative Tracking

When a moving object is about to leave the area covered by a camera, ensuring contin-
uous and stable tracking is a crucial goal of a cooperative multicamera tracking system.

This paper presents a novel approach to transferring tracking tokens from camera to
camera that entails a three-step process for achieving cooperative multicamera tracking
and is detailed as follows.

Step 1: Entrance of a moving object into the demarcation area
We establish that the camera monitoring and tracking the moving object has the

tracking token. When the object enters the demarcation area (i.e., the overlapping area
between the camera with token and another camera), the camera with token calls another
camera and informs it that the object is about to enter its FOV.

Step 2: Detection of the moving object
After the moving object enters the demarcation area (i.e., overlap area) and another

camera is called, the system extracts the current foreground object and establishes a tem-
plate model. Subsequently, the system determines whether this foreground object is the
moving object tracked by the previous camera according to time features (i.e., the time
that the object enters the demarcation region). The system determines this using the
following formula:

C(cam1, cam2) =
{

1, T(obj, cam1) = T(obj, cam2)
0, otherwise

(1)

L(D, C) =

{
1, C = 1 and D < ε

0, otherwise
(2)

We assume that T(obj, cam no.) is the time that the moving object enters the demarcation
area and C(cam no., cam no.) is the result that depends on whether the times detected by
two cameras are the same. This rule-of-time feature determination is incorporated with the
difference of color feature vectors D. A difference lower than the threshold indicates high
similarity between the detected objects. L(D, C) is used to verify whether the currently
detected object is the previously detected moving object following the time feature C and
color feature of the moving object.

Step 3: Transfer of tracking tokens
Following from Step2, if the system determines that the currently detected object is

the moving object detected by the previous camera (Camera 1), the previous camera will
transfer the tracking token to the current camera (Camera 2). The system can thus continue
to track the object in question. Conversely, if the system finds that the two detected objects
are different, it identifies the currently detected object as a new moving object. Camera 2
then begins to track this object and owns the tracking token for it. The cooperative tracking
protocol between cameras is depicted in Figure 8.

2.3. Gateway

In order to manage all of distributed cameras and perform person tracking and
detection, we design a system as Figure 9 to get the image data and run the tracing task
on it.

The gateway is composed of gateway master node and AI hardware acceleration
nodes. When the camera finished image capture, it will send the data to the gateway. The
master node has two functions: distribute data to idle AI hardware acceleration nodes
and establish connection between each camera to let them communicate with the gateway.
Firstly, the master node receives data flow and check which deep learning worker node is in
the idle state, then master node will forward data to the idle node. When the computation
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of deep learning worker nodes is completed, they send the result back to gateway and the
gateway will keep this feature in order to track the same object between different cameras.
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3. Results

During the experiment, we use raspberry pi camera module v2 as our IoT camera. In
addition, we set these modules working at 720p resolution, to perform our real time image
capturing task.

The analysis and accuracy test was conducted on the developed cooperative tracking
algorithm. The non-ground-truth (NGT) measure motion smoothness (MS) [21] was
employed to evaluate tracking accuracy. MS evaluates the tracking accuracy of a system by
measuring the offset of the tracked object and the formula is as follows [22]:

MS(t) = dE(T(t), T(t − ∆)) =
√
(x(t)− x(t − ∆))2 + (y(t)− y(t − ∆))2 (3)
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where dE denotes the Euclidean distance between the positions of the moving object being
tracked over two consecutive frames, T(t) is the position of the tracked object at t hour
and represents the time interval. A high value of MS indicates that the moving distance
of the tracked object has experienced great changes, whereas a low MS value indicates a
small offset. The offset of a person is normally not large. Accordingly, when the MS curve
abruptly lifts or drops, a tracking error is likely. Another explanation for an abrupt increase
or decrease is that the object actually has a large offset. Conversely, a smooth MS curve
indicates a small offset, revealing that the system is stably tracking the object.

In the resultant curve diagram, the x-axis represents the image frame, which can also
be regarded as timeline and the y-axis represents the tracking quality. MS measurement
was used to calculate the offsets of tracked objects.

A smooth curve without abrupt lift or drop indicates that the tracked object has
a small offset and that the tracking is stably in progress. We assessed the quality of
multicamera tracking by creating scenarios of one person, two persons and two persons
with overlapped. When the moving object entered the demarcation area, another camera
communicated with the previous camera and took over the tracking token through a
protocol to continue tracking and analyzing the detected object. Additionally, when the
object in question entered the demarcation area, we observed whether the mechanism of
cooperative communication was initiated between cameras and whether the tracking token
was transferred to achieve continuous tracking.

3.1. Tracking of One Person

The images in Figure 10 present the scenes where a person walked through the
coverage of Camera 1, Camera 2 and Camera 3 and then returned to the coverage of
Camera 2. This scenario was designed to assess the performance of the tracking system in
a simple situation. Figure 11. presents the evaluation of the tracking results. The results in
Figure 12 showed that the curve was mostly steady until the pixel values suddenly soared
at Frame nos. 260~275 under the coverage of Camera 3. We extracted these frames for
further analysis as Figure 11.

According to the results depicted in Figure 11, the system successfully tracked the
person between Frame 260 and Frame 275, but the search boxes were not in optimal posi-
tions, which caused pixel values to abruptly increase. Regarding cooperative multicamera
tracking, the pictures in 12 depict the target (Object 1) entering the demarcation area at
Frame no. 57. Camera 2 detected the new moving object and labeled it as Object 2. How-
ever, according to the proposed cameras network protocol, the system determined that
Object 2 was actually the object detected by Camera 1. Therefore, Camera 1 passed the
tracking token to Camera 2 at Frame no. 58 and Camera 2 changed the label of the target
from Object 2 to Object 1 and continued the tracking work.
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3.2. Tracking of Two People

Figure 13 presents the scenes where two peoples separately started their journeys
from the scenes covered by Camera 1 and Camera 3 (Object 1 from Camera 1 and Object 2
from Camera 3). Object 1 was the tracked object being occluded (i.e., when the two peoples
passed each other, Object 1 was occluded by Object 2). This scenario was created to assess
whether the designed algorithm can accurately track an occluded object.
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In the experiment, the system tracked two people. When the system tracked two
people, the assessed algorithm could maintain its tracking accuracy compared with single
people tracking. Figure 14a,b left picture exhibits the MS curves of Objects 1 and 2,
respectively. Most object offsets at different frames were lower than 30 pixels. Only several
frames showed abrupt increases in pixel values. For example, Figure 15a depicts an abrupt
increase at Frame no. 61 and Frame no. 90.
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Figure 15. Tracking token transfer between Cam1 and Cam2 in single person tracking scene.

As shown in Figure 16, from Frame no. 114 to Frame no. 129, Object 1 (in the yellow
box) and Object 2 (in the green box) passed each other under the coverage of Camera 2,
during which time Object 1 was occluded by Object 2. After the people separated, the
cameras again captured their targets. The MS curve of Object 2 (Figure 15b) abnormally
rose at Frame no. 193. To examine this situation, we analyzed the images of relevant frames
(Figure 17) and discovered that the abnormal increase occurred when the target had just
entered the surveillance area (entering the area from the edge). Under such a circumstance,
the image of the object was incomplete and caused a tracking error. The system then
corrected the error, thus leading to an abrupt offset increase. Figure 18 shows the tracking
privilege transfer between cameras. Regarding cooperative tracking of cameras network,
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the people detected by Camera 2 was labeled as Object 1, but Camera 3 labelled this people
as Object 5 at Frame no. 128. At this moment, the privilege transfer protocol allowed
Camera 3 to take over the tracking privilege from Camera 2, fix the error and change the
label of this People back to Object 1 at Frame no. 129.
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Figure 17. Object2: Frame no. 188~203 from Cam1 in two people tracking scene.

3.3. Tracking of Two Persons in Overlapped Scene

Figure 19 presents the scenario where two persons jointly set off from the scene
covered by Camera 1 and reached the scene of Camera 3 with different walking speeds.
Because Object 1 was on the left of Object 2 (i.e., Object 1 was farther from the cameras
compared with Object 2), it was sometimes occluded by Object 2. This scenario was created
to assess the tracking performance of the designed algorithm in a unique situation.
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This test image shows two people starting from Cam1 at the same time and walking
to Cam3 at different speeds and Object1 is a tracked object standing behind and obscured
(Object2 standing in front).

Because of the occlusion effect, the occluded target exhibited greater MS curve fluc-
tuations in the evaluation. Specifically, the curves in Figures 19 and 20 left exhibit more
sudden increases compared with the MS curves in the aforementioned single person and
two-persons situations.

In the experiment, the system tracked two persons. When the system tracked two
persons, the assessed algorithm could maintain its tracking accuracy compared with single
person tracking. Figure 20a,b exhibit the MS curves of Objects 1 and 2, respectively. Most
object offsets at different frames were lower than 30 pixels. Only 0.15% of frames showed
abrupt increases in offset pixel.

When the two persons were walking parallel to each other, the person occluded by
his counterpart could not be accurately tracked because most of his body was occluded
for a while. Nevertheless, once the occlusion was gone (i.e., the two persons separated),
we could again detect the positions of these two persons. Although the system using the
PSO-based algorithm could not accurately identify the position of an occluded target, it
continued to identify and track the target when the occlusion disappeared. Even the human
eye has difficulty conforming that an occluded object is the target. In this scenario, one can
only recognize the target by using logical cognition to analyze the positions of an object in
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a continuous series of images. Figure 21 presents the results of a scenario where one person
was occluded by another (Object 1 is in the yellow box and Object 2 is in the green box).
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Figure 21. Two persons in overlapped transfer between cameras.

4. Conclusions

In this paper, we proposed a cameras network architecture and the hand-off protocol
for cooperative people tracking and also designed a reliable and highly efficient algorithm
that enables real-time people detection and tracking. YOLO object model is used to detect
the peoples in the video scene, when a person leaves the FOV area covered by a camera
and enters an FOV area covered by another camera, these cameras can exchange relevant
information for uninterrupted tracking. By incorporating a particle swarm optimization
algorithm, our system can perform robust inter-camera tracking using multiple cameras
system. The motion smoothness (MS) metrics is proposed for evaluating the tracking
quality of multi-camera networking system. For experience, we used a three-camera
system for two persons tracking in overlapping scene. Most tracking person offsets at
different frames were lower than 30 pixels. Only 0.15% of frames showed abrupt increases
in offsets pixel. The experiment results reveal that the approach we adopted achieves
superior tracking performance.
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