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Abstract: By using one-bit binary patterns instead of eight-bit sinusoidal ones, the binary defocusing
techniques have been widely applied for high-speed 3D shape measurement. As projector defocusing
is required, the phase unwrapping process of these techniques remains challenging. A recently
proposed ternary Gray-code method can effectively increase the measurement speed by reducing the
number of acquired coding patterns. However, it still has limitations, including the measuring range
and a noise problem. To improve these, a new ternary Gray-code method is proposed by utilizing
2D modulation instead of the 1D modulation used in the conventional method. Simulations were
conducted to compare these two methods, and the results verify that the proposed method reduces
the variance in the introduced intermediate gray value by nearly 90%. Experiments were also carried
out with the results verifying the superiority of the proposed method.

Keywords: binary defocusing; high-speed 3D shape measurement; phase unwrapping; ternary
Gray-code method

1. Introduction

Three-dimensional (3D) shape measurement has become more and more important
in areas ranging from manufacturing to medicine. Numerous techniques, including the
Moiré, Stereo vision, and fringe projection techniques, have been developed for different
applications. Among these methods, the digital fringe projection technique has been
exhaustively studied and widely applied due to its simple setup, automatic data processing,
high speed, and high-resolution measurement capabilities [1–3].

For high-speed and high-accuracy 3D shape measurement, it has been demonstrated
that the use of one-bit binary patterns provides advantages over the use of eight-bit si-
nusoidal phase-shifted fringe patterns, especially on the digital-light-processing (DLP)
projection platform [4].By properly defocusing the projector for specific square binary
patterns, researchers have achieved speed breakthroughs for high-accuracy 3D shape
measurement [5,6].For the binary defocusing technique, a phase-shifting algorithm or the
Fourier transform method is generally adopted to extract the phase information, which is
wrapped in the range of (−π, π] with 2π phase jumps. In order to obtain the absolute phase,
a phase-unwrapping process is usually required. These algorithms can be classified into
spatial and temporal categories [7–9]. Spatial phase unwrapping is more straightforward,
with the requirement of only one wrapped phase map, but it may fail when phase disconti-
nuities or serious phase noises exist. In contrast, temporal phase unwrapping is considered
to be more robust as it uses additional projected patterns; methods that use this technique
include the multifrequency [7], phase coding [10–12], and Gray-code methods [12,13].

The multifrequency method utilizes multiple sets of phase-shifting fringes with differ-
ent frequencies or periods for absolute phase calculation. Therefore, it raises the challenge
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of generating binary fringe patterns with wide periods. The phase coding method uses
phase information for codeword encoding; thus, it is relatively robust to ambient light and
noise. However, it requires at least two sets of phase coding patterns to reduce the phase
errors. The Gray-code method encodes the fringe order into the binary Gray-code patterns,
and it has the flexibility to encode large codewords by a proper design. For example, for
the conventional Gray-code method, if there are f periods in the projected pattern, then
dlog2 f e patterns are needed for the Gray code, where d•e is the ceiling function. Recently,
a ternary Gray-code method was proposed to reduce the number of coded patterns [14],
thus achieving even faster 3D measurement. By using a new three-level pattern design
strategy, an additional gray level is realized and the number of required coding patterns
can be reduced to dlog3 f e.

Although it provides faster measurement, the ternary Gray-code method still has some
limitations. In order to correctly detect the Gray code, the patterns need to be carefully
designed and the threshold values need to be well picked. In addition, the defocusing level
also affects the codeword detection, thus limiting the measurement range. To overcome
these problems, in this paper, an improved ternary Gray-code method is proposed. Instead
of only using the 1D design strategy, 2D modulation is utilized in the proposed method to
make sure the generated additional gray level is more uniform; thus, it is more robust to
defocusing effect and noises.

The rest of the paper is organized as follows. Section 2 presents the principle of the
proposed method. Section 3 provides the experimental results. Section 4 concludes this
paper.

2. Materials and Methods
2.1. Phase-Shifting Algorithm

Phase-shifting methods are widely used in optical metrology because of their speed
and accuracy [15]. If a multi-step phase-shifting algorithm with a phase shift of δn is
adopted, the intensity distributions for the fringes can be described as

In(x, y) = A(x, y) + B(x, y) cos(Φ + δn), n = 1, 2, 3, . . . , N (1)

where A(x, y) is the average intensity, B(x, y) is the intensity modulation, and Φ(x, y) is
the phase to be solved for. The wrapped phase can be calculated by using a least-square
algorithm [14].

Φ(x, y) = − tan−1

[
∑N

n=1 In(x, y) sin δn

∑N
n=1 In(x, y) cos δn

]
(2)

For binary defocusing techniques, the sinusoidal patterns can be approximated by
defocusing different binary structures. When the fringe period T is small, the square binary
structure is generally adopted, in which half of the period is black while the other half
is white.

2.2. Conventional Ternary Gray-Code Method

To improve the performance of the original Gray-code method for the binary defocus-
ing technique [16], Zheng et al. proposed to generate an additional gray level using black
and white values, as illustrated in Figure 1 [14]. Instead of merely using black (AB) and
white (EF) regions, an intermediate region (CD) is elegantly designed by using 1 and 0
alternately [14].

To determine the threshold for segmenting the different regions, a 1D Gaussian filter
was adopted for analyzing the gray values for the intersection points under different
defocusing levels. As demonstrated in [14], by using the Euler–Maclaurin formula, the
intensity values at point B, C, D, and E in the conventional ternary coding method are

Ib(B) =
1√
2πδ

∞

∑
i=1

e−(2i−1)2/2δ2
= 1/4 (3)
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Ib(C) = 1/4 + 1/
(

2
√

2πδ
)

(4)

Ib(D) = 3/4− 1/
(

2
√

2πδ
)

(5)

Ib(E) = 3/4 (6)

where the standard deviation of the Gaussian filter δ >
√

2. This means that, for the
conventional ternary coding method, the intensity value of the edge point B in the black
region is already about 1/4, which means that there is an offset around the intersection
part.
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The intensity difference between B and C, and between D and E, in Figure 1 is

τ = Ib(C)− Ib(B) = Ib(E)− Ib(D) = 1/(2
√

2πδ) (7)

Therefore, the threshold Th1 for (AB) and (CD) to segment the blurred patterns can be
expressed as

Th1 = 1/4 + τ/2 = 1/4 + 1/(4
√

2πδ) (8)

The threshold Th2 for (CD) and (EF) is

Th2 = 3/4− τ/2 = 3/4− 1/(4
√

2πδ) (9)

According to [14], to obtain a high-fringe contrast, the upper bound of δ should be 3.
On this basis, the thresholds can be calculated, which are about Th1 = 0.28 in Equation (8)
and Th2 = 0.72 in Equation (9) when δ = 3.

Since three gray levels can be generated, the (3, m)-Gray-code mechanism can be
applied for fringe order detection with m binary patterns. The Gray code (3, m) provides
the following codeword, which is unique for each period.

C(x, y) =
m

∑
k=1

[
Sk(x, y)× 3k−1

]
(10)

This can be further converted to a unique fringe order K, with which the absolute
phase map can be finally retrieved as

Φ(x, y) = ϕ(x, y) + K(x, y)× 2π (11)

2.3. Improved Ternary Gray-Code Method

The conventional ternary Gray-code method has been proven to be effective at reduc-
ing the required number of coding patterns. However, since it only utilizes 1D modulation,
the method may have limitations considering defocusing effects and the noise problem.
To improve its robustness, in this paper we propose to use 2D modulation to generate the
intermediate gray level. The basic principle is shown in Figure 2. To clearly demonstrate
the difference, 2D patterns containing three gray levels (i.e., black, gray, and white) for
the conventional and improved ternary Gray-code methods are respectively shown in
Figure 2a,b.
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Figure 2. The improved ternary Gray-code method. (a) Conventional 1D modulation; (b) Improved 2D modulation.

Changing the modulation from 1D to 2D will bring about significant improvements.
First, the introduced intermediate gray value will be more uniform with much smaller
variance. As a result, this method is more robust when noises exist. In addition, the perfor-
mance of 2D modulation will be less sensitive to the defocusing levels, and the working
range of the improved method could be extended. In addition, the change in the inter-
section points will be symmetric and sharp, which may facilitate the segmentation for
different regions.

We compare the conventional and improved coding methods in these respects. First,
the uniformness for the introduced intermediate gray level is carefully examined with
different defocusing levels. The defocusing effect is simulated by applying Gaussian filters
with different sizes. The intermediate gray-level patterns were designed according to the
two methods as shown in Figure 3. The first row shows the designed binary patterns and,
after applying a Gaussian filter with a small size of 3 × 3 pixels, the defocused patterns are
shown in the second row, from which it can be seen that there is obvious variance for the
conventional method while the result from the improved method is much more uniform.
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To better view the difference, the cross sections for the defocused patterns are shown
in Figure 4a, which clearly reveal that the improved ternary coding method reduced the
variance by close to 90%. In addition, we applied n × n pixel Gaussian filters with a
standard deviation of n/3, here n = 3, 5, 7, . . . , 15, 17, 19. These filter sizes represent
various defocusing levels. We then computed the root-mean-square (rms) error for the
various defocusing levels with each filter size and plotted the rms error as a function of
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filter size as shown in Figure 4b. It can be seen that the rms error for the improved method
is much smaller than the conventional one under all defocusing levels, which means the
proposed method can enhance the 3D measuring range.
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Figure 4. (a) The cross sections for the intermediate gray level; (b) Rms error under different defocusing levels.

Another aspect that needs to be examined is the intersection part between different
gray-level regions, such as the sections of (BC) and (DE) shown in Figure 1. For the
conventional ternary coding method, the thresholds need to be carefully chosen because
of the set δ value, which are about Th1 = 0.28 and Th2 = 0.72 [14]. Actually, due to the
asymmetric character, well-picked thresholds may even fail when the projector is not
well defocused. Gaussian filters with different sizes were applied to the designed coding
patterns, and the cross sections of the intersection part between the black and gray regions
for the conventional and improved methods are plotted as shown in Figure 5a,b. From
these figures, it can be seen that it is hard to give an accurate threshold for all defocusing
levels for the conventional method since the gray values diverge around the intersection
point (10.5 pixels). In contrast, for the improved method the gray values converge and it
is easy to set δ = 0; then, Th1 = 0.25 in Equation (8). Similarly, the other threshold can be
accurately set as Th2 = 0.75 in Equation (9).

Electronics 2021, 10, x FOR PEER REVIEW 5 of 9 
 

 

To better view the difference, the cross sections for the defocused patterns are shown 
in Figure 4a, which clearly reveal that the improved ternary coding method reduced the 
variance by close to 90%. In addition, we applied n × n pixel Gaussian filters with a stand-
ard deviation of n/3, here n = 3, 5, 7, …, 15, 17, 19. These filter sizes represent various 
defocusing levels. We then computed the root-mean-square (rms) error for the various 
defocusing levels with each filter size and plotted the rms error as a function of filter size 
as shown in Figure 4b. It can be seen that the rms error for the improved method is much 
smaller than the conventional one under all defocusing levels, which means the proposed 
method can enhance the 3D measuring range. 

  
(a) (b) 

Figure 4. (a) The cross sections for the intermediate gray level; (b) Rms error under different defocusing levels. 

Another aspect that needs to be examined is the intersection part between different 
gray-level regions, such as the sections of (ܥܤ) and (ܧܦ) shown in Figure 1. For the con-
ventional ternary coding method, the thresholds need to be carefully chosen because of 
the set δ value, which are about Th1 = 0.28 and Th2 = 0.72 [14]. Actually, due to the asym-
metric character, well-picked thresholds may even fail when the projector is not well de-
focused. Gaussian filters with different sizes were applied to the designed coding pat-
terns, and the cross sections of the intersection part between the black and gray regions 
for the conventional and improved methods are plotted as shown in Figure 5a,b. From 
these figures, it can be seen that it is hard to give an accurate threshold for all defocusing 
levels for the conventional method since the gray values diverge around the intersection 
point (10.5 pixels). In contrast, for the improved method the gray values converge and it 
is easy to set δ = 0; then, Th1 = 0.25 in Equation (8). Similarly, the other threshold can be 
accurately set as Th2 = 0.75 in Equation (9). 

 

(a) (b) 

Figure 5. Simulation results for the intersection part under different defocusing levels. (a) Conventional ternary Gray-code
method; (b) Improved ternary Gray-code method.



Electronics 2021, 10, 1824 6 of 9

3. Experiments

To verify the performance of the proposed ternary Gray-code method, experiments
were carried out by measuring complex objects. A 3D shape measurement system was
developed including a digital-light-processing (DLP) projector (Model: Light-Crafter 4500)
and a digital CCD camera (Model: Point-Grey GS3-U3-50S5M). The projector’s resolution
is 912 × 1140 pixels, while the camera’s resolution is 2448 × 2048 pixels with a maximum
frame rate of 15 frames/s. The camera uses a 16 mm focal length Mega-pixel lens (Model:
Computer M1614-MP). A five-step phase-shifting algorithm was adopted, and five squared
binary patterns were generated according to the fringe period of T = 20 pixels.

In the experiments, in order to cover the whole projection range, there should be four
coding patterns for both ternary Gray-code methods. Figure 6a–d show the four coding
patterns for the original ternary coding method when the projector is nearly focused, while
Figure 6e–h show the coding patterns for the proposed method. From the figures, it can be
seen that the structures or variations are clearly noticeable for the original method in the
intermediate gray region, while the proposed method provides a more smooth intensity
distribution.
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Figure 6. The four coding patterns when the projector is nearly focused, in which (a–d) are from the conventional ternary
Gray-code method and (e–h) are from the improved Gray-code method.

Such variations could introduce errors when recovering the codewords or fringe order
information. From Figure 6, it can be found that for the third coding pattern the variations
around the forehead region are more serious. To better view the effects, Figure 7 shows
the codeword detection results of the middle cross section. Based on the projected shifts in
patterns, the ternary coding patterns can be normalized and distributed.

The middle cross section is shown in Figure 7a. After normalization, it can be seen
that the improved method’s performance has smaller variations; thus, it is better than that
of the conventional method. In particular, in the forehead region the amplitude of the
variations for the conventional method is too large and the gray values are already outside
the range for the intermediate gray level. By using the thresholds Th1 = 0.28 and Th2 = 0.72
for the conventional method [14], the codewords can be calculated as shown in Figure 7b.
The result of the improved method was also obtained with the thresholds Th1 = 0.25 and
Th2 = 0.75. From Figure 7b, we can notice there are serious codeword errors around the
forehead region for the conventional method, while both methods provide good results for
other regions.
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To better compare the performance, experiments with different defocusing levels were
also carried out and the final 3D results are shown in Figure 8. Figure 8a,d respectively
show the results of the conventional and the proposed methods when the projector is
nearly focused. Figure 8b,e show the results when the projector is slightly defocused,
while Figure 8c,f show the results when the projector is significantly defocused. For the
conventional ternary Gray-code method, there are obvious errors around the forehead
region when the projector is nearly focused and, by increasing the defocusing effect,
the number of errors is reduced for the forehead region, which is reasonable since the
intermediate gray region would be smoother. However, the significant defocusing effect
could introduce other problems, as shown in Figure 8c, because the intersection region
will be blurred and there will be shifts in the detected codewords around the boundary
regions. For the proposed ternary Gray-code method, the best result is obtained when the
projector is nearly focused as shown in Figure 8d. When the projector is slightly defocused,
the recovered 3D result still has good quality. However, when the projector is significantly
defocused, boundary errors are introduced as shown in Figure 8f.
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4. Discussion and Conclusions

In this paper, an improved ternary Gray-code method is proposed to generate an inter-
mediate gray level by utilizing 2D modulation. Compared with the conventional ternary
Gray-code method, the proposed method can ensure that the intermediate gray region is
more uniform under different defocusing levels; thus, it is more robust to noise. In addition,
the threshold values are consistent and can be accurately set for different defocusing levels.
Simulations and experiments were carried out to compare the performance of the two
methods, and the results verify the improvements of the proposed method.

In system subject to real noise, a large number of fringes, such as binary-coded or
ternary-coded fringes, is required as discussed in the work. Deep learning, as an AI
technique that has been widely used for image-based tasks, can reduce the number of
required fringes [17]. The combination of the proposed method with Deep learning might
be able to reduce the number of required fringes while preserving accuracy.
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