Terahertz High-Q Absorber Based on Holes Array Perforated into a Metallic Slab
Abstract
:1. Introduction
2. Design of the Dual-Narrow Band Absorber
2.1. Structure
2.2. The Equivalent Circuit Model
3. Discussions and Results
Effect of Gaussian Beam
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Betzig, E.; Lewis, A.; Harootunian, A.; Isaacson, M.; Kratschmer, E. Near-Field Scanning Optical Microscopy (NSOM) development and biophysical applications. Biophys. J. 1986, 49, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Cao, H.; Nahata, A. Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. Opt. Exp. 2004, 12, 3664–3673. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Nahata, A. Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures. Opt. Exp. 2004, 12, 1004–1010. [Google Scholar] [CrossRef]
- Miyamaru, F.; Hayashi, S.; Otani, C.; Kawase, K. Terahertz surface-wave resonant sensor with a metal hole array. Opt. Lett. 2006, 31, 1118–1120. [Google Scholar] [CrossRef]
- Qu, D.; Grischkowsky, D.; Zhang, W. Terahertz transmission properties of thin, subwavelength metallic hole arrays. Opt. Lett. 2004, 29, 896–898. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Brolo, A.G.; Sinton, D.; Kavanagh, K.L. Resonant optical transmission through hole-arrays in metal films: Physics and applications. Laser Photon. Rev. 2010, 4, 311–335. [Google Scholar] [CrossRef]
- Kuznetsov, S.A.; Navarro-Cía, M.; Kubarev, V.V.; Gelfand, A.V.; Beruete, M.; Campillo, I.; Sorolla, M. Regular and anomalous extraordinary optical transmission at the THz-gap. Opt. Exp. 2009, 17, 11730–11738. [Google Scholar] [CrossRef]
- Ghaemi, H.F.; Thio, T.; Grupp, D.E.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779–6782. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; You, J.; Liu, C. Nanoplasmonics-fundamentals and applications: Equivalent nanocircuit theory and its applications. BoDBooks Demand 2017, 10, 219–245. [Google Scholar]
- Beruete, M.; Sorolla, M.; Campillo, I.; Dolado, J.S.; Martín-Moreno, L.; Bravo-Abad, L.; García-Vidal, F.J. Enhanced millimeter wave transmission through subwavelength hole arrays. Opt. Lett. 2004, 29, 2500–2502. [Google Scholar] [CrossRef] [Green Version]
- Beruete, M.; Sorolla, M.; Campillo, I.; Dolado, J.S.; Martín-Moreno, L.; Bravo-Abad, L.; García-Vidal, F.J. Enhanced millimeter-wave transmission through quasi-optical subwavelength perforated plates. IEEE Trans. Antennas Propag. 2005, 53, 1897–1903. [Google Scholar] [CrossRef]
- Barzegar-Parizi, S. Effective medium of stacked structure composed of periodic arrays of holes for low terahertz regime. J. Electromagn. Waves Appl. 2019, 33, 40–53. [Google Scholar] [CrossRef]
- Lezec, H.J.; Thio, T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelengthhole arrays. Opt. Exp. 2004, 12, 3629–3651. [Google Scholar] [CrossRef] [Green Version]
- Medina, F.; Mesa, F.; Marqu´es, R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Trans. Microw. Theory Tech. 2008, 56, 3108–3120. [Google Scholar] [CrossRef]
- Marqu´es, R.; Mesa, F.; Jelinek, L.; Medina, F. Analytical theory of extraordinary transmission through metallic diffraction screens perforated by small holes. Opt. Exp. 2009, 17, 5571–5579. [Google Scholar] [CrossRef]
- Delgado, V.; Marques, R.; Jelinek, L. Analytical theory of extraordinary optical transmission through realistic metallic screens. Opt. Exp. 2010, 18, 6506–6515. [Google Scholar] [CrossRef] [PubMed]
- Beruete, M.; Campillo, I.; Navarro-Cia, M.; Falcone, F.; Ayza, M.S. Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays. IEEE Trans. Antennas Propag. 2007, 55, 1514–1521. [Google Scholar] [CrossRef]
- Marqu´es, R.; Jelinek, L.; Mesa, F.; Medina, F. Analytical theory of wave propagation through stacked fishnet metamaterials. Opt. Exp. 2009, 17, 11582–11593. [Google Scholar] [CrossRef] [Green Version]
- Beruete, M.; Navarro-Cia, M.; Ayza, M.S. Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts. IEEE Trans. Microw. Theory Tech. 2011, 59, 2180–2188. [Google Scholar] [CrossRef]
- Delgado, V.; Marques, R.; Jelinek, L. Coupled-wave surface-impedance analysis of extraordinary transmission through single and stacked metallic screens. IEEE Trans. Antennas Propag. 2013, 61, 1342–1351. [Google Scholar] [CrossRef] [Green Version]
- Khavasi, A.; Mehrany, K.; Shirmanesh, G.K.; Yarmoghaddam, E. Corrections to circuit model in design of THz transparent electrodes based on two-dimensional arrays of metallic square holes. IEEE Trans. Microw. Theory Tech. 2015, 5, 655–656. [Google Scholar] [CrossRef]
- Barzegar-parizi, S.; Khavasi, A. Tunable extraordinary transmission through a graphene-covered hole array: An analytical equivalent-circuit modeling approach. Plasmonics 2019, 14, 569–577. [Google Scholar] [CrossRef]
- Salisbury, W.W. Absorbent Body for Electromagnetic Waves. U.S. Patent 2599944 A, 10 June 1952. [Google Scholar]
- Fante, R.L.; McCormack, M.T. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag. 1988, 36, 1443–1454. [Google Scholar] [CrossRef]
- Knott, E.F.; Lunden, C.D. The two-sheet capacitive Jaumann absorber. IEEE Trans. Antennas Propag. 1995, 43, 1339–1343. [Google Scholar] [CrossRef]
- Bhati, A.; Hiremath, K.R.; Dixit, V. Design and Characterization of Square Patch Salisbury Screen Microwave Absorber. Prog. Electromagn. Res. Lett. 2018, 76, 7–12. [Google Scholar] [CrossRef]
- Maier, T.; Brückl, H. Wavelength-tunable microbolometers with metamaterial absorbers. Opt. Lett. 2009, 34, 3012. [Google Scholar] [CrossRef]
- Nejat, M.; Nozhat, N. Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber. IEEE Sens. J. 2019, 19, 10490–10497. [Google Scholar] [CrossRef]
- Landy, N.I.; Bingham, C.M.; Tyler, T.; Jokerst, N.; Smith, D.R.; Padilla, W.J. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Phys. Rev. B 2009, 79, 125104. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Li, S.; Yang, X.; Shi, S.; Wu, F.; Jiang, J. High-sensitive dualband sensor based on microsize circular ring complementary terahertz metamaterial. J. Electromagn. Waves Appl. 2017, 31, 91–100. [Google Scholar] [CrossRef]
- Hu, D.; Meng, T.; Wang, H.; Ma, Y.; Zhu, Q. Ultra-narrow-band terahertz perfect metamaterial absorber for refractive index sensing application. Results Phys. 2020, 19, 103567. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Hua, M.; Liu, X.; Qian, F.; Xie, G.; Ning, Y.; Shi, Y.; Wang, X.; Yang, F. High-Q metamaterials based on cavity mode resonance for THz sensing applications. AIP Adv. 2020, 10, 075014. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Ako, R.T.; Lee, W.S.L.; Bhaskaran, M.; Sriram, S.; Withayachumnankul, W. High-Q terahertz absorber with stable angular response. IEEETrans. Terahertz. Sci. Technol. 2020, 10, 204–211. [Google Scholar] [CrossRef]
- Wang, B.-X.; Zhai, X.; Wang, G.-Z.; Huang, W.-Q.; Wang, L.-L. A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 2015, 117, 014504. [Google Scholar] [CrossRef]
- Biabanifard, M.; Asgari, S.; Biabanifard, S.; Abrishamian, M.S. Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 2019, 182, 433–442. [Google Scholar] [CrossRef]
- Barzegar-Parizi, S.; Ebrahimi, A.; Ghorbani, K. High-Q dual-band graphene absorbers by selective excitation of grapheneplasmonpolaritons: Circuit model analysis. Opt. Laser Technol. 2020, 132, 106483. [Google Scholar] [CrossRef]
- Barzegar-Parizi, S.; Khavasi, A. Designing dual-band absorbers by graphene/metallic metasurfaces. IEEE J. Quantum. Electron. 2019, 55, 7300108. [Google Scholar] [CrossRef] [Green Version]
- Barzegar-Parizi, S.; Ebrahimi, A. Ultrathin, polarization-insensitive multi-band absorbers based on graphenemetasurface with THz sensing application. JOSA B 2020, 37, 2372–2381. [Google Scholar] [CrossRef]
- Rodríguez-Ulibarri, P.; Navarro-Cía, M.; Rodríguez-Berral, R.; Mesa, F.; Medina, F.; Beruete, M. Annular apertures in metallic screens as extraordinary transmission and frequency selective surface structures. IEEE Trans. Microw. Theory Tech. 2017, 65, 4933–4946. [Google Scholar] [CrossRef] [Green Version]
- Beruete, M.; Navarro-Cía, M.; Sorolla, M.; Campillo, I. Negative refraction through an extraordinary transmission left-handed metamaterial slab. Phys. Rev. B 2009, 79, 195107. [Google Scholar] [CrossRef] [Green Version]
- Beruete, M.; Navarro-Cía, M.; Sorolla, M. Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial. New J. Phys. 2020, 12, 063037. [Google Scholar] [CrossRef]
- Navarro-Cía, M.; Pacheco-Peña, V.; Kuznetsov, S.A.; Beruete, M. Extraordinary THz transmission with a small beam spot: The leaky wave mechanism. Adv. Opt. Mater. 2018, 6, 1701312. [Google Scholar] [CrossRef]
- Beruete, M.; Sorolla, M.; Campillo, I.; Dolado, J.S. Increase of the transmission in cut-off metallic hole arrays. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 116. [Google Scholar] [CrossRef]
- Camacho, M.; Nekovic, A.; Freer, S.; Penchev, P.; Boix, R.R.; Dimov, S.; Navarro-Cía, M. Symmetry and finite-size effects in quasi-optical extraordinarily THz transmitting arrays of tilted slots. IEEE Trans. Antennas Propag. 2020, 68, 6109–6117. [Google Scholar] [CrossRef]
- Luukkonen, O.; Costa, F.; Simovski, C.R.; Monorchio, A.; Tretyakov, S.A. A thin electromagnetic absorber for wide incidence angles and both polarizations. IEEE Trans. Antennas Propag. 2009, 57, 3119–3125. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, S.A.; Paulish, A.G.; Navarro-Cía, M.; Arzhannikov, A.V. Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers. Sci. Rep. 2016, 6, 21079. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, O.; Simovski, C.; Granet, G.; Goussetis, G.; Lioubtchenko, D.; Raisanen, A.V.; Tretyakov, S.A. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag. 2008, 56, 1624–1632. [Google Scholar] [CrossRef] [Green Version]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Long, L.L.; Querry, M.R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 1985, 24, 4493–4499. [Google Scholar] [CrossRef]
- Cao, L.; Sendur, K. Surface roughness effects on the broadband reflection for refractory metals and polar dielectrics. Materials 2019, 12, 3090. [Google Scholar] [CrossRef] [Green Version]
- Fedders, P.A. Surface roughness and the absorption of electromagnetic waves in simple metals. Phys. Rev. 1969, 181, 1053. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzegar-Parizi, S.; Ebrahimi, A. Terahertz High-Q Absorber Based on Holes Array Perforated into a Metallic Slab. Electronics 2021, 10, 1860. https://doi.org/10.3390/electronics10151860
Barzegar-Parizi S, Ebrahimi A. Terahertz High-Q Absorber Based on Holes Array Perforated into a Metallic Slab. Electronics. 2021; 10(15):1860. https://doi.org/10.3390/electronics10151860
Chicago/Turabian StyleBarzegar-Parizi, Saeedeh, and Amir Ebrahimi. 2021. "Terahertz High-Q Absorber Based on Holes Array Perforated into a Metallic Slab" Electronics 10, no. 15: 1860. https://doi.org/10.3390/electronics10151860
APA StyleBarzegar-Parizi, S., & Ebrahimi, A. (2021). Terahertz High-Q Absorber Based on Holes Array Perforated into a Metallic Slab. Electronics, 10(15), 1860. https://doi.org/10.3390/electronics10151860