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Abstract: In the current paper, we propose a machine learning forecasting model for the accurate
prediction of qualitative weather information on winter precipitation types, utilized in Apache
Spark Streaming distributed framework. The proposed model receives storage and processes data
in real-time, in order to extract useful knowledge from different sensors related to weather data. In
following, the numerical weather prediction model aims at forecasting the weather type given three
precipitation classes namely rain, freezing rain, and snow as recorded in the Automated Surface
Observing System (ASOS) network. For depicting the effectiveness of our proposed schema, a
regularization technique for feature selection so as to avoid overfitting is implemented. Several
classification models covering three different categorization methods namely the Bayesian, decision
trees, and meta/ensemble methods, have been investigated in a real dataset. The experimental
analysis illustrates that the utilization of the regularization technique could offer a significant boost
in forecasting performance.

Keywords: Apache Cassandra; Apache Kafka; Apache Spark Streaming; big data; classification;
knowledge discovery; machine learning; regularization techniques; stream analysis; weather fore-
casting; winter precipitation forecasting

1. Introduction

Widespread changes in the global distribution of living organisms, motivates the
adequate monitoring of ecosystems that needs to be carried out at multiple scales. This
will provide a robust scientific basis for decision making. Existing monitoring programs,
either at small local scale or at large scale, that are set up to detect changes in biodiversity
and ecosystem function, are rapidly evolving as new technologies arrive, but still lack key
functionality [1]. Severe weather events can be exceptionally disastrous due to intense
rainfall, tornadoes and wind storms that can occur over brief periods, frequently resulting
in flash floods. The monitoring and the discovery of these climate occasions cannot decrease
the quantity of these events, while an early warning can remarkably diminish the loss of
life [2]. The techniques proposed in this work are based on the machine learning area and
aim at classifying winter precipitation in an effective way.

As numerous developed countries have acquired sensor systems to identify precipita-
tion along with life threatening and heavy storms, many areas are not covered by this kind
of observation systems. Satellites can grant worldwide forecasts of rainfall, geostation-
ary satellites offer coarser spatial resolution, while polar-orbiting satellites offer temporal
coverage of storms with lower quality. Since catastrophic rainstorms can be developed
within a few minutes and can last for some hours, sensor infrastructures need imperatively
be deployed to effectively monitor such hazardous storms in a continuous way [3]. For
regions that lack this kind of observation systems, it could be a literal lifesaver.
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In particular, in the case of environment, a sensor network can automatically collect
data directly related to weather conditions, air pollution, fire detection of forest areas or
prevention of natural disasters. Moreover, using this kind of technology in the transporta-
tion sector, roads can be monitored via sensors; roads thus can be transformed and made
smarter, safer, while traveler experience can be significantly improved. These sensor net-
works add further value to agriculture, where they can collect data and monitor different
environmental conditions [4] such as the ones related to the microclimate in greenhouses,
temperature, and soil moisture.

Forecast of winter precipitation has been consistently meliorating over the past two
decades, despite the fact that there are still a plethora of inaccurate and uncertain estimates.
All this significant progress technology has achieved, has permitted for advanced physics
to be incorporated into models of expanding resolution.

Since precipitation is one of the foremost major climatic factors for ecosystem re-
search, it contributes to weather forecasting, as well as climate monitoring. In spite of its
significance, the accurate estimation of precipitation is still a most challenging problem.
On the flip side of the coin, measurement errors for accurate precipitation, which are
frequently ignored for automated frameworks, regularly range from 20% to 50% due to
highly unpredictable wind conditions [5].

Despite the fact that measurement accuracy for precipitation can indeed be challenging
to estimate and quantify, it is extremely vital for monitoring and evaluating climate vari-
ability and alternation. Diminishing uncertainties that regard measurement is fundamental,
given the anticipated augmentations in precipitation over the following 100 year period.

Utilizing data from the U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D)
network, the Iowa Flood Center (IFC) has provided state-wide real-time precipitation
information since the foundation of the IFC in 2009 [6]. This information was motivated
by the requirement of real-time flood prediction in Iowa, a state which has repeatedly
experienced devastating floods at different scales [7,8].

Large scale data are commonplace in applications and need a different handling in
case of storing, indexing and mining. One well known method to facilitate large-scale
distributed applications is MapReduce [9] proposed by Dean and Ghemawat. In order
to address the above issues, many frameworks and distributed data-warehouses such as
Hadoop, Spark, Storm, Flink, Cassandra and HBase are now quite well known and can be
utilized as they process vast amounts of data efficiently. Additionally, there are libraries
such as Spark’s MLlib, which are used in this article and which permit machine learning
techniques in the cloud. There are also two different categories of Big Data processing,
namely batch engines and streaming engines. The first is related to the management of a
vast volume of data, while the second concerns the processing of high-velocity data. How-
ever, the most popular framework that manages large data environments for MapReduce
batch processing is Hadoop. Recent applications require real-time analysis efficiently and
effectively completed by streaming engines such as Spark and Storm Streaming [10].

In this study, given the difficulty or uncertainty in classifying winter precipitation [11,12],
our objective is to develop a data-driven approach that can improve the accuracy of this
particular classification problem. We have combined the data retrieved from the sensors so
as to overcome the limitations of each radar-only method and have developed multiple
classification models based on the supervised machine learning approach.

Collectively, to meet all the requirements and to address all the difficulties that arise
in the work of classification in data streams, various methods are used, with the following
being the most common:

• Bayesian methods, based on the Bayesian theorem with the algorithms (Bayesian
classifiers) Naive Bayes and Multinomial Naive Bayes [13].

• Decision tree methods, which are the methods of decision trees with multiple variants
and the main exponents of the algorithms Decision Stump [14], Hoeffding Tree (Very
Fast Decision Trees) [15], Hoeffding Option Tree [16–18] and Hoeffding Adaptive
Tree [19,20].
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• Meta/ensemble methods, which are the combination of a set of classification mod-
els that perform the same task and the decisions of the individual models that are
combined to decide the output to be produced. These methods are mainly imple-
mented with the algorithms Bagging [21], Boosting [22], Bagging using Adwin [23],
and Bagging using Adaptive-Size Hoeffding Trees.

The contribution of this present work is twofold. Primarily, the adoption of a cloud
computing infrastructure in which Big Data technologies, such as Kafka, Spark Streaming
and Cassandra, have been employed to develop an efficient schema for winter precipita-
tion data storage and processing. Secondly, several classification models covering three
different categorization methods, namely the Bayesian, Decision Trees and Meta/Ensemble
methods and their performance in terms of accuracy metric and computation time, have
been investigated in an extensive number of real data for different dataset sizes. Moreover,
the classification performance was evaluated with and without the application of a regular-
ization technique for feature selection; in this way, we can certainly avoid overfitting. As
a final note, in our previous projects, the procedure of identifying and learning new data
features while preserving old data ones can be considered as one of the most crucial goals
of incremental learning methods [24,25].

The remainder of this paper is structured as follows. Section 2 presents information
about real-time data processing systems, streaming, NoSQL databases, cloud computing
infrastructures along with the classification algorithms used in the proposed approach
and the regularization technique. Section 2.6 depicts the proposed architecture with the
corresponding modules. In Section 2.7, the implementation system, the dataset and analysis
of criteria are discussed, whereas in Section 3, the results are evaluated and presented
in terms of tables along with the corresponding comparison. Recent scientific literature
and various cloud computing methodologies are summarized in Section 4. Furthermore,
Section 5 presents conclusions and draws directions for future work that may extend the
current version and performance. Ultimately, the notation of this work is summarized in
Table 1.

Table 1. Article Notation.

Acronym Explanation

ASOS Automated Surface Observing System

WSR-88D Weather Surveillance Radar-1988 Doppler

MLlib Machine Learning library

NoSQL Not-only Structured Query Language

VFDT Very Fast Decision Tree

EWMA Exponentially Weighted Moving Average

HAT Hoeffding Adaptive Tree

Adwin ADaptive WINdoing

Lasso Least Absolute Shrinkage and Selection Operator

OLS Ordinary Least Squares

NWP Numerical Weather Prediction

Rain RA

Freezing Rain FRZA

Snow SN

VM Virtual Machine
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2. Materials and Methods

This section describes the background theory associated with the foundations of our
approach using tools and frameworks from computer science. In this study, we have
employed a method for storage and processing of winter precipitation data using Big Data
techniques that scale up and speed up winter precipitation data analysis and enhance
weather forecasting. In particular, the adopted architecture is an integration of Apache
Kafka, Spark and Cassandra. In the following subsections, we will give the necessary
details of each component separately. Besides, useful knowledge about the considered
classification models and regularization technique, the proposed architecture and, the
experiments and data are described.

2.1. Apache Spark Streaming

Streaming data may be considered as the enormous amount of data/information
addressed by a massive number of sensors and the shipment of those data records at the
same time. These data need preparing a record-by-record premise to draw valuable and
essential information. Moreover, the analytics can be sampled, filtered, correlated, or even
aggregated, and this analysis can take place in a structure related to consumer aspects and
a different business. Over time, stream processing algorithms are utilized with the goal of
further refining the insights.

Apache Spark Streaming (https://spark.apache.org/streaming/ (accessed on 31 July
2021)) transforms the live input stream into batches, which are later on manipulated by
Spark engine to produce the output in batches. Thus, D-streams consist of a high-level
abstraction offered by Spark Streaming, whereas the latter grants the parallel processing of
data streams by connecting to numerous data streams [26].

2.2. Apache Cassandra

Apache Cassandra (Retrieved July 31, 2021, from http://cassandra.apache.org/ (ac-
cessed on 31 July 2021)) consists of an open-source and widely scalable NoSQL (Not-only-
SQL) database. Therefore, it is ideal for processing tremendous amounts of data in different
data centers and a cloud infrastructure. One can consider the following features as its
qualities, namely the persistent accessibility, the direct scalability, as well as the simplicity
in operating on distinctive servers without any single point of failure [27].

Cassandra’s design is based on the premise that system and hardware failures occur
consistently, and this fact results in a peer-to-peer distributed system. The information
is distributed among all cluster nodes, whereas the replicating and sharing strategies are
automatic and transparent. Moreover, it provides a progressed custom replication, which
saves duplicates of the data on all nodes taking part in a Cassandra ring. If a node is shut
down, then at least one copy of the node data will be available and accessible from another
cluster node. Finally, Cassandra offers linear scaling capacity [28], which infers that the
system’s overall capability can be immediately extended by including additional nodes to
the network.

2.3. Apache Kafka

Apache Kafka (https://kafka.apache.org/ (accessed on 31 July 2021)) is an open-
source distributed messaging system designed to process vast volumes of data. It is a
distributed messaging system for collecting and transferring log files, integrated into
Apache in 2011. To be precise, it is a system that transfers data from one application to
another using a generalization of the messaging systems’ models. Thus, based on the
queuing model, data processing is divided into a set of processes. In contrast, with the
publish/subscribe model, Kafka allows the transmission of messages to a multitude of
consumer groups [29].

The system is based on the Producer–Consumer model [30] and stores messages
grouped into topics. A producer posts messages on a topic and the consumers who have
registered in this topic receive the published message. Kafka implements four API types

https://spark.apache.org/streaming/
http://cassandra.apache.org/
https://kafka.apache.org/
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to connect with other applications. The first two are called Producer and Consumer, and
are utilized for publishing feeds on one or more topics and showing interest in topics
and processing data, respectively. The last two are the Streams and Connector APIs. The
former is used for applications to act as data processors, while, the latter is used for
creating reusable consumers or producers, and connecting topics with other applications
or computer systems. For these reasons, Apache Kafka is an ideal solution for creating
real-time pipelines and designing applications that process data streams.

2.4. Classification Algorithms

In the context of this section, useful details about the considered Machine Learning
algorithms and techniques are given.

2.4.1. Naive Bayes

Naive Bayes is an algorithm known for its simplicity and low computational cost. It is
useful for characterizing datasets with a high volume of information, as it runs efficiently
and is easy to implement. As an incremental algorithm, it is suitable for application in
feeds. However, we consider the features to be independent, which may not be possible in
real feeds [13]. The Naive Bayes algorithm belongs to the Bayesian categorization methods,
so it is based on the Bayes probability theorem and produces probability tables for each
independent variable separately.

2.4.2. Decision Stump

The Decision Stump algorithm is a particular case of a decision tree belongs to the
decision trees categorization method, where algorithms are used so as to construct trees
as representations of results. It contains only one level of the decision tree, i.e., only one
control node and two leaves; therefore, it can only predict two classes of the dependent
variable [14]. It treats the missing values as different values and extends from the tree
a third branch for these values. Finally, it is considered useful in two-class problems,
although for the model to be built is quite simple.

2.4.3. Hoeffding Tree

In data streams, where not all data can be stored, the main problem with creating a
decision tree is the need to reuse cases to calculate the best features. Domingos and Hulten
proposed the Hoeffding Tree, or Very Fast Decision Tree (VFDT) [15], a Decision Tree
algorithm waiting for new instances to arrive instead of using them again, which causes
its rapid growth. This algorithm constructs a tree built from batch data with a substantial
amount of them. Various extensions of the Hoeffding decision trees exist in the literature,
some of which are used below. The variations aim to better deal with the “concept drift”
and minimize the complexity of time and space.

2.4.4. HoeffdingOption Tree

The HoedffdingOption Tree algorithm extends the Hoeffding tree. The additional
option nodes it contains allow multiple tests to be performed, resulting in separate paths
and multiple Hoeffding trees [18]. The single structure of the option tree effectively
represents many trees. The contribution of a specific example, which travels in different
paths of a tree, can be done in many ways and with many varying options [16,17]. The
main difference with the Hoeffding tree algorithm pseudocode is that each trainee can
update instead of a single leaf, a group of option nodes, and there is a new method that is
applied when a split is selected. If the unused feature is better than the current split, then
the new option is introduced.

2.4.5. AdaHoeffdingOption Tree

The AdaHoeffdingOption Tree algorithm is an extension of a HoedffigOption Tree,
an algorithm that could be interpreted as either a decision tree or an ensemble. In this
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method, it is not necessary to have a fixed size of the sliding window of data streams that
change temporarily over time. A complicated parameter that users have to guess is the
optimal size of the sliding window, which depends on the rate at which the distributed
data changes [19].

The Adaptive Hoeffding Option Tree is a Hoeffding Option Tree that incorporates the
following feature: adapts the Naive Bayes categorization to each leaf storing an estimation
of the current error, while using an Exponentially Weighted Moving Average (EWMA)
estimator with α = 0.2. In each voting process, there is a ratio of the weight of each node to
the square of the inverse of the error [23].

2.4.6. HoeffdingAdaptive Tree

The HoeffdingAdaptive Tree or HAT algorithm extends the Hoeffding Window Tree
by learning adaptive learning from the data stream. It adapts the Adwin (ADaptive
WINdoing) algorithm [19]. Adwin solves the problem of detecting the average of real value
numbers or a bit stream as it detects and evaluates changes. Moreover, it retains a set of
recently passed variable-length instances. If there is no change in the average value in the
window, it gains the maximum length [20]. It is used to monitor branches’ performance and
replace them with new branches when their accuracy decreases if they are more accurate.

2.4.7. OzaBag

The OzaBag algorithm [22,31] belongs to the meta/ensemble classification methods,
where combined classifiers can predict better than individual predictions. It is based on
the Bagging algorithm [21], modified to apply to data streams. The term “bagging” is
an abbreviation of “bootstrap aggregating”, where “bootstrap” is the method used to
reproduce the training instances when the training set is small.

In the Bagging algorithm, an essential learning algorithm is used to extract the different
M models that are potentially different because they are trained with varying bootstrap
samples. Each sample is created by placing random samples from the original training
set. The resulting meta-model predicts by taking a simple majority of the M classifiers’
predictions made in this way. The “Bagging” method, as stated by Breiman [32], does not
seem to apply directly to feeds because it appears that the entire dataset is necessary to
make bootstrap copies. The OzaBag algorithm shows how the bootstrap sampling process
can be simulated in a data flow environment.

2.4.8. OzaBoost

The OzaBoost algorithm [22] belongs to the meta/ensemble classification methods
and is based on the Boosting algorithm. In the Boosting algorithm, an essential learning
algorithm is used to extract the different models trained with input samples, so as to
achieve fewer errors. Unlike Bagging, models are created sequentially rather than in a
parallel mode, and each new model is built according to the performance of previously
constructed models. The main concern is to give more importance to the instances that
have been wrongly sorted by the existing set of classifiers so that the next classifier in the
sequence focuses on these instances.

For data flows, the OzaBoost algorithm was proposed. This algorithm uses a method
that, instead of creating new models sequentially each time a new case arrives, updates
each model with a weight calculated on previous classifiers’ performance. An essential
function of the algorithm is to divide the total weight of the instances into two equal parts.
The first part refers to the instances that are classified correctly, while the second refers to
those that have been classified incorrectly. The Poisson distribution is used to determine
the random probability that an instance will have to be used for training.

2.4.9. OzaBagAdwin

The OzaBagAdwin algorithm is an extension of the OzaBag algorithm that contains
a drift detector, the Adwin algorithm [23]. The Adwin algorithm detects and evaluates
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changes in the results of the bagging method. If a change occurs, the less effective clas-
sifier is removed and a new one is added. In the process, the worst of the classifiers are
immediately replaced with new base classifiers that have already been created.

2.5. Regularization Technique

Avoiding over-placement plays an essential role in training a machine learning
model [33]. If the model is overfitting, it will have low accuracy as it tries to capture
the training data set’s noise. The concept of noise refers to data points that do not represent
the actual properties of the data, but random chance. The model is more flexible at the
risk of over-placement, having previously learned such data points. The main difficulty
with this kind of approach is finding the optimal balance. Therefore, various regularization
parameter choice techniques have been proposed [34].

A challenging topic in the classification, is the feature selection as the minimum
cardinality features are rarely known in advance. Adding more features to the set improves
a predefined classification performance metric and accurately describes a given set of data.
However, the classifier can be impeded by too many features.

L1 regularization or Lasso (Least Absolute Shrinkage and Selection Operator) Regres-
sion adds “absolute value of magnitude” of coefficient as penalty term to the loss function
(L) and shrinks the less important feature’s coefficient to zero, thus removing some feature
altogether [35]. According to Lasso, the penalized least squares regression with L1-penalty
function is written as

Loss =
m

∑
j=1

(yi − w0 −
n

∑
i=1

wixji)
2 + λ

n

∑
i=1
|wi| (1)

where the value to be predicted is y = w0 + w1x1 + w2x2 + . . . + wnxn. The features that
decide the value of y are x1, x2, . . . , xn; w0 is the bias and w1, w2, . . . , wn are the weights
attached to x1, x2, . . . , xn, respectively.

In Equation (1), λ is the regularization parameter that controls the importance of
the regularization term. As a final note, if there is collinearity in the input values, Lasso
regression method can perform effectively contrary to Ordinary Least Squares (OLS), which
would overfit the data, a common method for parameter estimation.

In comparison with Ridge regression, also called L2 norm or regularization [36], Lasso
shrinks the coefficient of less important features to zero, thus removing some features
altogether. So, this works well for feature selection [37] in case we have a vast number
of features. As a result, in the following, only the L1 regularization technique was imple-
mented because the utilized dataset has only a limited number of features, and so, the
expected accuracy will be the same for both strategies.

2.6. Proposed Architecture
2.6.1. Winter Precipitation Forecasting Model

Weather state forecasting has been crucial in various aspects of human life such as
forestry, marine, agriculture and intelligent transportation for disaster prevention and
emergency decision-making support [38]. For example, in the case of transportation, it
concerns traffic flow prediction of autonomous vehicles in order to reduce traffic conges-
tion and accidents, while in agriculture, it helps farmers to organize their work on any
particular day.

A data-driven approach is employed to forecast the weather state based on winter
precipitation, exploiting radar data related to several atmospheric variables. The model
includes a number of meteorological and environmental data retrieved from various
weather radars and a numerical weather prediction (NWP) model [39] (https://mesonet.
agron.iastate.edu/request/download.phtml (accessed on 31 July 2021)).

The problem is treated as a classification task considering as target classes the weather
conditions, namely, (1) rain (RA), (2) freezing rain (FRZA), and (3) snow (SN) according
to an automated surface observing system (ASOS) [40]. Generally speaking, the weather

https://mesonet.agron.iastate.edu/request/download.phtml
https://mesonet.agron.iastate.edu/request/download.phtml
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classification model considers a set of n features based on temperature and precipitation.
Here, we trained several machine learning models on every available sample of features
and weather class label values (di1, di2, . . . , din, ci), where ci denotes the corresponding an-
notated weather class label of sample i. Then, we evaluated their classification performance
based on the utilized model accuracy. More details are presented in the following sections.

2.6.2. Architecture Schema

Our approach follows the proposal of knowledge discovery procedure as in [41]. First
and foremost, we need to introduce the framework within which the computation took
place. The overall architecture of the proposed system is depicted in Figure 1 taking into
account the corresponding modules of our approach. Specifically, a pre-processing step is
utilized and in following, the classification procedure is employed.

Figure 1. Overall architecture of the proposed system.

A novel system that consists of two main components, namely data collection and
processing, is proposed in the present work. The data collection module, utilized with use
of Apache Kafka, is developed to fetch the data from different weather sensors and, in
following to store these data into Cassandra, a NoSQL database that is scheme-less and
ideal for scalability purposes. After the storing procedure takes place, the system mainly
performs real-time processing utilizing Apache Spark Streaming. Specifically, it is a data
pipeline related to winter precipitation, which starts from a sensor that collects data. These
data are then processed, stored, and analyzed. In more detail, the streaming pipeline can
be analyzed in terms of the following aspects:

Weather sensors: the data that are given as input to our system in terms of weather
data; some features are air temperature, dew point, wind speed, pressure altimeter, cloud
coverage, and peak wind gust.

Apache Kafka and Apache Spark Streaming: these big data services are responsible
for streaming and processing the data from sensors.

Cassandra: the data are stored in this particular NoSQL database in raw format and at
a later stage, more refined information can be also stored as in [42].

Regularization Technique: this technique is implemented for feature selection in order
to avoid overfitting. Specifically, as stated above, L1 regularization was employed.

Classification Procedure: nine classification algorithms, covering three different cate-
gorization methods, namely the Bayesian, the decision trees and meta/ensemble methods,
have been investigated, and their performance in terms of accuracy metric and computation
time has been evaluated.

2.7. Implementation

The proposed algorithmic framework has been implemented with the utilization
of Apache Spark cloud infrastructure. The cluster used for our experiments includes
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4 computing nodes, i.e., VMs, where each of them has four 2.5 GHz CPU processors, 11 GB
of memory and a 45 GB hard disk. One of the VMs is considered the master node and the
other three VMs are used as the slave nodes.

2.8. Dataset

The dataset consists of variables associated with precipitation microphysics and the
features are presented in Table 2 [43,44]. The weather type is inferred by the precipitation
classes as: (1) rain, (2) freezing rain, and (3) snow, as recorded in the automated surface
observing system (ASOS) network, which were identified from the feature entitled wxcode.
In this dataset, supervised learning by several classification models on streaming data will
be applied.

Table 2. Winter precipitation data description.

Variable Description

station Station Identifier (three or four characters)

valid Observation Timestamp

tmpf Air Temperature (Fahrenheit)

dwpf Dew Point Temperature (Fahrenheit)

relh Percentage of Relative Humidity

drct Wind Direction in degrees from north

sknt Wind Speed (knots)

p01i One hour precipitation for the period from the observation time to
the time of the previous hourly precipitation reset (inches)

alti Pressure Altimeter (inches)

mslp Sea Level Pressure (millibar)

vsby Visibility (miles)

gust Wind Gust (knots)

skyc1 Sky Level 1 Coverage

skyc2 Sky Level 2 Coverage

skyc3 Sky Level 3 Coverage

skyc4 Sky Level 4 Coverage

skyl1 Sky Level 1 Altitude (feet)

skyl2 Sky Level 2 Altitude (feet)

skyl3 Sky Level 3 Altitude (feet)

skyl4 Sky Level 4 Altitude (feet)

wxcodes Present Weather Codes

feel Apparent Temperature (Fahrenheit)

ice accretion 1 h Ice Accretion over 1 h (inches)

ice accretion 3 h Ice Accretion over 3 h (inches)

ice accretion 6 h Ice Accretion over 6 h (inches)

peakwindgust Peak Wind Gust (knots)

peakwinddrct Wind Gust Direction (deg)

peakwindtime Peak Wind Gust Time
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For the training of the machine learning models, two approaches were considered. In
the former, the models were trained considering all the available features as presented in
Table 2, while in the latter, after the regularization technique, 13 features were selected and
in following given as input.

In order to get an insight regarding the instances for each class, the percentages of
data rows are depicted in Table 3. We can observe that the class “rain” has the highest
percentage with value equal to 40% while the percentages of “freezing rain” and “snow”
are 35% and 25%, respectively.

Table 3. Distribution of class instances.

Class Percentage

Rain 40%

Freezing Rain 35%

Snow 25%

2.9. Criteria Analysis

As mentioned above, a corresponding dataset was used, consisting of a vast number
of instances, as required for the correct evaluation of algorithms in the context of data flows.
The 15 initial attributes are classified into two classes, whereas the separation of dataset to
training and test set has been implemented with use of a cross validation procedure. The
80% of the instances are used as a training set and the remaining 20% as testing.

Accuracy is used as a measure of evaluation, defined as the ratio of all predictions
that were correct to the total number of predictions. Each algorithm is evaluated for
three different values of training instances with percentage of the training set equal to
80%, which are 80,000 (for 100,000 total instances), 200,000 (for 250,000 total instances)
and 400,000 (for 500,000 total instances). For each algorithm, the percentage of accuracy
is compared at specific moments, namely 500,000, 1,000,000, 5,000,000, and 10,000,000
processed instances. Moreover, another aspect that is taken into consideration concerns
the relationships between the dataset size and the computation time needed to perform
classification as well as between the dataset size and the metrics evolved.

Finally, nine classification algorithms were applied, as introduced in the previous
subsection, which covers three different categorization methods, namely the Bayesian, the
decision trees, and meta/ensemble methods. Another observation that needs to be taken
into account is that in the OzaBag, OzaBoost, and OzaBagAdwin algorithms, the number of
models used is ten, i.e., M = 10, and the primary learning algorithm is the Hoeffding Tree.

3. Results

The results of our work are presented in Tables 4–9 with and without the utilization
of the regularization method described in Section 2.5. The accuracy metric evaluates
each classifier’s performance in terms of different values, such as the lowest, highest, and
average for different dataset sizes. The values of the accuracy depict the results based on
the test set for each model. Furthermore, the training sets are differentiated in different
tables to depict the variations in the accuracy metric. It is worth noting that the relation
between the dataset size and computation time is not linear. For instance, for a dataset
5 times bigger, as it happens from 100 K rows to 500 K rows, we have to spend almost
twice the computation time for the bigger dataset. We can observe that some classifiers
outperform the others, and this pattern stands for all six tables.

3.1. Results for Different Training Set Values

The lowest, highest, and average percentages of accuracy for dataset equal to 100,000 rows
(training set equal to 80,000) are presented in Table 4. Regarding classification without the
utilized regularization technique, the lowest value is presented in the Decision Stump
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algorithm with a percentage of accuracy equal to 58.75%. In contrast, the largest value is
presented in the OzaBag algorithm, with a percentage equal to 93.90%. We can observe
that the difference between the lowest and highest percentages of accuracy in seven
out of nine algorithms is below 10%. The most considerable value is presented in the
HoeffdingAdaptive Tree, with a percentage equal to 11.95%. Moreover, in classification with
regularization, the Decision Stump algorithm achieves the lowest value with a percentage
of accuracy equal to 60.15% whereas, an immense value is shown in the OzaBagAdwin
algorithm, with a percentage equal to 95.88%.

Table 4. Lowest, highest and average accuracy percentages of weather classification for
dataset = 100,000.

Algorithm Lowest Highest Difference Average Time

Classification without Regularization

Naive Bayes 74.25 79.50 5.25 77.08 0:24:45

Decision Stump 58.75 68.65 9.90 63.68 0:25:30

Hoeffding Tree 82.35 92.70 10.35 90.73 0:26:10

HoeffdingOption Tree 85.10 93.25 8.15 91.44 0:26:25

AdaHoeffdingOption Tree 83.05 93.00 9.95 91.28 0:26:35

HoeffdingAdaptive Tree 80.40 92.35 11.95 90.75 0:25:50

OzaBag 86.60 93.90 7.30 92.51 0:29:10

OzaBoost 88.10 93.45 5.35 91.92 0:28:40

OzaBagAdwin 86.75 93.85 7.10 92.51 0:28:30

Classification with Regularization

Naive Bayes 74.93 80.96 6.03 78.14 0:25:30

Decision Stump 60.15 69.86 9.71 64.82 0:26:30

Hoeffding Tree 83.26 93.18 9.92 91.16 0:28:00

HoeffdingOption Tree 85.81 94.39 8.58 92.53 0:28:15

AdaHoeffdingOption Tree 84.25 94.57 10.32 90.97 0:29:10

HoeffdingAdaptive Tree 80.54 92.15 11.63 91.35 0:28:50

OzaBag 85.83 94.19 8.36 93.63 0:29:55

OzaBoost 88.45 93.57 5.12 92.38 0:30:15

OzaBagAdwin 87.51 95.88 8.37 93.82 0:29:30

Moreover, Table 5 depicts the lowest, highest and average percentages of accuracy for
dataset equal to 250,000 rows (training set equal to 200,000). The results are similar to Table 4,
where Hoeffding, HoeffdingOption, AdaHoeffdingOption, and HoeffdingAdaptive Trees
along with OzaBag, OzaBoost, and OzaBagAdwin achieve the highest accuracy values. For
the classification without regularization, we can observe that the highest value is presented
in the OzaBag algorithm with a percentage of accuracy equal to 93.24%. On the contrary,
the lowest value is introduced in the Decision Stump algorithm, with a percentage equal
to 59.88%. It is further depicted that the average values of accuracy in seven algorithms
are over 90%. The most considerable value is presented in the OzaBag, with a percentage
equal to 92.53%. Additionally, in classification with regularization, the highest value is
shown in the OzaBoost algorithm with an average value equal to 94.87%. On the other
hand, the lowest value is achieved in the Decision Stump algorithm, with a percentage
equal to 60.56%.
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Table 5. Lowest, highest and average accuracy percentages of weather classification for
dataset = 250,000.

Algorithm Lowest Highest Difference Average Time

Classification without Regularization

Naive Bayes 76.16 78.44 2.28 77.08 0:43:35

Decision Stump 59.88 68.20 8.32 63.69 0:44:20

Hoeffding Tree 84.76 91.78 6.92 90.73 0:47:50

HoeffdingOption Tree 86.78 92.52 5.74 91.42 0:48:35

AdaHoeffdingOption Tree 85.92 92.26 6.34 91.28 0:48:20

HoeffdingAdaptive Tree 84.08 92.16 8.08 90.77 0:47:10

OzaBag 89.26 93.24 3.98 92.53 0:48:25

OzaBoost 89.76 92.78 3.02 91.92 0:48:35

OzaBagAdwin 89.22 93.22 4.00 92.51 0:47:50

Classification with Regularization

Naive Bayes 77.22 79.98 2.76 79.16 0:44:20

Decision Stump 60.56 71.27 10.71 67.73 0:45:25

Hoeffding Tree 85.82 92.55 6.73 91.42 0:49:30

HoeffdingOption Tree 86.96 94.77 7.81 92.94 0:50:15

AdaHoeffdingOption Tree 86.97 92.57 5.60 91.17 0:49:30

HoeffdingAdaptive Tree 84.84 92.95 8.11 91.28 0:50:35

OzaBag 90.20 93.82 3.62 92.91 0:50:40

OzaBoost 89.97 94.87 4.90 93.18 0:49:55

OzaBagAdwin 90.30 93.44 3.14 92.75 0:50:20

Finally, results in Table 6 present the lowest, highest, and average percentages of
accuracy for dataset equal to 500,000 rows (training set equal to 400,000). As in previous
tables, the classifiers have almost the same performance, whereas the implementation of
the regularization technique increases, as expected, the accuracy. Regarding classification
without regularization, the Decision Stump algorithm achieves the lowest accuracy per-
centage, i.e., equal to 60.98%. In contrast, the most considerable value is shown in the
OzaBagAdwin algorithm, with a percentage stretching to 90.54%. The difference between
the lowest and highest percentage of accuracy in six algorithms is below 5%. The most
considerable value is presented in the Decision Stump algorithm, with a percentage equal
to 6.67%. Besides, in classification with regularization, seven algorithms have a percentage
of accuracy over 90%. Simultaneously, the lowest value is given in the Decision Stump
algorithm with a percentage of accuracy equal to 62.56%.
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Table 6. Lowest, highest and average accuracy percentages of weather classification for
dataset = 500,000.

Algorithm Lowest Highest Difference Average Time

Classification without Regularization

Naive Bayes 76.39 77.84 1.45 77.08 0:55:20

Decision Stump 60.98 67.65 6.67 63.65 0:56:10

Hoeffding Tree 86.55 91.63 5.08 90.73 0:58:30

HoeffdingOption Tree 88.40 92.40 4.00 91.43 0:59:40

AdaHoeffdingOption Tree 87.59 92.19 4.60 91.28 0:58:55

HoeffdingAdaptive Tree 85.99 91.80 5.81 90.77 0:59:25

OzaBag 90.46 93.12 2.66 92.53 0:58:15

OzaBoost 90.29 92.52 2.23 91.93 0:58:40

OzaBagAdwin 90.54 93.10 2.56 92.51 0:59:20

Classification with Regularization

Naive Bayes 76.58 78.19 1.61 77.83 0:56:55

Decision Stump 62.56 67.96 5.40 65.65 0:57:40

Hoeffding Tree 86.94 93.55 6.61 92.24 1:00:15

HoeffdingOption Tree 88.91 93.49 4.58 92.96 1:00:20

AdaHoeffdingOption Tree 88.96 93.17 4.21 91.52 1:00:25

HoeffdingAdaptive Tree 87.22 93.89 6.67 92.58 0:59:30

OzaBag 90.81 94.44 3.63 93.84 1:01:15

OzaBoost 90.42 92.96 2.54 92.15 0:59:50

OzaBagAdwin 90.50 93.35 2.85 92.72 0:59:45

3.2. Results for Different Dataset Sizes

In Table 7, we observe that for a training set equal to 80,000, Naive Bayes and Decision
Stump achieve the lowest accuracy values with the percentages equivalent to 78.35% and
62.35%, respectively. On the other hand, the OzaBagAdwin classifier has the highest accu-
racy with a percentage equal to 93%, followed by the OzaBag with a minimal difference of
0.75%. Moreover, in classification with regularization, the highest value is introduced in the
OzaBagAdwin algorithm with a percentage of accuracy equal to 94.35%. Simultaneously,
Naive Bayes and Decision Stump achieve the lowest accuracy values with percentages
reaching 78.75% and 63.14%, respectively.
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Table 7. Accuracy percentages of weather classification for different dataset sizes for training
set = 80, 000.

Algorithm 500,000 1,000,000 5,000,000 10,000,000

Classification without Regularization

Naive Bayes 76.10 76.95 76.80 78.35

Decision Stump 61.30 66.85 62.45 62.35

Hoeffding Tree 87.85 89.75 90.50 91.80

HoeffdingOption Tree 88.90 90.15 91.05 92.10

AdaHoeffdingOption Tree 88.65 89.80 91.10 91.80

HoeffdingAdaptive Tree 87.90 89.35 90.45 91.50

OzaBag 91.05 92.10 92.35 92.25

OzaBoost 90.25 91.80 92.00 91.80

OzaBagAdwin 90.95 92.10 93.00 93.00

Classification with Regularization

Naive Bayes 76.80 77.15 77.20 78.75

Decision Stump 61.87 66.78 62.76 63.14

Hoeffding Tree 88.19 90.28 91.93 92.75

HoeffdingOption Tree 89.18 90.75 91.85 93.35

AdaHoeffdingOption Tree 89.13 89.95 91.67 92.38

HoeffdingAdaptive Tree 88.45 89.87 90.92 92.67

OzaBag 91.67 92.85 93.35 93.85

OzaBoost 90.88 92.55 92.75 92.67

OzaBagAdwin 91.45 92.63 93.57 94.35

Table 8 presents the accuracy percentages for training set corresponding to 200,000.
As in Table 7, Naive Bayes and Decision Stump have the lowest accuracy values with
a percentage below 80%, whereas the other seven classifiers achieve almost the same
performance, but the OzaBagAdwin classifier has the highest accuracy with a percentage
equal to 92.88%. Regarding classification with regularization, we can observe that seven out
of nine algorithms have a percentage over 92%. The most considerable value is presented
in the OzaBag, with a percentage equal to 93.85%. On the other hand, the lowest value is
depicted in the Decision Stump algorithm, with an accuracy percentage arriving to 63.76%.
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Table 8. Accuracy percentages of weather classification for different dataset sizes for training
set = 200,000.

Algorithm 500,000 1,000,000 5,000,000 10,000,000

Classification without Regularization

Naive Bayes 76.26 76.52 77.64 77.16

Decision Stump 62.40 63.48 62.34 62.34

Hoeffding Tree 88.32 90.02 90.80 91.76

HoeffdingOption Tree 89.34 90.78 92.00 92.28

AdaHoeffdingOption Tree 88.86 90.40 91.64 92.16

HoeffdingAdaptive Tree 87.92 89.28 91.04 91.42

OzaBag 89.26 92.26 92.64 92.98

OzaBoost 89.76 91.76 92.70 92.08

OzaBagAdwin 89.22 92.28 92.50 92.88

Classification with Regularization

Naive Bayes 76.85 77.64 78.88 79.33

Decision Stump 62.93 63.65 63.14 63.76

Hoeffding Tree 89.19 90.78 91.76 92.37

HoeffdingOption Tree 90.05 91.65 92.35 92.88

AdaHoeffdingOption Tree 89.38 91.21 92.44 93.35

HoeffdingAdaptive Tree 88.34 89.57 91.69 92.33

OzaBag 90.45 92.63 93.32 93.85

OzaBoost 90.76 92.23 93.55 93.58

OzaBagAdwin 90.11 92.79 93.12 93.63

Furthermore, the accuracy percentages for training set equal to 400,000 are presented
in Table 9. As in previous Tables 7 and 8, Naive Bayes and Decision Stump achieve the
lowest accuracy values with percentages achieving 77.15% and 62.11%, respectively, while
OzaBag and OzaBagAdwin perform slightly better than the remaining five classifiers with
accuracy percentages equal to 92.96% and 92.87%, respectively. Moreover, in classification
with regularization, the highest value is introduced in the OzaBagAdwin algorithm with
an average value hitting 94.98%. On the other hand, the lowest value is achieved in the
Decision Stump algorithm, with a percentage attaining 63.98%. In general, seven out of
nine algorithms achieve almost the same performance having a percentage of over 92%.
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Table 9. Accuracy percentages of weather classification for different dataset sizes for training
set = 400,000.

Algorithm 500,000 1,000,000 5,000,000 10,000,000

Classification without Regularization

Naive Bayes 77.15 76.71 77.13 77.15

Decision Stump 62.80 62.75 63.41 62.11

Hoeffding Tree 86.55 89.46 91.15 91.63

HoeffdingOption Tree 88.40 90.63 92.05 92.40

AdaHoeffdingOption Tree 87.59 90.37 91.83 92.19

HoeffdingAdaptive Tree 85.99 88.90 91.06 91.80

OzaBag 90.46 92.05 92.91 92.96

OzaBoost 90.29 91.56 92.51 92.38

OzaBagAdwin 90.54 92.04 92.85 92.87

Classification with Regularization

Naive Bayes 77.66 77.35 77.55 77.87

Decision Stump 63.45 63.75 64.14 63.98

Hoeffding Tree 87.87 90.55 92.17 92.82

HoeffdingOption Tree 89.05 91.15 93.24 93.88

AdaHoeffdingOption Tree 88.12 90.65 92.33 93.43

HoeffdingAdaptive Tree 87.12 89.45 92.62 93.54

OzaBag 91.55 92.77 93.78 94.43

OzaBoost 91.43 91.98 93.63 94.56

OzaBagAdwin 91.47 92.35 93.45 94.98

3.3. Comparison

In the above experiments, a dataset of 10,000,000 rows was generated and nine classi-
fication algorithms were applied, covering three different categorization methods, namely
the Bayesian, the decision trees, and meta/ensemble methods. Each algorithm was evalu-
ated for three different instances of training sets, which are 80,000, 200,000, and 400,000,
and the accuracy rate was examined in terms of the number of instances.

To sum up the results, we can see that the OzaBag, as well as OzaBagAdwin meta-
algorithms, are the ones that achieve the highest accuracy. The proposed method with the
regularization strategy performs slightly better than the classifiers without the utilization of
any regularization strategy in terms of the accuracy metric. Specifically, we could say that
the proposed method produced, in most cases, about 1% more accurate results, whereas in
some cases, the percentage is more than 2%. This is very important, as in most cases, the
accuracy percentages already exceed values equal to 90%.

However, as expected, the proposed method does not clearly outperform the ground
truth method for all nine classifiers because of the low number of dataset features. Fur-
thermore, as the dataset increases, all classifiers perform better, and this is an indication
that the proposed schema can be efficiently proposed in a real-time system measuring air
quality streaming information.

4. Discussion

The area of data mining did not come into presence until recently when the expressed
objective of systemizing the techniques and strategies for identifying hidden patterns,
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clustering [45,46] or other knowledge of interest [47,48] from massive datasets was intro-
duced. Specifically, data mining offers the tools for extracting latent associations between
characteristics and features, hence permitting feature transformation and dimensionality
reduction [49]. The two above characteristics are considered mandatory in the extract-
transform-load (ETL) cycle appearing in databases. A portion of applications that can be
associated with knowledge discovery is finance, marketing, as well as fraud detection [41].
More to this point, the procedure of knowledge discovery is organized in numerous stages
starting with the feature selection. In following, the pre-processing and transformation
steps come into presence and finally, concluding with the main stage of data mining, an
appropriate algorithm has the potential to extract latent information in a form suitable for
future utilization [50].

Regarding big data architectures, authors in [51] suggest a real-time remote prediction
system for health status, implemented on Apache Spark and deployed in the cloud, whose
aim is to apply machine learning model on streaming Big Data. Bear in mind that Apache
Spark is an open-source engine for Big Data processing. Moreover, machine learning for
streaming data challenges (such as data pre-processing, dimensionality reduction, semi-
supervised learning, ensemble learning, etc.) and opportunities are presented in detail
in [52]. In [25], the singular value decomposition (SVD) performs attribute transformation
and selection, and boosts the performance of various Spark MLlib classifiers in Kaggle
datasets. In addition, a novel healthcare monitoring framework for chronic patients was
presented in [53], which integrates advanced technologies, including data mining, cloud
servers, big data, ontologies, and deep learning. The proposed framework enhances the
performance of heterogeneous data handling and processing, and improves the accuracy
of healthcare data classification.

There has also been increasing interest in sophisticated algorithms (e.g., machine
learning) for low-cost sensor calibration in recent years. To date, there have been published
studies using high-dimensional multi-response models [54] and neural networks [55,56].
In [55], excellent performance with dynamic neural network calibrations of NO2 sensors
was demonstrated; however, the same performance for O3 was not observed.

Precipitation is one of the major fundamental factors in environmental and atmo-
spheric sciences, which includes research related to weather and hydrology. Precipitation
prediction is becoming more precise due to advanced remote-sensing technology and the
presence of solid ground reference systems [57,58]. On the other hand, the evaluation
of mixed precipitation remains challenging because the identification and the reliable
measurement of numerous diverse types of precipitation remain highly difficult [5,59].
Information regarding this type of precipitation is vital in terms of the management of
infrastructure and facility (e.g., air/ground traffic control, road closure) especially during
the winter season in many areas [60].

Winter precipitation, in the form of freezing rain, sleet and snow, is a hazard that
can have disruptive impact on human lives [60]. One of the most prominent effects of
these forms is when traveling via vehicles and aircraft. Non-ideal road conditions or even
reduced visibility during winter precipitation can lead to vehicle collisions, whereas flight
through winter precipitation can lead to aircraft accidents.

The conventional way of monitoring winter weather types (e.g., snow and freezing
rain) has often relied on the dual-polarization capability of weather radars, which allows
us to define hydrometeor types [61]. Radar is indeed used to monitor for precipitation and
even precipitation type, particularly with the dual-pol capability. However, automated
surface observing system (ASOS) [40], other surface observations, satellite, short-term
numerical models, objective analyses, and social media are also equally important in the
monitoring of current precipitation type, rates, and coverage.

Recent studies regarding radar data analysis, have focused on machine learning
methodologies for solving complex problems such as convective storm forecasting and
quantitative precipitation estimation. In most cases, conventional rainfall prediction based
on radars is implemented by known functional connections between the rainfall intensity



Electronics 2021, 10, 1872 18 of 21

and various radar measurements. Authors in [62] employed the utilization of two super-
vised machine learning strategies, namely random forest and regression tree in rainfall
prediction, using dual polarization radar variables that do not have any predefined rela-
tionships. An approach using the temporal properties of the convective storms based on
machine learning models for predicting future locations is introduced in [63].

Precipitation prediction is considered a principal issue with several environmental
applications, such as flood monitoring and agricultural management. Specifically, authors
in [64] proposed a deep learning model on a combination of precipitation radar images as
well as wind velocity based on a weather forecast model for determining if using additional
meteorological features like the wind would improve prediction.

The most critical challenge concerning data classification is that of “concept drift” [65].
The phenomenon of “concept drift” is caused by the natural tendency of data to naturally
and uninterruptedly evolve over time. It is most likely that after a certain period, the
classifier’s predictor accuracy will deteriorate due to the constant change of the flow of
information. It is common knowledge that in real-world applications, data stem from non-
stationary distributions resulting in the “concept drift” or “non-stationary learning” prob-
lem, often related to streaming data scenarios [66]. Finally, it should be noted that, in the
current study, it is assumed that this phenomenon does not occur in the experimented data.

5. Conclusions and Future Work

This work focuses on two semantic aspects directly associated with distributed ma-
chine learning; the first one is the performance of classifiers with and without a regular-
ization technique in terms of the accuracy metric, and the second one is the relation of
the dataset size with this particular metric. In our proposed schema, to avoid overfitting
and subsequently lower accuracy in our model, L1 regularization or Lasso Regression was
employed. This technique adds as penalty term to the loss function (L) the “absolute value
of magnitude” of coefficient and hence, shrinks the coefficient of less important features to
zero, removing in this way a number of features altogether.

To test our approach, nine classification algorithms were applied, covering three differ-
ent categorization methods, namely the Bayesian, the decision trees, and meta/ensemble
methods. Each algorithm was evaluated for three different instances of training sets, which
are 80,000, 200,000, and 400,000, and the accuracy rate was examined in terms of the number
of instances.

Ultimately, the present work can introduce some particular findings and conclusions.
Firstly, the potential of Spark Streaming to efficiently process a large amount of data
and to seamlessly apply well-known machine learning operations to big data is shown.
Additionally, it should be noted that the regularization technique provides an increase
in classification accuracy, even in cases where accuracy already achieves high values.
Third, from an algorithmic perspective, these hybrid architectures based on regularization
techniques can be more effective specifically when considering a distributed infrastructure,
and hence the performance of the system will be eventually increased.

Regarding future work, other concrete datasets can be utilized for further experi-
menting on the performance benchmarks of the proposed classification strategy. A better
understanding of the optimal combinations between the size of features set and utilized
classifiers will be achieved by implementing additional tests. Furthermore, neural network
approaches can be employed to efficiently predict winter precipitation data as in [55,56].
Furthermore, the inefficiencies of single models can be resolved by applying several combi-
nation techniques, which will lead to more accurate results.
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