Robust Nonlinear Tracking Control for Unmanned Aircraft in the Presence of Wake Vortex
Abstract
:1. Introduction
2. Mathematical Model
Assumptions
- Assumption 1: We assume that the lateral dynamics is uncoupled from the longitudinal.
- Assumption 2: It is assumed that the magnitude of the wake vortex disturbance is bounded.
3. Nonlinear Robust Control
3.1. Control Objective
3.2. Robust Controller Development
3.3. Observer Design
4. Linear Controller
5. PID Controller
6. Wake Vortex Modeling
7. Numerical Simulation and Results
7.1. Estimation of the Maximum Allowable Roll Moment on the Wing
7.2. Linear, Parameter-Varying Model
7.3. Highly Turbulent Case and Take-Off/Landing Cases
- Circulation = 600 m/s
- Vortex core radius = 1.8 m
- Separation distance 30 m
- Current time t = 132 s
- Circulation = 300 m/s;
- Vortex core radius = 1.8 m;
- Separation distance 30 m;
- Current time t = 60 s.
7.4. Interaction with Wake Vortex: Steady Level Flight Phase
7.4.1. Nominal Trim Point Simulations
- Circulation = 262 m/s;
- Span b = 32.9 m;
- Velocity V = 77.8 m/s.
7.4.2. Simulations with Parametric Uncertainty
7.4.3. Nonlinear Robust Controller vs. PID Controller
- Circulation = 230 m/s;
- Span b = 28.9 m;
- Velocity V = 65.7 m/s.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
UAV | unmanned aerial vehicle |
UAS | unmanned aerial systems |
NAS | national airspace system |
FAA | Federal Aviation Administration |
MIMO | multi-input multi-output |
LES | large eddy simulations |
LPV | linear parameter-varying model |
PID | proportional–integral–derivative |
EDR | eddy dissipation rate |
WVSS | wake vortex safety system |
RMSE | root mean square error |
AMD | average maximum deviation |
probability density function |
Nomenclature
x | system states |
u | system inputs |
y | system outputs |
f | unknown nonlinear disturbance |
A | system matrix |
B | input matrix |
C | output matrix |
D | feedthrough matrix |
t | time, s |
parametric uncertainty | |
aileron deflection, | |
rudder deflection, | |
v | lateral velocity, |
p | roll rate, |
r | yaw rate, |
roll angle, | |
left aileron deflection, | |
right aileron deflection, | |
p | roll rate, |
r | yaw rate, |
roll angle, | |
left aileron deflection, | |
right aileron deflection, | |
rudder deflection, | |
roll angle, | |
yaw angle, | |
auxiliary regulation error | |
and | auxiliary regulation errors for roll and yaw |
d | actuation disturbances |
w | wind gust disturbances |
uncertainty model weight | |
actuation disturbance model weight | |
gain attenuation | |
controller system gain | |
and | control gains |
ultimate stress, | |
M | internal moment, |
vertical distance to the neutral axis, | |
area moment of inertia, | |
E | tensile modulus, |
tensile strength, | |
tangential velocity, | |
vortex strength, | |
distance from the vortex center, m | |
P | proportional gain |
I | integral gain |
D | derivative gain |
References
- Borener, S.; Trajkov, S.; Balakrishna, P. Design and development of an integrated safety assessment model for nextgen. In Proceedings of the International Annual Conference of the American Society for Engineering Management, San Antonio, TX, USA, 10–13 June 2012. [Google Scholar]
- Rysdyk, R. Unmanned aerial vehicle path following for target observation in wind. J. Guid. Control. Dyn. 2006, 29, 1092–1100. [Google Scholar] [CrossRef]
- Liu, C.; Chen, W.H. Disturbance rejection flight control for small fixed-wing unmanned aerial vehicles. J. Guid. Control. Dyn. 2016, 2810–2819. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Tsuchiya, T. Optimal aircraft control in stochastic severe weather conditions. J. Guid. Control. Dyn. 2015, 39, 77–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.H.; Chang, B.; Wu, W.H. Adaptive constrained backstepping controller with prescribed performance methodology for carrier-based UAV. Aerosp. Sci. Technol. 2019, 92, 55–65. [Google Scholar] [CrossRef]
- Dydek, Z.T.; Annaswamy, A.M.; Lavretsky, E. Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 2013, 21, 1400–1406. [Google Scholar] [CrossRef]
- Bhandari, S.; Patel, N. Nonlinear adaptive control of a fixed-wing UAV using multilayer perceptrons. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Grapevine, TX, USA, 9–13 January 2017; p. 1524. [Google Scholar] [CrossRef]
- Razmi, H.; Afshinfar, S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV. Aerosp. Sci. Technol. 2019, 91, 12–27. [Google Scholar] [CrossRef]
- Noble, D.; Bhandari, S. Neural network based nonlinear model reference adaptive controller for an unmanned aerial vehicle. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 94–103. [Google Scholar] [CrossRef]
- Smeur, E.J.; Chu, Q.; de Croon, G.C. Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles. J. Guid. Control. Dyn. 2015, 38, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Mullen, J.; Bailey, S.C.; Hoagg, J.B. Filtered dynamic inversion for altitude control of fixed-wing unmanned air vehicles. Aerosp. Sci. Technol. 2016, 54, 241–252. [Google Scholar] [CrossRef] [Green Version]
- González-Arribas, D.; Soler, M.; Sanjurjo-Rivo, M.; Kamgarpour, M.; Simarro, J. Robust aircraft trajectory planning under uncertain convective environments with optimal control and rapidly developing thunderstorms. Aerosp. Sci. Technol. 2019, 89, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, Y.; Tsuchiya, T.; Wei, J.; Hwang, I.; Matayoshi, N. Stochastic optimal control for aircraft conflict resolution under wind uncertainty. Aerosp. Sci. Technol. 2015, 43, 77–88. [Google Scholar] [CrossRef]
- Yit, K.K.; Rajendran, P.; Wee, L.K. Proportional-derivative linear quadratic regulator controller design for improved longitudinal motion control of unmanned aerial vehicles. Int. J. Micro Air Veh. 2016, 8, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xian, N.; Duan, H. Linear-quadratic regulator controller design for quadrotor based on pigeon-inspired optimization. Aircr. Eng. Aerosp. Technol. 2016, 88, 761–770. [Google Scholar] [CrossRef]
- Huang, J.; Lin, C.F. Numerical approach to computing nonlinear H-infinity control laws. J. Guid. Control. Dyn. 1995, 18, 989–994. [Google Scholar] [CrossRef]
- Jafar, A.; Fasih-UR-Rehman, S.; Fazal-UR-Rehman, S.; Ahmed, N. H Infinity Controller for Unmanned Aerial Vehicle Against Atmospheric Turbulence. Am. Eurasian J. Sci. Res. 2016, 11, 305–312. [Google Scholar] [CrossRef]
- Hegde, N.; George, V.; Nayak, G.C. Design of H-Infinity Loop Shaping Controller for an Unmanned Aerial Vehicle. J. Adv. Res. Dyn. Control Syst. 2018, 10, 65–74. [Google Scholar]
- Pedroza, N.R.; MacKunis, W.; Golubev, V.V. Robust Nonlinear Regulation of Limit Cycle Oscillations in UAVs Using Synthetic Jet Actuators. Robotics 2014, 3, 330–348. [Google Scholar] [CrossRef] [Green Version]
- MacKunis, W.; Subramanian, S.; Mehta, S.; Ton, C.; Curtis, J.W.; Reyhanoglu, M. Robust nonlinear aircraft tracking control using synthetic jet actuators. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 220–225. [Google Scholar] [CrossRef]
- Drakunov, S.V. Sliding-mode observers based on equivalent control method. In Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, 16–18 December 1992; pp. 2368–2369. [Google Scholar] [CrossRef] [Green Version]
- Vu, M.T.; Le, T.H.; Thanh, H.L.N.N.; Huynh, T.T.; Van, M.; Hoang, Q.D.; Do, T.D. Robust position control of an over-actuated underwater vehicle under model uncertainties and ocean current effects using dynamic sliding mode surface and optimal allocation control. Sensors 2021, 21, 747. [Google Scholar] [CrossRef] [PubMed]
- Vu, M.T.; Le Thanh, H.N.N.; Huynh, T.T.; Thang, Q.; Duc, T.; Hoang, Q.D.; Le, T.H. Station-keeping control of a hovering over-actuated autonomous underwater vehicle under ocean current effects and model uncertainties in horizontal plane. IEEE Access 2021, 9, 6855–6867. [Google Scholar] [CrossRef]
- Xu, H.; Hinostroza, M.A.; Guedes Soares, C. Modified Vector Field Path-Following Control System for an Underactuated Autonomous Surface Ship Modelin the Presence of Static Obstacles. J. Mar. Sci. Eng. 2021, 9, 652. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 2019, 93, 105306. [Google Scholar] [CrossRef]
- Ha, L.N.N.T.; Hong, S.K. Robust dynamic sliding mode control-based PID–super twisting algorithm and disturbance observer for second-order nonlinear systems: Application to UAVs. Electronics 2019, 8, 760. [Google Scholar] [CrossRef] [Green Version]
- Thanh, H.L.N.N.; Vu, M.T.; Mung, N.X.; Nguyen, N.P.; Phuong, N.T. Perturbation observer-based robust control using a multiple sliding surfaces for nonlinear systems with influences of matched and unmatched uncertainties. Mathematics 2020, 8, 1371. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, G.; Ouyang, H.; Mei, L. A novel global fast terminal sliding mode control scheme for second-order systems. IEEE Access 2020, 8, 22758–22769. [Google Scholar] [CrossRef]
- Yu, Z.; Qu, Y.; Zhang, Y. Safe control of trailing UAV in close formation flight against actuator fault and wake vortex effect. Aerosp. Sci. Technol. 2018, 77, 189–205. [Google Scholar] [CrossRef]
- Kazarin, P.S.; MacKunis, W.; Moreno, C.; Golubev, V.V. Robust Nonlinear Tracking Control for Unmanned Aircraft with Synthetic Jet Actuators. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Denver, CO, USA, 5–9 June 2017; p. 3730. [Google Scholar]
- Kazarin, P.S.; Golubev, V.V. Comparison of Probabilistic Approaches for Predicting the Cone of Uncertainty in Aircraft Wake Vortex Evolution. In Proceedings of the 9th AIAA Atmospheric and Space Environments Conference, Denver, CO, USA, 5–9 June 2017; p. 4369. [Google Scholar] [CrossRef]
- Kazarin, P.S.; Golubev, V.V. On Effects of Ground Surface Conditions On Aircraft Wake Vortex Evolution. In Proceedings of the 9th AIAA Atmospheric and Space Environments Conference, Denver, CO, USA, 5–9 June 2017; p. 4368. [Google Scholar] [CrossRef]
- Kazarin, P.; Golubev, V.V. High-Fidelity Simulations of Terminal-Zone Heterogeneous Terrain Effects On Aircraft Wake Vortex Evolution. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 1279. [Google Scholar] [CrossRef]
- Kazarin, P.; Golubev, V.; Provalov, A.; Borener, S.; Hufty, D. A Variable-Fidelity Approach to Wake Safety Analysis in the Context of UAS Integration in the NAS. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 13–17 June 2016; p. 3452. [Google Scholar] [CrossRef]
- Lind, R. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. J. Guid. Control. Dyn. 2002, 25, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Deb, D.; Tao, G.; Burkholder, J.O.; Smith, D.R. An adaptive inverse control scheme for a synthetic jet actuator model. In Proceedings of the 2005, American Control Conference, Portland, OR, USA, 8–10 June 2005; pp. 2646–2651. [Google Scholar] [CrossRef]
- Deb, D.; Tao, G.; Burkholder, J.O.; Smith, D.R. Adaptive compensation control of synthetic jet actuator arrays for airfoil virtual shaping. J. Aircr. 2007, 44, 616–626. [Google Scholar] [CrossRef]
- Deb, D.; Tao, G.; Burkholder, J.O.; Smith, D.R. Adaptive synthetic jet actuator compensation for a nonlinear aircraft model at low angles of attack. IEEE Trans. Control Syst. Technol. 2008, 16, 983–995. [Google Scholar] [CrossRef]
- Tchieu, A.A.; Kutay, A.T.; Muse, J.A.; Calise, A.J.; Leonard, A. Validation of a low-order model for closed-loop flow control enable flight. AIAA Pap. 2008, 3863. [Google Scholar] [CrossRef]
- Singhal, C.; Tao, G.; Burkholder, J.O. Neural network-based compensation of synthetic jet actuator nonlinearities for aircraft flight control. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009; Volume 1013, p. 119. [Google Scholar] [CrossRef]
- Mondschein, S.T.; Tao, G.; Burkholder, J.O. Adaptive actuator nonlinearity compensation and disturbance rejection with an aircraft application. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 2951–2956. [Google Scholar] [CrossRef]
- Zhou, K.; Doyle, J.; Glover, K. Robust and Optimal Control; Prentice Hall: Hoboken, NJ, USA, 1995; Chapter 10; pp. 251–253. [Google Scholar]
- Kidambi, K.B.; Ramos-Pedroza, N.; MacKunis, W.; Drakunov, S.V. Robust nonlinear estimation and control of fluid flow velocity fields. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 6727–6732. [Google Scholar] [CrossRef]
- Burnham, D.C.; Hallock, J.N. Chicago Monostatic Acoustic Vortex Sensing System. Volume IV. Wake Vortex Decay; Technical Report, DTIC Document; U.S. Department of Transportation: Washington, DC, USA, 1982.
- Kazarin, P. Variable Fidelity Studies in Wake Vortex Evolution, Safety, and Control; Embry-Riddle Aeronautical University: Daytona Beach, FL, USA, 2018. [Google Scholar]
- Anderson, J.D. Aircraft Performance and Design; McGraw-Hill Science/Engineering/Math: New York, NY, USA, 1999; Chapter 8; p. 410. [Google Scholar]
- Freeman, P.M. Reliability Assessment for Low-Cost Unmanned Aerial Vehicles. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2014. [Google Scholar]
- Dorobantu, A.; Murch, A.; Mettler, B.; Balas, G. Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, OR, USA, 8–11 August 2011; pp. 6–11. [Google Scholar] [CrossRef] [Green Version]
- Gloudemans, T.; Van Lochem, S.; Ras, E.; Malissa, J.; Ahmad, N.N.; Lewis, T.A. A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model; NASA TM-2016-219193; NASA: Washington, DC, UAA, 2016.
Controlled Parameter | P | I | D | N |
---|---|---|---|---|
24.67 | 22.41 | 6.75 | 358.6 | |
10.72 | 4.554 | −6.937 | 1.198 |
Stick Size | ||
---|---|---|
( in × in ) | Average (Std.dev) | Average (Std.dev) |
0.92 (0.17) | 6.04 (0.73) | |
1.13 (0.21) | 7.8 (1.7) |
Controller Type | , deg | , deg | , deg/s | , deg/s | , m/s | |||
---|---|---|---|---|---|---|---|---|
0.5 | 0.4 | 1.6 | 0.6 | 0.1 | 0.5 | 0.5 | 0.7 | |
0.8 | 0.8 | 2 | 1.3 | 0.1 | 0.5 | 0.5 | 0.1 | |
2.7 | 1.7 | 10 | 3.3 | 0.3 | 2.3 | 2.2 | 3.3 | |
3.5 | 3.4 | 10.4 | 5.7 | 0.7 | 2.4 | 2.3 | 0.6 |
Controller Type | , deg | , deg | , deg/s | , deg/s | , m/s | |||
---|---|---|---|---|---|---|---|---|
0.9 | 0.8 | 2.8 | 1.1 | 0.2 | 0.9 | 0.8 | 1.3 | |
1.7 | 1.8 | 4 | 2.8 | 0.3 | 1 | 1 | 0.3 | |
4.7 | 3.3 | 16 | 5.4 | 0.7 | 3.9 | 3.8 | 5.8 | |
7.1 | 7.3 | 21.8 | 11.5 | 1.6 | 4.6 | 4.4 | 1.2 |
Controller Type | , deg | , deg | , deg/s | , deg/s | , m/s | |||
---|---|---|---|---|---|---|---|---|
1.9 | 1.9 | 5.8 | 2.7 | 0.4 | 1.6 | 1.6 | 2.6 | |
3.4 | 4 | 7.4 | 6 | 0.6 | 1.9 | 1.9 | 0.5 | |
9 | 7.4 | 30 | 12.1 | 1.6 | 6.4 | 6 | 9.2 | |
11.9 | 14 | 36.7 | 22.3 | 3.2 | 7.8 | 7 | 2 |
Controller Type | , deg | , deg | , deg/s | , deg/s | , m/s | |||
---|---|---|---|---|---|---|---|---|
1.9 | 2 | 5.7 | 2.4 | 0.4 | 1.2 | 1.2 | 2 | |
2.6 | 6.7 | 10.2 | 4.6 | 0.4 | 1.5 | 1.5 | 0.4 | |
9.2 | 7.1 | 31.5 | 12 | 1.6 | 5 | 4.8 | 7.8 | |
10.1 | 9.5 | 33.8 | 18.4 | 2.3 | 6.8 | 6 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazarin, P.; Golubev, V.; MacKunis, W.; Moreno, C. Robust Nonlinear Tracking Control for Unmanned Aircraft in the Presence of Wake Vortex. Electronics 2021, 10, 1890. https://doi.org/10.3390/electronics10161890
Kazarin P, Golubev V, MacKunis W, Moreno C. Robust Nonlinear Tracking Control for Unmanned Aircraft in the Presence of Wake Vortex. Electronics. 2021; 10(16):1890. https://doi.org/10.3390/electronics10161890
Chicago/Turabian StyleKazarin, Petr, Vladimir Golubev, William MacKunis, and Claudia Moreno. 2021. "Robust Nonlinear Tracking Control for Unmanned Aircraft in the Presence of Wake Vortex" Electronics 10, no. 16: 1890. https://doi.org/10.3390/electronics10161890
APA StyleKazarin, P., Golubev, V., MacKunis, W., & Moreno, C. (2021). Robust Nonlinear Tracking Control for Unmanned Aircraft in the Presence of Wake Vortex. Electronics, 10(16), 1890. https://doi.org/10.3390/electronics10161890