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Abstract: Finding hidden infected nodes is extremely important when information or diseases spread
rapidly in a network because hints regarding the global properties of the diffusion dynamics can be
provided, and effective control strategies for mitigating such spread can be derived. In this study,
to understand the impact of the structure of the underlying network, a cascade infection-recovery
problem is considered over an Erdös-Rényi (ER) random graph when a subset of infected nodes is
partially observed. The goal is to reconstruct the underlying cascade that is likely to generate these
observations. To address this, two algorithms are proposed: (i) a Neighbor-based recovery algorithm
(NBRA(α)), where 0 ≤ α ≤ 1 is a control parameter, and (ii) a BFS tree-source-based recovery
algorithm (BSRA). The first one simply counts the number of infected neighbors for candidate
hidden cascade nodes and computes the possibility of infection from the neighbors by controlling
the parameter α. The latter estimates the cascade sources first and computes the infection probability
from the sources. A BFS tree approximation is used for the underlying ER random graph with respect
to the sources for computing the infection probability because of the computational complexity in
general loopy graphs. We then conducted various simulations to obtain the recovery performance of
the two proposed algorithms. As a result, although the NBRA(α) uses only local information of the
neighboring infection status, it recovers the hidden cascade infection well and is not significantly
affected by the average degree of the ER random graph, whereas the BSRA works well on a local
tree-like structure.

Keywords: graph; cascade model; hidden infection; source estimation; BFS tree

1. Introduction

Recently, computer viruses, infectious diseases, and the spread of information have
become universal occurrences in various types of networks. As examples, COVID-19 is
transmitted from person to person, whereas certain rumors have spread over the Internet
through the development of social network services, such as Facebook and Twitter. Given
such circumstances, it is important to quickly prevent the spread of rumors, malicious
information, or viruses through observations. In practice, however, the observation of such
spreading events is often incomplete because some nodes or individuals are reluctant to
reveal their infection status [1]. Hence, inferring a hidden infection may provide some hints
regarding the global properties of the diffusion dynamics [2,3]. Furthermore, it often opens
up effective control strategies for the optimal dissemination or mitigation of spread. The
research on inferring hidden nodes and structures has recently received significant attention.
Netrapalli et al. [4] considered the graph inferring problem, where only the infection times
of the nodes are given. In this study, they tried to estimate which neighbors were influential
based on multiple cascades spreading through the graph. To do this, they suggested
a Maximum Likelihood Estimator (MLE) for recovering influential connections, which
guarantees a necessary cascade sample complexity for an Independent Cascade (IC) model.
Sundareisan et al. [5] investigated the problem of recovering missing infected nodes and the
source nodes of an epidemic. For this, they proposed an algorithm called NETFILL, which
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solves these two inference problems simultaneously. In addition, Xiao et al. [6] considered
a problem for reconstructing the underlying cascade that is likely to generate observations
of infection in the graph. They estimated the infection probabilities by generating a sample
of the probable cascades, and proposed several algorithms for sampling directed Steiner
trees with a given set of terminals. However, it is known [6] that inferring a hidden infected
node is extremely difficult, even if the network structure is given. This is because it is
necessary to first identify the path through which an arbitrary node is infected in the graph,
despite the potential of an exponential number of paths. It is also known [7] that finding a
hidden infected node that has not yet been observed is still a difficult problem even if some
information regarding which node is infected and when such infection occurred is given.
Hence, many prior studies have considered some of the greedy approaches to sampling a
candidate infection graph using Steiner tree sampling [6,7]. An Expectation-Maximization
(EM) approach applied under a partial observation scenario was also investigated in
Reference [8]. He et al. [9] proposed an algorithm that effectively recovers a graph with
partial cascade samples by considering a generative model, which is referred to as a Multi-
Cascaded Model (MCM). In addition, Choi et al. [10] investigated the classification of
causes of infection (random infection versus cascade infection) in a network under a partial
observation of the infection status. To do this, they also considered the hidden cascade
recovery approach in their proposed iterative classification algorithm. However, only a
tree structure has been studied due to its computational complexity. There have been
several studies conducted on fault detection as a hidden infection node in a communication
network system. Huang et al. [11] investigated the VINI testbed, which supports the choice
of paths to monitor, detect, and confirm the existence of a failure, correlating multiple
independent observations in a single failure event. Tosic et al. [12] studied the problem
of distributed sensor failure detection in networks with a small number of defective
sensors, whose measurements differ significantly from the neighboring measurements.
Furthermore, some hidden state estimation problems [13,14] have been investigated for
sliding mode control. Although these prior studies were conducted on various synthetic or
real graphs, there have been a few studies on how the recovering tendency changes when
the actual graph changes according to arbitrary parameters. However, this is an important
problem in terms of suggesting how to control the spreading cascade when the degree of
recovery varies significantly depending on the parameters of the graph.

Hence, in this paper, the recovering problem of a hidden cascade node is considered
for the Erdös-Rényi (ER) random graph as represented by the average degree λ. The av-
erage degree is the average number of neighbors for all nodes in the graph. Although
it is a synthetic graph, an ER random graph may have a local tree-like structure with a
large diameter or a very dense graph structure with a small diameter as the parameter
λ varies. Therefore, as a first step, we study the recovery performance according to the
parameter λ for a relatively simple ER random graph rather than other real-world graphs in
References [6,7]. The objective is to develop efficient algorithms that find hidden infected
nodes in this parameterized ER random graph and to show how the recovery performance
changes as the parameter λ changes.

The main contributions of this study can be summarized in more detail as follows:

1. First, the recovering hidden cascade infection problem is studied on the well-known
ER random graph under the IC model. As shown in Figure 1, for a given number
of nodes, the shape of the ER random graph varies greatly depending on the aver-
age degree λ. Hence, the effect of this parameter on the recovery performance was
investigated for the first time.

2. Second, to solve the problem, an algorithm that detects whether the node is infected
with only neighboring infection information is first designed, which gives the local
infection status of the graph. For this, the possibilities that can occur with the infected
neighbor nodes are parameterized by a single parameter, and the method of selecting
the best parameter is investigated. Next, as global information regarding infection, an
efficient algorithm is proposed that uses the location of the estimated cascade sources.
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The infection probabilities from the sources are used, which is a new method that has
yet to be approached.

3. Third, various simulations are conducted to obtain the recovering performance of
the two proposed algorithms. As a result, although the first one uses only local infor-
mation of the neighboring infection status, it recovers the hidden cascade infection
well compared with other baseline algorithms. Further, it is shown that the detection
performance of the second graph is also good if the ER random graph has a local
tree structure.

The remainder of this paper is organized as follows. Section 2 discusses related
studies. In Section 3, the infection and observation models and the goals of the study
are introduced. In Sections 4 and 5, the neighbor- and BFS tree-source-based recovery
algorithms are presented, respectively. In Section 6, the simulation results are presented,
and, in Sections 7 and 8, some concluding remarks and future works are given.

Figure 1. Illustration example of the ER random graph for 500 nodes. (We set the average degree as λ = 1.5 (left), λ = 3
(middle), and λ = 4.5 (right). The figure shows that, for a given number of nodes n, the ER random graph has local tree
structures if the average number of degrees λ ≈ 1.).

2. Related Work

The related studies are divided into the following two categories: (1) Hidden node (or
structure) inference and (2) cascade source detection.

(1) Hidden node (structure) Inference. For the graph structure learning, Netrapalli et al. [4]
considered the graph inference problem, where only the infection times of the nodes
are given. In this study, the authors tried to estimate which neighbors are influential
through multiple cascades spreading throughout the graph. To do this, they sug-
gested a MLE for recovering influential connections, which guarantees a necessary
cascade sample complexity for the IC model. Pouget et al. [15] studied the graph
structure learning from the sparse recovery framework for a general discrete cas-
cade model. They first formulated the problem as a general Linear Threshold (LT)
model and proposed an algorithm that recovers the true edges in the graph with high
probability. The authors of Reference [16] considered the graph learning problem
for continuous-time cascade models. For this, they first introduced the concept of
a trace complexity as the number of distinct traces required to achieve high fidelity
in reconstructing the topology of an unobserved network. Based on this, they pro-
posed a simple but efficient algorithm for inferring the graph structures. He et al. [9]
proposed an algorithm that effectively recovers a graph with partial cascade samples
by considering a generative model, referred to as the MultiCascades Model. As the
key idea of this model, it uses the commonality between highly correlated diffusion
graphs. He et al. [17] also designed some algorithms inferring the influence function
from the partial observations of the node activation in the graph. To do so, they
considered a probably approximately correct learnability of the influence functions
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for the missing observations. Rozenshtein et al. [18] has studied the reconstruction
of cascades from partial timestamps. They designed an effective algorithm called
a CULT to recover from epidemics by formulating a temporal Steiner tree problem.
Xiao et al. [7] formulated a cascade-reconstruction problem as a variant of the Steiner
tree problem. With their approach, they first estimate a tree that spans all reported
active nodes, which satisfies some temporal consistency constraints. Furthermore,
they proposed several algorithms and showed that one of them achieves a linear
time O(

√
k)-approximation guarantee, where k is the number of active nodes. Some

researchers have studied the graph learning without the explicit time of infection.
Gripon et al. [19] proposed an algorithm that recovers infection edges, which are
the edges in the graph that are involved in the infection process from an unordered
set of infected nodes. They designed an algorithm to infer such edges in order by
comparing each trace into a path using information in which pairs of nodes in the
path co-occur most frequently in the observations. Amin et al. [20] investigated the
problem of reconstructing the node connectivity using only the initial source nodes
and the final diffusion snapshot of infected nodes for the IC model, without any time
information of the nodes. Wu et al. [8] considered an EM approach for the Contin-
uous Independent Cascade (CIC) model using partial information on the infection
status of the graph, and proposed algorithms that estimate the influence parameters
of edges based on the EM. The authors of Reference [5] investigated the problem of
recovering missing infected nodes and the source nodes of an epidemic. To do so, they
proposed an algorithm called NETFILL, which solves these two inference problems
simultaneously. The authors of Reference [6] considered a problem that reconstructs
the underlying cascade that is likely to generate observations of infections in the graph.
They estimated the infection probabilities by generating a sample of the probable
cascades, proposed several algorithms for sampling directed Steiner trees with a given
set of terminals.

(2) Cascade Source Detection. Next, some of the cascade source detection problems are
summarized in the following sections. Zhu et al. [21] considered the cascade source
detection problem using an ER random graph. They proposed a new source localiza-
tion algorithm for the IC model, called the Short-Fat Tree algorithm, which selects
the node of the Breadth-First Search (BFS) tree, which has the minimum depth but
the maximum number of leaf nodes. In addition, they also proposed a new source
localization algorithm, called an Optimal-Jordan-Cover (OJC) in Reference [22], which
extends the source inferring problem to the case of multiple sources in the graph. The
OJC first extracts a subgraph using a candidate selection algorithm that selects the
source candidates based on the number of observed infected nodes in their neigh-
borhoods. Considering the heterogeneous SIR diffusion in the ER random graph,
they proved that OJC can locate all sources with a probability of 1 asymptotically
with partial observations. Next, some studies have utilized partial information on
when a random node is infected. The authors of Reference [23] studied the prob-
lem of partial timestamps of infection. They solved this problem by formulating a
ranking problem on graphs using the likelihood of being the source. In the opposite
direction as the previous source detection problem, Fanti et al. [24] first studied how
to spread as many anonymous messages as possible while hiding the source. They
designed a message-propagation protocol, called an adaptive diffusion model, and
then obtained analytical results of the hiding performance of the model. The authors
of Reference [25] considered the source-finding problem with observation time infor-
mation Ot, which contains some set S of nodes with the first infection timestamps
{ts}s∈S. Tang et al. [26] investigated the problem based on the network topology and
a subset of infection timestamps. For a tree network, they first derived the maximum
likelihood estimator of the source and unknown diffusion parameters. Using this,
they considered an optimization over a parametrized family of Gromov matrices in
the design of an estimation algorithm for general graphs. Kumar et al. [27] considered
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a problem with additional relative information about the infection times of a fraction
of node pairs.

3. Model and Goal
3.1. Models

Graph Model. The recovery problem of a hidden cascade node for the ER random graph
G, as represented by some graph parameters, is considered. An ER random graph, which
is usually denoted by G := G(n, p) on the vertex set V, is a random graph that connects
each pair of nodes with probability p > 0. This model is parameterized by the number
of nodes, n = |V| and p. The expected number of degrees of a node is then computed by
λ = (n− 1)p (see Figure 1). Most results for ER graphs suppose that this is fixed (e.g.,
λ = 1 or λ = 2) or increases slowly (e.g., λ ' log n). Although it is a synthetic graph, the
ER random graph may have a local tree-like structure with a large diameter or an extremely
dense graph structure with a small diameter as the parameter λ varies.

Cascade and Observation Models. As a cascade model, a well-known independent cascade
model is considered. With this model, three possible states of nodes are considered:
Susceptible (S), Active (A), or Inactive (I). First, a susceptible state means that a node can
be activated. Next, if a node in the susceptible state is activated at the previous time slot,
it becomes an active node, which is in a state in which other susceptible child nodes are
activated. The inactive state denotes a state in which a node was activated once earlier,
but no longer able to activate other susceptible nodes. In the proposed model, the cascade
starts from a subset of seed nodes that have been initially infected in the network. The
cascade occurs in a discrete round, t = 0, 1, . . . , |V|. At round t = 0, the seed nodes are
active, and the others are inactive. Then, if a node u receives the information or is infected
from one of its infected nodes at time t, the node spreads its own information (or a virus) to
its neighbor v with probability pu,v at the next time t + 1. It is assumed that the activated
nodes are active for only one time slot, and they become inactive in the next time slot.
Once a node becomes inactive, it maintains the state until reaching the end of the cascade
process. The process stops when no more nodes are infected. For a simpler expression, the
probability pe is also used, where e ∈ E is the edge among the nodes in the network. When
some neighbors are already infected, the probability of infection pe is regarded as zero. Let
p := [pe]e∈E be the diffusion vector over each edge e ∈ E. An infected node v is considered
to report its status of infection with probability θv ∈ [0, 1], labelled based on an observation
probability and denoted as θ := [θv]v∈V . The node s∗ ∈ V represents the information
source, which acts as a node that initiates diffusion, and the set VI ⊂ V indicates the set of
observed (reported) infected nodes. Further, Gobs represents the observed snapshot of the
cascade graph at time t > 0. Finally, assume that the number of cascade sources is given
as a prior by m > 0 for a certain analytical tractability. We summarize the explanations of
notations used in the paper in Table 1.

3.2. Goal: Estimation of an Infection

The goal of the paper is to recover the hidden (not reported) infected nodes (in
the IC model, an infected node indicates both active and inactive nodes), excluding the
reported infected nodes VI . More precisely, for node v ∈ V \ VI with the ground truth
s(v) ∈ {Infected, Susceptible}, the objective is to design an estimator of s(v), denoted by
ŝ(v) such that ŝ(v) : V \VI → {Infected, Susceptible}, which maps the node v ∈ V \VI to
the state of infection {Infected, Susceptible} with high accuracy. Here, ŝ(v) is called based
on the recovery function of s(v).

Performance metric. As a performance measure for the true recovery of the proposed
estimation algorithm, the following precision-based accuracy is used: Let VHI be the set of
hidden infected nodes (ground truth) and Ĥrecover be the estimated recovery set of infected
nodes by the estimator ŝ(v). As a measure of the hidden cascade recovery, a precision
metric is defined by
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PRecover(ŝ(v)) :=
∑v∈Ĥrecover

I{v ∈ VHI}
|Ĥrecover|

, (1)

where I{v ∈ VHI} is an indicator function that has only one function for v ∈ VHI ; otherwise,
it is zero. The notion |Ĥrecover| is the number of infected nodes for Ĥrecover. This metric
measures the rate at which the number of recovered nodes is truly infected among the
estimated recovered set Ĥrecover for the observed snapshot Gobs at time t > 0. To obtain this,
two classification algorithms are proposed. The first is a neighbor-based approach that
uses local infection status information. The second approach is a source-location-based
approach that uses global infection status information from the cascade source nodes.
Various simulations are then conducted, and the results are obtained by varying the model
parameters described in Section 6.

Table 1. Summary of notations.

Notation Explanation

G(n, p) ER random graph with two parameters n and p
λ Average degree of a node in G(n, p)

pu,v Infection probability from node u to v
pe Infection probability over edge e
θv Infection reporting probability for node v
p Infection probability vector for all edges
θ Infection-reporting probability vector for all nodes

s∗, S (True) Cascade source, Set of cascade sources
VI Set of observed (reported) infected nodes

Gobs Observed cascade snapshot at time t
m Number of cascade sources

si, Ŝ Estimated (i-th) cascade source, Estimated set of cascade sources
s(v) Infection status of a node v
ŝ(v) Estimator of s(v)

PRecover(ŝ(v)) recovery probability of ŝ(v)
VHI Set of hidden (not reported)-infected nodes

Ĥrecover Estimated recovering set
NI(v) Set of (reported) infected neighbors of a node v
pmin,v Minimum diffusion probability among pu,v for all u ∈ NI(v)

e(S, VI) Infection eccentricity of node set S over VI
ζ Selection threshold

W Set of nodes with more than ζ observed infected neighbors
W ′ Union of W and VI
g′ Induced graph (connected subgraph of Gobs) from W ′

Gsi Connected sub-graph of G including si
TBFS(si, Gsi ) BFS tree over Gsi w.r.t. si

Csi (v) Candidate neighbor (infected) set of v in TBFS(si, Gsi )
T(si, Gsi ) Reconstructed graph from TBFS(si, Gsi )

IS Union of VI and VHI
T Union of reconstructed graphs T(si, Gsi )

P(v, si) Path between node v and source node si in T(si, Gsi )
ηv Pre-defined threshold for determining the infection of node v

Pmax(S) (Pmin(S)) Maximum (minimum) infection probability over T from S

4. Neighbor-Based Recovery Algorithm

In this section, a naive approach is first introduced that uses the number of infected
neighbor nodes to recover the hidden infection. As the motivation of this approach, if there
are many infected neighbors of a node v, it also has a high probability of being infected.
However, it is known that Reference [6] is an highly complicated task to determine which
path the infection has progressed along when centring on a single node. Therefore, in the
following subsection, a simple but efficient algorithm is proposed that estimates whether
node v is infected, based on the degree of infection around it.
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Neighbor-Based Recovery

In the neighbor-based recovery algorithm, called NBRA(α), the main idea is to properly
consider the possibility that a node is infected from already infected nodes. The detailed
description of this is as follows.

Algorithm. In NBRA(α), the algorithm first initializes the recovering set Ĥrecover as an
empty set. Then, for the nodes v ∈ V \ VI , it counts the number of observed infected
neighbor nodes, denoted by NI(v), and sets the minimum diffusion probability among
NI(v) by pmin,v := minu∈NI(v) pu,v. Next, a heuristic infection probability p(v) is defined
from the infected neighbor nodes of node v. In this algorithm, the probability p(v) is set to
zero when there are no infected neighbor nodes, i.e., NI(v) = ∅. Otherwise, it sets

p(v) := αpmin,v + (1− α)[1− ∏
u∈NI(v)

(1− pu,v)], (2)

where 0 ≤ α ≤ 1 is a trade-off parameter. Finally, the algorithm puts the node v into the
recovering set Ĥrecover if the probability p(v) is greater than 1/2 (this approach implies that,
if the heuristic infection probability from the infected neighbor nodes is larger than 1/2, it
is regarded as an infected node).

As shown in Algorithm 1, the result recovered set Ĥrecover depends completely on the
probability in Equation (2), which is controlled by the parameter α. The implications for
this equation are described using the following three cases:

(i) Case I: Single candidate neighbor (α = 1). When α = 1, it results in p(v) = pmin,v.
This is the case in which there is only one possible candidate, i.e., already infected
neighbor, with the minimum diffusion probability among all infected neighbors NI(v).
In this case, it is considered that one neighbor node is infected first, node v is then
infected by the neighbor node, and the remaining infected neighbor nodes are, thus,
consequently infected. This is the lowest probability of all possible cases of infection
order among NI(v) ∪ {v}, except for the case in which node v is infected first because
only one possible infection is considered.

(ii) Case II: Multiple candidate neighbors (α = 0). When α = 0, p(v) = 1−∏u∈NI(v)(1−
pu,v) occurs. This is the case in which all nodes in NI(v) are infected before the infec-
tion of v. Hence, there are many possibilities of infection from the infected neighbors,
i.e., the node v will be infected if there exists at least one infection successfully among
the infected neighbor nodes. This is the greatest probability from NI(v) ∪ v, except
that the infection to node v comes from other hidden infection nodes because infection
from all infected neighboring nodes is considered.

(iii) Case III: Relaxation case (0 ≤ α ≤ 1). When only the infected node v and the
infection snapshots for neighboring infected nodes are given, it is difficult to estimate
the path of the infection. Hence, in this algorithm, various choices of 0 ≤ α ≤ 1
can be considered. As depicted above, when the value α reaches 1, it estimates that
the infection comes from only one possible node that has the minimum diffusion
probability among the infected neighbor set NI(v). However, if the value of α reaches
zero, the infection occurs in at least one neighbor infected node. In the numerical
section, some simulation results show how the hidden infection changes according
to α.

It is not difficult to verify that the complexity of the NBRA algorithm (α) is O(nd),
where d is the maximum degree of nodes in the ER random graph. It is known [6] that
computing the exact probability P(v ∈ VHI) for node v ∈ V \VI is a #P-hard problem. This
is due to the fact that there may exist exponentially many possible infection paths in the
graph. Hence, in the following theorem, the probability that node v ∈ VHI will be detected
as an infected node is obtained using the NBRA(α).
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Algorithm 1 Neighbor-based Recovery Algorithm (NBRA(α))

Input: Observed graph Gobs, Diffusion probability vector p, Parameter α
Output: Recovered Infection Set Ĥrecover

Set Ĥrecover = ∅;
for v ∈ V \VI do

Set |NI(v)| by the number of infected neighbors and set pmin,v := minu∈NI(v) pu,v;
if |NI(v)| = 0 then

Set p(v) = 0;
else

Set p(v) := αpmin,v + (1− α)[1−∏u∈NI(v)(1− pu,v)];
if p(v) > 1/2 then

Ĥrecover ← Ĥrecover ∪ {v};
end if

end if
end for
Return Ĥrecover;

Theorem 1. For any hidden infected node v ∈ VHI with the number of observed infected nodes
nv := |NI(v)| > 1, if α ≤ (1−pmin,v)

nv−1/2
(1−pmin,v)((1−pmin,v)nv−1−1) , the algorithm NBRA(α) outputs the node v

as an infected node with probability one, i.e., P{v ∈ Ĥrecover} = 1.

A detailed proof is presented in Appendix A. This result indicates how to choose
the tradeoff parameter α for a given |NI(v)| > 1 properly in the algorithm. Indeed, for
|NI(v)| = 1, it can be seen that, if pmin,v > 1/2, the algorithm NBRA(α) outputs the node v
as an infected node with probability one. The following example shows how to properly
choose the parameter α for a given observed graph Gobs.

Example 1. Suppose there are five nodes in the ER random graph, as shown in Figure 2. Assume
that node v is a hidden infected node with three infected neighbors, |NI(v)| = 3, among the four
neighbors. The infection probabilities pi,v (i = 1, 2, 3, 4) are given in the figure, and pmin,v = 0.3,
because node 4 is not an infected node in the graph. From Theorem 1, if the parameter α is set by

α ≤ (1− 0.3)3 − 1/2
(1− 0.3)((1− 0.3)3−1 − 1)

=
(1− 0.3)3 − 1/2

(1− 0.3)((1− 0.3)3−1 − 1)
=

0.157
0.357

∼= 0.44, (3)

then p(v) > 1/2 and the algorithm correctly find the hidden cascade node.

In this example, because the number of infected nodes among the neighbor nodes
of hidden node v is 3, and pmin,v = 0.3, if α is less than 0.44, the infection of v can be
easily detected. However, it is difficult to find the optimal α for all hidden infected nodes.
Hence, in Section 6, the case of finding an appropriate α through simulations is presented.
Although this algorithm has the advantage of being relatively simple, there is a limit to the
fundamental recovery performance because it uses only the information of neighboring
infected nodes. Hence, in the following section, a more complicated and novel approach is
presented that uses the information of the location for the cascade sources properly.
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Figure 2. A simple observed graph Gobs with infection probabilities pi,v, (i = 1, 2, 3, 4) used in
Example 1.

5. BFST Source-Based Recovery Algorithm

In the cascade source-based approach, information on the location of the cascade
sources is used to recover the hidden infected nodes. To do this, multiple cascade sources
need to be estimated using the observed cascade snapshot. The infection status of the
hidden infected nodes is then inferred through a reconstruction from the graph based on
the BFS tree. We describe this approach in Algorithm 2 and the detailed descriptions for
each part are as follows.

5.1. Source Estimation

Optimal Jordan Cover. For cascade source estimation, OJC is adopted as a multiple
source estimator, which was first introduced in Reference [22]. This approach was devel-
oped for the SIR diffusion model, which is a generalized version of the IC model, by setting
the recovery rate to 1. Furthermore, it also considers the partial cascade infection snapshot
over the graph. To formally describe this, a hop-distance between a node v and a node set
S is defined to be the minimum hop-distance between the node v and any node in S by
d(v, S) := minu∈S d(u, v). Here, d(u, v) is the shortest hop distance between two nodes u
and v. Then, the infection eccentricity of the node set S as the maximum hop distance from
an infected node in VI is defined by

e(S, VI) := max
v∈VI

d(v, S). (4)

Based on this, the OJC algorithm consists of the following two steps:

(a) Step 1 (Candidate Set Selection): In this step, the algorithm first selects the candidate
source nodes by considering the number of infected (observed) neighbors. To do
that, let ζ > 0 be a positive integer, which is called the selection threshold. Then,
define a candidate set of the cascade sources W as the set of nodes whose number
of infected neighbors is greater than the predefined threshold ζ. Next, the algorithm
sets W ′ := W ∪VI by the union of the candidate sets W and the observed infection
set VI . This procedure considers a node that is not an infected node in a limited
observation, but is infected with many neighbor nodes. It then sets g′ by a connected
sub-graph of Gobs induced by the node set W ′. Such a reconstructed graph is called
an induced graph. An induced graph is a subset of nodes in a graph with all edges
having endpoints in the node subset. This refers to the part in which the graph is
reconstructed as new nodes are added to the infection graph created from the original
infected node. However, the induced graph may not be fully connected because of
the hidden infected nodes or multiple sources. This becomes a problem when it is
necessary to determine the infection eccentricity in the infection graph. Therefore,
if the induced graph is separated, a node is selected with minimum eccentricity for
each sub-graph (component) and connects it to connect the entire induced graph.
Subsequently, the minimum eccentricity of the induced graph g′ is computed. This is
a modified part of the OJC, which randomly selects such nodes in each component.
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This modification is considered to ensure that the central node of each cluster of the
cascade does not lose its high probability of becoming a candidate source (although,
considering a hidden infection, this will be a natural step to guessing that the high
centrality node of a cluster may have a high possibility of becoming a source due to
the randomness of hiding its status of infection in the proposed model). The pseudo-
code of the candidate selection algorithm for selecting W and g′ can be found in
Reference [22].

(b) Step 2 (Jordan Cover Selection): Using the result of the candidate set W in Step 1, the
algorithm computes the infection eccentricity of the node set S ⊂ W with |S| = m,
as defined in Equation (4) on the sub-graph g′. Next, a combination is selected with
the minimum infection eccentricity as a set of sources. Then, the m-Jordan cover Ŝ is
chosen by

Ŝ = arg min
S⊂W,|S|=m

e(S, VI). (5)

Ties are broken by the total distance from the observed infection to the node set, that
is, ∑v∈VI

d(v, S).

It is known that the candidate selection step includes all sources in W with high
probability and excludes nodes that are more than t + 1 hops away from all sources by a
properly chosen threshold ζ. By limiting the computations on the induced subgraph g′, the
computational complexity is significantly reduced. The results show that, under certain
conditions, the OJC identifies all sources with a probability one asymptotically in the ER
random graph.

5.2. BFS Tree-Based Recovery Hidden Infection

Recovery Hidden Infection. The algorithm infers the infection status of the hidden
infection nodes using the location of the estimated sources. To do this, the infection
probability is first computed for node v ∈ V \VI , from the cascade sources. If the probability
is larger than a predefined threshold, it regards node v as the hidden infection node.
However, computing the infection probability from the source is known to be an NP-hard
problem [6] in the general loopy graph because of the exponential number of infection
paths. Hence, instead of computing this, the infection probability is approximated after
obtaining several BFS trees based on the estimated sources from the underlying ER random
graph. This procedure is described in the following two steps.

(a) Step 1 (Candidate Infection Path Selection): In this step, the algorithm first con-
structs BFS trees based on the estimated source node si ∈ Ŝ, (i = 1, . . . , m) from Phase
1. To do this, let Gsi be the connected subgraph of G as in Figure 3, which contains
the source si and let TBFS(si, Gsi ) be the BFS tree with respect to the Gsi (Because
the underlying graph is a random graph, some disconnections may exist. If there is
no separation of G, Gsi is equal to G.). Then, m such BFS trees are obtained on the
underlying graph G because there are m sources. If Gsi 6= G, i.e., G is disconnected,
the BFS tree TBFS(si, Gsi ) is generated only on the connected subgraph Gsi . However,
the BFS tree generates a unique candidate infection path from the source si to node v.
This is quite limited in general graphs that can have multiple paths. With the proposed
algorithm, to guarantee such multiple infection paths, some candidate neighbors (here,
the candidate neighbor means a neighbor node that can infect the node v among the
neighbors in the original graph) of each node from v to the source node are first found
among the infected nodes based on the BFS tree. To this end, the candidate neighbor
set Csi (v) is defined in each BFS tree as

Csi (v) := {u ∈ NI(v)|d(si, u) ≤ d(si, v)− 1 in TBFS(si, Gsi )}, (6)

where d(si, u) is the hop distance from node si to u ∈ NI(v). The algorithm then em-
beds an edge from a candidate infected neighbor node to v. Next, for the chosen nodes
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in Csi (v), the candidate neighbor procedure is repeated. It performs this procedure
until the candidate neighbor is exactly the estimated source. The graph reconstructed
by T(si, Gsi ) is then denoted as in Figure 3. As the reason for this approach, the BFS
preserves the infection path in the IC model. Further, it removes the loops in the
original graph from the estimated source node to v while guaranteeing the candidate
infection paths.

(b) Step 2 (Recovery Hidden Infection): Next, the algorithm computes the infection
probability for the given cascade sources with the corresponding BFS based on the
reconstructed graphs T(si, Gsi ) under the IC diffusion model. To do this, let IS :=
VI ∪ VHI be the set of infected nodes (including the observed infection set VI and
unobserved infection set VHI) by the cascade from S. The objective is then to compute
the probability P(v ∈ IS), i.e., the probability of infection of node v from the source S.
However, it is not easy to compute this probability in a general loopy graph because
of the computational complexity, as described above. Hence, the probability P(v ∈ IS)
is approximated by PT(v ∈ IS) over T, where T = ∪si∈ST(si, Gsi ). To compute this
in the IC model, let P(v, si) be the path between node v and the source node si in
T(si, Gsi ). Then, we have

PT(v ∈ IS) = 1− ∏
si∈S

∏
P(v,si)⊂T(si ,Gsi )

1− ∏
e∈P(v,si)

Pe

, (7)

where Pe is the probability that a diffusion will occur over the edge e ∈ P(v, si) in
T(si, Gsi ). For example, if the diffusion is an IC model with a successful probability of
q > 0, the probability in Equation (7) becomes

PT(v ∈ IS) = 1− ∏
si∈S

∏
P(v,si)⊂T(si ,Gsi )

(
1− q|P(v,si)|

)
, (8)

where |P(v, si)| is the number of edges over the path P(v, si) in T(si, Gsi ). Using
this, the algorithm determines a node as a cascade-infected node if the diffusion
probability is greater than a predefined threshold, i.e., P(v) := PT(v ∈ IS) ≥ ηv as
a cascade infected node. Then, it remains how to choose such a parameter ηv. For
this, ηv = (Pmax(S) + Pmin(S))/2 is set. Here, Pmax(S) := maxv∈VI PT(v ∈ IS) and
Pmin(S) := minv∈VI PT(v ∈ IS) are the maximum and minimum infection probabilities
over T = ∪si∈ST(si, Gsi ), respectively. The reason for the threshold is that it can be a
measure of how the diffusion spreads from the current observation.

Connected subgraph 

including 

BFS tree for Reconstructed graphUnderlying ER graph

Figure 3. Example of Step 1 (Candidate Infection Path Selection): In the example, the underlying ER random graph G
is generated as two disconnected sub-graphs (leftmost). If there is only one cascade source, the cascade occurs only in
one connected sub-graph, denoted as Gs1 (second from the left). Based on this, the algorithm first constructs the BFS
tree TBFS(s1, Gs1 ) (third from the left). It then selects the set of candidate neighbors Cs1 (v) for node v. In this example,
the distance from the estimated source s1 to v is d(s1, v) = 2. Therefore, two nodes (labelled as 1 and 2) are chosen as
candidate neighbor nodes because their distance from s1 is 1. Node 2 is already a neighbor in TBFS(s1, Gs1 ), and node
1 is finally selected as the candidate neighbor and connects an edge to the node v (rightmost). This is referred to as a
reconstructed graph T(s1, Gs1 ), and the algorithm selects the candidate infection paths including the candidate neighbor
node (yellow arrows).
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Algorithm 2 BFST Source-based Recovery Algorithm (BSRA)

Input: Observed graph Gobs, Diffusion probability vector p, Number of sources m,
Hidden probability vector θ, Threshold η, Threshold ζ,
Output: Recovered Infection Set Ĥrecover
Phase 1. (Source Estimation)
Set W = ∅;
For the given (Gobs, VI , ζ), run the Candidate Set Algorithm in Reference [22] and obtain
the output (g′, W), where g′ is an induced graph and W is the candidate source set.
for S ⊂W, |S| = m do

Compute the infection eccentricity on g′: e(S, VI) = maxv∈VI d(v, S);
end for
Set the combination with the minimum infection eccentricity as the set of sources;

Ŝ = arg min
S⊂W,|S|=m

e(S, VI).

Phase 2. (BFS-based Hidden Cascade Recovery)
Set Gsi by the connected sub-graph of G including the estimated source si ∈ Ŝ;
for each si ∈ Ŝ do

Generate a BFS tree TBFS(si, Gsi ) based on the estimated source si in Phase 1;
end for
Set Ĥrecover = ∅;
for v ∈ V \VI do

Find all candidate neighbors in TBFS(si, Gsi ) and add the edges to v;
Reconstruct a graph T(si, Gsi ) from TBFS(si, Gsi ) by embedding the edges using

Equation (6) recursively and compute P(v) using Equation (7) with respect to T(si, Gsi )

for all si ∈ Ŝ
if P(v) ≥ ηv then

Ĥrecover ← Ĥrecover ∪ {v} w.p. 1− θv;
end if

end for
Return Ĥrecover;

The overall process of Algorithm 2 is depicted as in Figure 4. Next, the computational
complexity of the proposed algorithm is described in the following lemma.

Lemma 1. Let w := |V(g′)| be the number of nodes for the induced connected graph g′. Then, the
computational complexity of the BSRA is O(|VI |(|E|+ max{n, wm})).

Proof. First, by the result in Reference [22] and Stirling’s formula, we have O(|VI |(|E|+ wm))
for the Phase 1. Second, we have O(m(n + |E|)) for constructing the BFS tree with m es-
timated sources and O(n|VI |) for computing the reconstruct the graph after finding the
original neighbor nodes in the graph. Hence, we have O(n|VI |+ m|E|) since m ≤ |VI | for
the Phase 2. From the fact that m ≤ |VI | again, we finally obtain the total complexity by
O(|VI |(|E|+ max{n2, wm})), and this completes the proof.

For the given m, the BSRA is a polynomial-time algorithm, but the complexity in-
creases exponentially in m. To further reduce the complexity, one can consider the K-means
algorithm [28] in Step 2 of the source estimation.
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Es�mated sources

Recovered 

hidden infec�on

Phase 1 (source es�ma�on) Phase 2 (BFS - based hidden cascade recovery)

Recovered Result

BFS-Tree for  BFS-Tree for  BFS-Tree for  

: Embedding edge : Es�ma�ng infec�on : Candidate neighbor

Figure 4. Illustration example of the Algorithm BSRA for m = 3. The BSRA first estimates the sources
for a given m, then it makes m different BFS trees with respect to each source si (i = 1, 2, 3). Next, for
each node v ∈ V \VI , the BSRA reconstructs graph T(si, Gsi ) for each si (see Figure 3) and computes
the infection probability using T(si, Gsi ). After computing the diffusion probability from the sources,
it finally recovers the hidden infected node based on the criteria, as in the right figure.

6. Simulation Results

In this section, simulation results of the proposed algorithms are provided on an ER
random graph. For this graph, n = 1000, and the wiring probability p is set to generate the
expected number of degrees of a node as λ ∈ [1.6, 3.2]. Furthermore, the cascade diffusion
probability pe for all edges e ∈ E is chosen from the range [0.6, 0.9], and the reporting
probability θv is chosen from the range [0.5, 0.9] uniformly. In BSRA, the threshold ηv is
set to ηv = (Pmax(S) + Pmin(S))/2, as mentioned above. In the simulation, three cascade
sources, i.e., m = 3, are considered. The performance of a different infection size x is
evaluated. Under the assumption of cascade IC model, it is difficult to obtain the diffusion
snapshots for a fixed x of infected nodes. Therefore, as in Reference [21], for each infection
size x, the infection samples are generated in which the number of infected nodes is within
the range [0.75x, 1.25x]. The nodes for the cascade were chosen uniformly at random
among all nodes in the network. The value of x is varied from 60 to 300 with a step size 30.
The metric in Equation (1) is used as a performance measure for the classification of the
proposed estimation algorithm. For comparison, two algorithms, NETFILL [5] and Min-
Steiner tree [6], are considered because both algorithms consider the location of the cascade
sources to infer the hidden cascade infection. NetFill is a method designed specifically
for the SI model, which assumes that a single propagation probability β is common to all
edges. The min-Steiner tree is a baseline that constructs the minimum weight of the Steiner
tree, where the weight of each edge e = (u, v) is defined as − log pu,v.

6.1. Results
6.1.1. Neighbor-Based Recovery Algorithm

First, the recovery performance for NBRA(α) is presented in Figure 5. For the simu-
lation, the average degree is set to λ = 2 to generate an ER random graph. In Figure 5a,
the recovery probability in Equation (1) is depicted by varying the observation probability
θ from 0.5 to 0.9. The results show that the overall recovery probability decreases as the
observation probability increases. This is because, if the probability of the observation is
small, the number of real infections other than the hidden nodes increases, as does the
number of cases where the algorithm finds such nodes. Next, if the observation probabil-
ity is approximately 0.5, then it will be good to choose a uniform trade-off parameter α.
However, when the observation probability increases, a small α (α = 2) is better because
the path of many infections can be estimated from the infection snapshot. In Figure 5b, the
recovery performance is obtained by varying the number of infected nodes over the graph.
The results show that, as the number of average infected nodes increases, the recovery
performance also increases. This is because the NBRA algorithm (α) uses the degree of
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infection of the neighboring nodes to estimate whether an infection is actually occurring.
As the number of infected neighbor nodes increases, the possibility of recovering the hid-
den infected nodes increases. Further, it can be verified that, when the number of infected
nodes is small, choosing a large α (α = 0.8) is better. If the infections increase, it will be
better to use a small α (α = 0.2) because of the diversity of the infection paths. In Figure 5c,
the best value of α for different numbers of infected nodes in the graph is depicted. As
a result, the number of infected nodes is large, and a small value of α will be good for
recovering the hidden infected nodes, for the same reason as described before.

0.5 0.6 0.7 0.8 0.9

Observation Probability 

0.55

0.6

0.65

0.7

0.75

0.8

 P
re

co
v

e
r

(H
)

NMRA  (  = 0.8)

NMRA  (  = 0.5)

NMRA  (  = 0.2)

(a) Recovery vs. Observation probability.

50 100 150 200 250 300

Mean # of Infected Nodes N

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

 P
re

c
o

v
e

r
(H

)

NMRA  (  = 0.8)

NMRA  (  = 0.5)

NMRA  (  = 0.2)

(b) Recovery vs. Mean # of infected nodes

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

 P
re

c
o

v
e

r
(H

)

Mean N=100

Mean N=300

Best Values

(c) Recovery vs. Parameter α.

Figure 5. Recovery probabilities of NBRA(α) for m = 3. ((a) Recovery as the observation probability varies from 0.5 to 0.9.
(b) Recovery by varying the mean number of infected nodes from 60 to 300. (c) Recovery by varying the parameter α from
0.1 to 0.9. Here, N indicates the mean number of infected nodes).

6.1.2. BFST Source-Based Recovery Algorithm

Next, the recovery performance of the BSRA is shown in Figure 5. For the simulation,
the parameter η is set to 2 for the source estimation. As the first result of the BSRA, the
recovery probability is obtained by varying the observation probability θ in Figure 6a.
In contrast to the result of the NBRA (α), the overall recovery probability increases as
the observation probability increases. This is because, when a partial snapshot is given,
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the BSRA first finds nodes that are estimated to be sources in the entire infection graph.
The diffusion probability is then compared based on this to find hidden infections. It is
known [22] that the performance of estimating such sources is better when the number of
observed nodes is large. In addition, it can be verified that the recovery performance is
better when the parameter of the ER random graph is λ = 1.6 than in other cases. This
is because, when λ ∼= 1.5, the underlying ER graph has a local tree structure, as shown
in Figure 1, in which the proposed BFS tree-based algorithm works well. In Figure 6b,
the recovery probability is presented by varying the mean number of infected nodes N.
The result shows that the probability decreases as N increases owing to the fact that the
source estimation accuracy decreases when the number of infected nodes becomes large
in general [22]. The result also shows that the probability of recovery when λ = 1.6 is the
largest among the three values (λ = 1.6, λ = 2.0, λ = 2.4) because of the local tree structure
of the underlying graph. In Figure 6c, the result is obtained by varying the parameter
λ from 1.6 to 3.2 for the mean number of infected nodes as 100 and 300, respectively.
For both cases, the recovery probability decreases as λ increases from 1.6 for both cases.
Furthermore, owing to the better source estimation result when a small number of infected
nodes occurs in the graph, the overall recovery probability when N = 100 is better than
that when N = 300.
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Figure 6. Recovery probabilities of NBRA(α) for m = 3 and ζ = 3. ((a) Recovery as the observation probability varies from
0.5 to 0.9. (b) Recovery by varying the mean number of infected nodes from 60 to 300. (c) Recovery as varying the parameter
λ from 1.6 to 3.2).
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6.1.3. Performance Comparison

To compare the performance of the recovery probability in Equation (1), four al-
gorithms are considered: (i) NBRA(α), (ii) BSRA, (iii) Steiner, and (iv) NETFill. In the
evaluation, each algorithm propagated the infection until 200 nodes in the graph on aver-
age. For NBRA(α), α = 0.4 and β = 0.5 is set for NetFill. For Steiner, the min-Steiner tree
method in Reference [6] is used. With this algorithm, however, a single source is considered;
thus, the min-dist is used as the source estimation step, which selects the “centroid” node
with the minimum weight in Reference [6] to estimate multiple sources as ranked values.
The min-Steiner tree is then applied for the top-three sources separately and obtains the
results. Finally, the recovery probabilities for each algorithm are listed in Tables 2 and 3
as the observation probability θ and the parameter λ, respectively. As a result, in Table 2,
the recovery probability of BSRA is higher than that of NETFILL, which is designed for
the SI-diffusion model. Further, the results show that the performance of NBRA(α) is not
inferior to that of the other three approaches, despite using only the local neighbor infection
state information. Finally, in Table 3, it is concluded that the overall recovery performance
decreases as the parameter λ increases. However, BSRA performs well compared to the
other methods.

Table 2. Recovery probabilities of four algorithms: (i) NBRA(α), (ii) BSRA, (iii) Steiner, and (iv)
NETFILL as varying the observation probability θ.

θ NBRA(α) BSRA Steiner NETFILL

0.5 0.69 0.65 0.71 0.61
0.6 0.68 0.67 0.69 0.57
0.7 0.65 0.72 0.67 0.55
0.8 0.62 0.75 0.64 0.53
0.9 0.61 0.77 0.63 0.54

Table 3. Recovery probabilities of four algorithms: (i) NBRA(α), (ii) BSRA, (iii) Steiner, and (iv)
NETFILL as varying the ER graph parameter λ.

λ NBRA(α) BSRA Steiner NETFILL

1.6 0.59 0.73 0.69 0.64
2.0 0.62 0.71 0.67 0.56
2.4 0.65 0.67 0.63 0.51
2.8 0.64 0.63 0.59 0.48
3.2 0.65 0.58 0.55 0.44

7. Conclusions

In this paper, a cascade infection-recovery problem was studied through a partial
observation over an ER random graph. To do so, two algorithms, (i) a neighbor-based
recovery algorithm and (ii) BFS tree source-based recovery algorithm, have been proposed.
In the first algorithm, the number of infected neighbors were counted for candidate hidden
cascade nodes and the possibility of infection was computed from the neighbors. In the
second algorithm, the cascade sources were estimated, and the infection probability was
computed from the BFS tree approximation for the underlying ER random graph with
respect to the sources. Due to computational complexity, the approximated probability is
considered for comparing the pre-defined criteria for recovery. The results show that the
neighbor-based algorithm recovers the hidden cascade infection well and is not significantly
affected by the average degree of the ER random graph. Furthermore, the BFS source-based
method works well on a local tree-like structure.

8. Limitations and Future Works

The main advantage of the neighbor-based algorithm is that it does not require
infection information spread over the entire graph to estimate whether a node is truly
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infected. In addition, it was confirmed that the results are not bad compared to the recovery
performance of the other algorithms. In the case of the source-based algorithm, the recovery
performance outperforms the comparison algorithms by adopting the OJC, which is known
to be an extremely good technique for finding cascade sources in the ER graph. However,
owing to mathematical intractability, the theoretical result obtained for the neighbor-based
algorithm has a limitation in computing the probability of considering an actual uninfected
node as infected. Furthermore, for the source-based method, when there is a loop in the
graph, it is difficult to accurately calculate the infection probability from the source. Hence,
a study on how to overcome these two limitations will be area of future work.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2019R1G1A1099466).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proof of Theorem 1

From the algorithm NBRA(α), we have the detection probability of the hidden infected
node v ∈ VHI by

P{v ∈ Ĥrecover} = P{p(v) > 1/2}
= P{αpmin,v + (1− α)[1− ∏

u∈NI(v)
(1− pu,v)] > 1/2}. (A1)

Let A := {αpmin,v + (1− α)[1−∏u∈NI(v)(1− pu,v)] > 1/2}, and let A′ := {αpmin,v +

(1− α)[1− (1− pmin,v)
|NI(v)|] > 1/2}, where pmin,v := minu∈NI(v) pu,v. Then, we see that,

if A′ is satisfied, then A is also satisfied, i.e., A′ ⊆ A. Using this fact and by denoting
nv := |NI(v)|, we have

A′ := {αpmin,v + (1− α)[1− (1− pmin,v)
nv ] > 1/2

⇔ αpmin,v + (1− α)− (1− pmin,v)
nv + α(1− pmin,v)

nv > 1/2

⇔ α(1− pmin,v)((1− pmin,v)
nv−1 − 1) > (1− pmin,v)

nv − 1/2

⇔ α <
(1− pmin,v)

nv − 1/2
(1− pmin,v)((1− pmin,v)nv−1 − 1)

, (∗), (A2)

where the last step is from the fact that (1− pmin,v)((1− pmin,v)
nv−1 − 1) < 0. Then, we

have that, if α satisfies the condition (∗), then P(A′) = 1, which implies P(A) = 1. This
completes the proof.
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