Universal and Effective Decoding Scheme for Visible Light Positioning Based on Optical Camera Communication
Abstract
:1. Introduction
- (1)
- This paper proposed a novel thresholding method that can resist environmental changes when compared with previous thresholding schemes, which can improve the decoding performance thus enhance the robustness of visible light positioning application.
- (2)
- The novel proposed PBC scheme can automatically synchronize the clock between transmitters and different camera receivers, which shows excellent generalization ability and can ensure high decoding rate when different mobile phones are used in practical scenarios.
- (3)
- A decoding rate of 95.72% in a practical Robotic-based VLP system when the transmission distance is 2.73 m is realized, which makes it possible for visible light positioning to be applied in larger indoor places.
- (4)
- A series of ablation study experiments have been conducted to prove that the decoding rate of proposed PBC scheme would not be influenced by factors like frequency, camera ISO value, camera rolling rate, or code sequence, which shows the superiorities of proposed PBC scheme.
2. System Principle
2.1. Rolling Shutter Effect
2.2. Sampling Frequency Offset
2.3. PBC Decoding Principle
2.3.1. Staged Threshold Scheme
2.3.2. Synchronous Decoding Operation
2.4. Theoretical Analysis of the Advantages of PBC Scheme
2.4.1. Good Resistance to Environmental Change
2.4.2. Excellent Generalization Ability
2.4.3. Low Complexity
2.4.4. Reasons for Outstanding Performance
3. Experiment
3.1. Experiment Setup
3.2. Results and Analysis
4. Ablation Study
4.1. Sampling Interval for Conventional Decoding Schemes
4.2. Decoding Rate for Various Receivers When Applying Same Transmitting Frequency
4.3. Decoding Rate for Various Transmitting Frequency When Applying Same Receiver
4.4. Decoding Rate for Different UID Data Type
4.5. Decoding Rate for Different Header and Data Combination
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Default Configuration | Header: 0111111110 UID: 01110011 Interpolation: 10 Times | |||||
---|---|---|---|---|---|---|
LED Transmitting Frequency/Hz | 5000 | 6000 | 7000 | 8000 | ||
Sampling interval/pixels | 89 | 73 | 63 | 55 | ||
Decoding rate (%) | PL [18] | P30 | 95.3 | 94.1 | 97.0 | 99.6 |
7P | 0.0 | 0.0 | 0.0 | 0.0 | ||
K20 | 0.0 | 0.0 | 0.0 | 0.0 | ||
A59 | 0.0 | 0.0 | 0.0 | 0.0 | ||
IA [18] | P30 | 80.5 | 89.6 | 72.2 | 93.8 | |
7P | 0.0 | 0.0 | 0.0 | 0.0 | ||
K20 | 0.0 | 0.0 | 0.0 | 0.0 | ||
A59 | 0.0 | 0.0 | 0.0 | 0.0 | ||
EVA [19] | P30 | 82.7 | 73.0 | 68.5 | 79.0 | |
7P | 0.0 | 0.0 | 0.0 | 0.0 | ||
K20 | 0.0 | 0.0 | 0.0 | 0.0 | ||
A59 | 0.0 | 0.0 | 0.0 | 0.0 | ||
QA [18] | P30 | 92.4 | 90.8 | 84.7 | 99.6 | |
7P | 0.0 | 0.0 | 0.0 | 0.0 | ||
K20 | 0.0 | 0.0 | 0.0 | 0.0 | ||
A59 | 0.0 | 0.0 | 0.0 | 0.0 | ||
PBC | P30 | 100 | 99.9 | 100.0 | 100.0 | |
7P | 100.0 | 100.0 | 100.0 | 99.0 | ||
K20 | 100.0 | 100.0 | 100.0 | 99.5 | ||
A59 | 100.0 | 100.0 | 100.0 | 100.0 |
Default Configuration | Mobile Phone: HUAWEI P30 LED Transmitting Frequency: 5000 Hz Interpolation: 4.5 Times Sampling Interval: 40 | |||||||
---|---|---|---|---|---|---|---|---|
Header | 0111111110 | |||||||
UID | 01 01 01 01 | 01 10 10 01 | 01 11 00 11 | 01 11 10 10 | 01 11 11 01 | 10 00 00 01 | 10 00 00 00 | |
Decoding rate (%) | PL [18] | 97.5 | 97.5 | 93.3 | 90.6 | 80.4 | 88.0 | 71.5 |
IA [18] | 84.3 | 83.4 | 83.1 | 70.3 | 79.7 | 79.0 | 68.6 | |
EVA [19] | 74.4 | 81.4 | 76.0 | 70.2 | 77.8 | 74.0 | 68.5 | |
QA [18] | 87.1 | 75.1 | 86.8 | 71.4 | 99.4 | 89.8 | 71.7 | |
PBC | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
References
- Cheema, M.A. Indoor location-based services: Challenges and Opportunities. SIGSPATIAL Spec. 2018, 10, 10–17. [Google Scholar] [CrossRef]
- Afzalan, M.; Jazizadeh, F. Indoor positioning based on visible light communication: A performance-based survey of real-world prototypes. ACM Comput. Surv. 2019, 52, 1–36. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Ahmad, Z.U.; Haas, O.C.L.; Rajbhandari, S. Precision indoor three-dimensional visible light positioning using receiver diversity and multi-layer perceptron neural network. IET Optoelectron. 2020, 14, 440–446. [Google Scholar] [CrossRef]
- Mao, W.; Xie, H.; Tan, Z.; Liu, Z.; Liu, M. High precision indoor positioning method based on visible light communication using improved Camshift tracking algorithm. Opt. Commun. 2020, 468, 125599. [Google Scholar] [CrossRef]
- Park, S.; Hashimoto, S. Passive RFID in Indoor Environment. IEEE Trans. Ind. Electron. 2009, 56, 2366–2373. [Google Scholar] [CrossRef]
- Zhuang, Y.; Syed, Z.; Li, Y.; El-Sheimy, N. Evaluation of Two WiFi Positioning Systems Based on Autonomous Crowdsourcing of Handheld Devices for Indoor Navigation. IEEE Trans. Mob. Comput. 2016, 15, 1982–1995. [Google Scholar] [CrossRef]
- Sthapit, P.; Gang, H.S.; Pyurr, J.Y. Bluetooth Based Indoor Positioning Using Machine Learning Algorithms. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), JeJu, Korea, 24–26 June 2018; pp. 3–6. [Google Scholar] [CrossRef]
- Fang, J.; Yang, Z.; Long, S.; Wu, Z.; Zhao, X.; Liang, F.; Jiang, Z.L.; Chen, Z. High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics J. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Lin, P.; Hu, X.; Ruan, Y.; Li, H.; Fang, J.; Zhong, Y.; Zheng, H.; Fang, J.; Jiang, Z.L.; Chen, Z. Real-time visible light positioning supporting fast moving speed. Opt. Express 2020, 28, 14503. [Google Scholar] [CrossRef]
- Yu, K.; He, J.; Huang, Z. Decoding scheme based on CNN for mobile optical camera communication. Appl. Opt. 2020, 59, 7109. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Hossan, M.T.; Jang, Y.M. Convolutional neural network scheme–based optical camera communication system for intelligent internet of vehicles. Int. J. Distrib. Sens. Netw. 2018, 14. [Google Scholar] [CrossRef]
- Xie, C.; Guan, W.; Wu, Y.; Fang, L.; Cai, Y. The LED-ID Detection and Recognition Method Based on Visible Light Positioning Using Proximity Method. IEEE Photonics J. 2018, 10. [Google Scholar] [CrossRef]
- Pham, T.L.; Nguyen, H.; Nguyen, T.; Jang, Y.M. A novel neural network-based method for decoding and detecting of the DS8-PSK scheme in an OCC system. Appl. Sci. 2019, 9, 2242. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Wang, Y.C.; Wu, J.Z.; Yang, G.W. Efficient Decoding Scheme of Non-Uniform Concatenation Quantum Code with Deep Neural Network. Int. J. Theor. Phys. 2021, 60, 848–864. [Google Scholar] [CrossRef]
- Wang, Z.; Du, B.; Tu, W.; Zhang, L.; Tao, D. Incorporating distribution matching into uncertainty for multiple kernel active learning. IEEE Trans. Knowl. Data Eng. 2021, 33, 128–142. [Google Scholar] [CrossRef]
- Wang, Z.; Du, B.; Member, S.; Guo, Y. Domain Adaptation with Neural Embedding Matching. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1–11. [Google Scholar] [CrossRef]
- Chow, C.W.; Li, Z.Q.; Chuang, Y.C.; Liao, X.L.; Lin, K.H.; Chen, Y.Y. Decoding CMOS Rolling-Shutter Pattern in Translational or Rotational Motions for VLC. IEEE Photonics J. 2019, 11, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Chow, C.-W.; Liang, K.; Chen, H.-Y.; Hsu, C.-W.; Chen, C.-Y.; Chen, S.-H. Comparison of thresholding schemes for visible light communication using mobile-phone image sensor. Opt. Express 2016, 24, 1973. [Google Scholar] [CrossRef]
- Chen, C.-W.; Chow, C.-W.; Liu, Y.; Yeh, C.-H. Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications. Opt. Express 2017, 25, 24362. [Google Scholar] [CrossRef]
- Duc, T.M. Novel Hybrid Temporal-Spatial Phase Shift On-Off Keying for Optical Camera Communications; Kookmin University: Seoul, Korea, July 2019; Available online: http://kookmin.dcollection.net/common/orgView/200000218901 (accessed on 7 July 2021).
- He, J.; Zhou, Y.; Deng, R.; Shi, J.; Jiang, Z.; Tang, Q. Efficient Sampling Scheme Based on Length Estimation for Optical Camera Communication. IEEE Photonics Technol. Lett. 2019, 31, 841–844. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lin, H.M.; Wei, Y.L.; Wu, H.I.; Tsai, H.M.; Lin, K.C.J. RollingLight: Enabling line-of-sight light-to-camera communications. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; pp. 167–180. [Google Scholar] [CrossRef]
- Zhou, Z.; Wen, S.; Guan, W. RSE-based optical camera communication in underwater scenery with bubble degradation. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Huang, L.; Wen, S.; Yan, Z.; Song, H.; Su, S.; Guan, W. Single LED positioning scheme based on angle sensors in robotics. Appl. Opt. 2021, 60, 6275–6287. [Google Scholar] [CrossRef]
- Guan, W.; Zhang, X.; Wu, Y.; Xie, Z.; Li, J.; Zheng, J. High precision indoor visible light positioning algorithm based on double LEDs using CMOS image sensor. Appl. Sci. 2019, 9, 1238. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Wen, S.; Liu, L.; Zhang, H. High-precision indoor positioning algorithm based on visible light communication using complementary metal–oxide–semiconductor image sensore. Opt. Eng. 2019, 58, 024101. [Google Scholar] [CrossRef]
- Yan, Z.; Guan, W.; Wen, S.; Huang, L.; Song, H. Multi-robot Cooperative Localization based on Visible Light Positioning and Odometer. IEEE Trans. Instrum. Meas. 2021, 70, 7004808. [Google Scholar] [CrossRef]
- Nguyen, H.; Thieu, M.D.; Pham, T.L.; Nguyen, H.; Jang, Y.M. The Impact of Camera Parameters on Optical Camera Communication. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019. [Google Scholar]
- Qv, R.; Feng, L.; Yang, A.; Guo, P.; Lin, B.; Huang, H. A High Efficient Code for Visible Light Positioning System Based on Image Sensor. IEEE Access 2019, 7, 77762–77770. [Google Scholar] [CrossRef]
- Guan, W.; Huang, L.; Hussain, B.; Yue, C.P. Robust Robotic Localization using Visible Light Positioning and Inertial Fusion. IEEE Sens. J. 2021, 1–11. [Google Scholar] [CrossRef]
- Liang, Q.; Lin, J.; Liu, M. Towards robust visible light positioning under led shortage by visual-inertial fusion. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Wen, S.; Yang, C.; Yuan, D.; Guan, W. Universal and Effective Decoding Scheme for Visible Light Positioning Based on Optical Camera Communication. Electronics 2021, 10, 1925. https://doi.org/10.3390/electronics10161925
Song H, Wen S, Yang C, Yuan D, Guan W. Universal and Effective Decoding Scheme for Visible Light Positioning Based on Optical Camera Communication. Electronics. 2021; 10(16):1925. https://doi.org/10.3390/electronics10161925
Chicago/Turabian StyleSong, Hongzhan, Shangsheng Wen, Chen Yang, Danlan Yuan, and Weipeng Guan. 2021. "Universal and Effective Decoding Scheme for Visible Light Positioning Based on Optical Camera Communication" Electronics 10, no. 16: 1925. https://doi.org/10.3390/electronics10161925
APA StyleSong, H., Wen, S., Yang, C., Yuan, D., & Guan, W. (2021). Universal and Effective Decoding Scheme for Visible Light Positioning Based on Optical Camera Communication. Electronics, 10(16), 1925. https://doi.org/10.3390/electronics10161925