Forecasting of Photovoltaic Power by Means of Non-Linear Auto-Regressive Exogenous Artificial Neural Network and Time Series Analysis
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Contributions
2. Materials and Methods
2.1. Photovoltaic Module and Weather Station
- (1)
- this is the most commonly used device in Egypt;
- (2)
- it has the most reasonable costs among its competitors;
- (3)
- according to manufacturer reports, it has the best heat resistance.
2.2. NARX Neural Network Model
2.3. Levenberg–Marquardt Training Algorithm
2.4. Bayesian Regularization Training Algorithm
2.5. Scaled Conjugate Gradient Training Algorithm
3. Forecasting Performance Metrics
4. Results
- The network is trained and its deviation is corrected;
- Validation is used to check the adaptation of the network and to avoid training from increasing the generalization of the network;
- Testing with low impact on training, as well as providing independent network output analysis before and after training.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wu, L. On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation. Energy 2016, 112, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.A.; Kermani, A.M.; Arabhosseini, A. Experimental study of the dew formation effect on the performance of photovoltaic modules. Renew. Energy 2019, 130, 352–359. [Google Scholar] [CrossRef]
- Babatunde, A.A.; Abbasoglu, S. Predictive analysis of photovoltaic plants specific yield with the implementation of multiple linear regression tool. Environ. Prog. Sustain. Energy 2019, 38, 13098. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 535–576. [Google Scholar] [CrossRef]
- Kleissl, J. Solar Energy Forecasting and Resource Assessment; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Monteiro, C.; Fernandez-Jimenez, L.A.; Ramirez-Rosado, I.J.; Muñoz-Jimenez, A.; Lara-Santillan, P.M. Short-Term Forecasting Models for Photovoltaic Plants: Analytical versus Soft-Computing Techniques. Math. Probl. Eng. 2013, 2013, 767284. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons: Hoboken, NJ, USA, 2015; Chapter 2; p. 25. [Google Scholar]
- Rouchier, S.; Rabouille, M.; Oberlé, P. Calibration of simplified building energy models for parameter estimation and forecasting: Stochastic versus deterministic modeling. Build. Environ. 2018, 134, 181–190. [Google Scholar] [CrossRef]
- Ferlito, S.; Adinolfi, G.; Graditi, G. Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production. Appl. Energy 2017, 205, 116–129. [Google Scholar] [CrossRef]
- Grimaccia, F.; Leva, S.; Mussetta, M.; Ogliari, E. ANN Sizing Procedure for the Day-Ahead Output Power Forecast of a PV Plant. Appl. Sci. 2017, 7, 622. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, Y.; Kannan, S.; Selvaraj, C.; Mohanty, S.N. Forecasting energy generation in large photovoltaic plants using radial belief neural network. Sustain. Comput. Inform. Syst. 2021, 31, 100578. [Google Scholar]
- Barrera, J.M.; Reina, A.; Maté, A.; Trujillo, J.C. Solar energy prediction model based on artificial neural networks and open data. Sustainability 2020, 12, 6915. [Google Scholar] [CrossRef]
- Gu, B.; Shen, H.; Lei, X.; Hu, H.; Liu, X. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method. Appl. Energy 2021, 299, 117291. [Google Scholar] [CrossRef]
- Eseye, A.T.; Zhang, J.; Zheng, D. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information. Renew. Energy 2018, 118, 357–367. [Google Scholar] [CrossRef]
- Lin, G.Q.; Li, L.L.; Tseng, M.L.; Liu, H.M.; Yuan, D.D.; Tan, R.R. An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. J. Clean. Prod. 2020, 253, 119966. [Google Scholar] [CrossRef]
- Zhen, H.; Niu, D.; Wang, K.; Shi, Y.; Ji, Z.; Xu, X. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information. Energy 2021, 231, 120908. [Google Scholar] [CrossRef]
- Agoua, X.G.; Girard, R.; Kariniotakis, G. Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production. IEEE Trans. Sustain. Energy 2018, 2, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Bracale, A.; Carpinelli, G.; De Falco, P. A Probabilistic Competitive Ensemble Method for Short-Term Photovoltaic Power Forecasting. IEEE Trans. Sustain. Energy 2017, 8, 551–560. [Google Scholar] [CrossRef]
- Gigoni, L.; Betti, A.; Crisostomi, E.; Franco, A.; Tucci, M.; Bizzarri, F.; Mucci, D. Day-Ahead Hourly Forecasting of Power Generation from Photovoltaic Plants. IEEE Trans. Sustain. Energy 2018, 9, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Xie, S.; Wang, B.; Xin, J.; Li, Y.; Du, S. Photovoltaic Power Forecasting with a Hybrid Deep Learning Approach. IEEE Access 2020, 8, 175871–175880. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, L.; Yu, M.; Hu, J. An efficient identification scheme for a nonlinear polynomial NARX model. Artif. Life Robot. 2011, 16, 70–73. [Google Scholar] [CrossRef]
- Haddad, S.; Mellit, A.; Benghanem, M.; Daffallah, K.O. NARX-Based Short-Term Forecasting of Water Flow Rate of a Photovoltaic Pumping System: A Case Study. J. Sol. Energy Eng. 2015, 138, 11004–11006. [Google Scholar] [CrossRef]
- Cococcioni, M.; D’Andrea, E.; Lazzerini, B. One day-ahead forecasting of energy production in solar photovoltaic installations: An empirical study. Intell. Decis. Technol. 2012, 6, 197–210. [Google Scholar] [CrossRef]
- SolarWorld Module SW 175 Monocrystalline. Available online: https://pdf.wholesalesolar.com/module%20pdf%20fold (accessed on 30 May 2021).
- Mosalam, H.A. Experimental investigation of temperature effect on PV monocrystalline module. Int. J. Renew. Energy Res. 2018, 8, 365–373. [Google Scholar]
- Buy Solar Module SolarWorld Sunmodule Plus SW 175 Mono | pvXchange.co. Available online: https://www.pvxchange.com/Solar-Modules/SolarWorld/Sunmodule-plus-SW-175-mono_1-2100535 (accessed on 23 May 2021).
- Louzazni, M.; Mosalam, H.; Khouya, A.; Amechnoue, K. A non-linear auto-regressive exogenous method to forecast the photovoltaic power output. Sustain. Energy Technol. Assess. 2020, 38, 100670. [Google Scholar] [CrossRef]
- Day, N.U.; Reinhart, C.C.; DeBow, S.; Smith, M.K.; Sailor, D.J.; Johansson, E.; Wamser, C.C. Thermal effects of microinverter placement on the performance of silicon photovoltaics. Sol. Energy 2016, 125, 444–452. [Google Scholar] [CrossRef]
- Alistoun, W.J. Investigation of the Performance of Photovoltaic Systems; Faculty of Science at the Nelson Mandela Metropolitan: Gqeberha, South Africa, 2012. [Google Scholar]
- Nichols, S.; Huang, J.; Ilic, M.; Casey, L.; Prestero, M. Two-stage PV Power System with Improved Throughput and Utility Control Capability. In Proceedings of the 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, Waltham, MA, USA, 27–29 September 2010; pp. 110–115. [Google Scholar]
- Rajakaruna, S. Experimental studies on a novel single-phase Z-Source inverter for grid connection of renewable energy sources. In Proceedings of the 2008 Australasian Universities Power Engineering Conference, Sydney, NSW, Australia, 14–17 December 2008; pp. 1–6. [Google Scholar]
- Di Nunno, F.; de Marinis, G.; Gargano, R.; Granata, F. Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network. Water 2021, 13, 1173. [Google Scholar] [CrossRef]
- Buevich, A.; Sergeev, A.; Shichkin, A.; Baglaeva, E. A two-step combined algorithm based on NARX neural network and the subsequent prediction of the residues improves prediction accuracy of the greenhouse gases concentrations. Neural Comput. Appl. Mar. 2021, 33, 1547–1557. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, W.; Hu, H.; Zhu, Q.; Xie, Z. An Optimal NARX Neural Network Identification Model for a Magnetorheological Damper with Force-Distortion Behavior. Front. Mater. 2020, 7, 10. [Google Scholar] [CrossRef]
- Ezzeldin, R.; Hatata, A. Application of NARX neural network model for discharge prediction through lateral orifices. Alex. Eng. J. 2018, 57, 2991–2998. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nigam, S.; Singh, J.B.; Upadhyaya, L.N. Software fault prediction using Nonlinear Autoregressive with eXogenous Inputs (NARX) network. Appl. Intell. 2012, 37, 121–129. [Google Scholar] [CrossRef]
- Billings, S.A. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio–Temporal Domains; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Mathworks. Design Time Series NARX Feedback Neural Networks. 2019. Available online: https://ch.mathworks.com/help/deeplearning/ug/design-time-series-narx-feedback-neural-networks.html;jsessionid=38db5ec344dedde7319d3c0a7dbd (accessed on 30 May 2021).
- Koofigar, H.R. Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation. ISA Trans. 2016, 60, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Adamowski, J.; Chan, H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407, 28–40. [Google Scholar] [CrossRef]
- Levenberg, K. A Method for the Solution of Certain Problems in Least Squares. Quart. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.M.; Dennis, J.E. Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation. Numer. Math. 1971, 18, 289–297. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer Science + Business Media, LLC: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kelley, C. Iterative Methods for Optimization; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999. [Google Scholar]
- Sun, Z.; Chen, Y.; Li, X.; Qin, X.; Wang, H. A Bayesian regularized artificial neural network for adaptive optics forecasting. Opt. Commun. 2017, 382, 19–527. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Mao, Y. Bayesian regularized NAR neural network based short-term prediction method of water consumption. E3S Web Conf. 2019, 118, 03024. [Google Scholar] [CrossRef]
- Louzazni, M.; Mosalam, H. Dailly Forecasting of Photovoltaic Power Using Non-Linear Auto-Regressive Exogenous Method. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application, DASA 2020, Online, 8–9 November 2020. [Google Scholar]
- Bandurski, K.; Kwedlo, W. A lamarckian hybrid of differential evolution and conjugate gradients for neural network training. Neural Process. Lett. 2010, 32, 31–44. [Google Scholar] [CrossRef]
- Cetişli, B.; Barkana, A. Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training. Soft Comput. 2010, 14, 365–378. [Google Scholar] [CrossRef]
- Babani, L.; Jadhav, S.; Chaudhari, B. Scaled conjugate gradient based adaptive ANN control for SVM-DTC induction motor drive. IFIP Adv. Inf. Commun. Technol. 2016, 475, 384–395. [Google Scholar]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Feijóo, M.C.; Zambrano, Y.; Vidal, Y.; Tutivén, C. Unsupervised Damage Detection for Offshore Jacket Wind Turbine Foundations Based on an Autoencoder Neural Network. Sensors 2021, 21, 3333. [Google Scholar] [CrossRef]
- Arora, J.S. Optimum Design Concepts. In Introduction to Optimum Design; Elsevier: Amsterdam, The Netherlands, 2004; pp. 83–174. [Google Scholar]
- Richard, D.G.S.; Duda, O.; Hart, P.E. Pattern Classification, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Louzazni, M.; Khouya, A.; Amechnoue, K.; Mussetta, M.; Crăciunescu, A. Comparison and evaluation of statistical criteria in the solar cell and photovoltaic module parameters’ extraction. Int. J. Ambient Energy 2020, 41, 482–1494. [Google Scholar] [CrossRef]
- Nespoli, A.; Ogliari, E.; Leva, S.; Massi Pavan, A.; Mellit, A.; Lughi, V.; Dolara, A. Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques. Energies 2019, 12, 1621. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.S.; Abdullah, S.; Schramm, D.; Omar, M.Z.; Haris, S.M. Development of multiple linear regression-based models for fatigue life evaluation of automotive coil springs. Mech. Syst. Signal Process. 2019, 118, 675–695. [Google Scholar] [CrossRef]
- Bilbeis Climate: Average Temperature, Weather by Month, Bilbeis Weather Averages—Climate-Data.org. Available online: https://en.climate-data.org/africa/egypt/al-sharqia-governorate/bilbeis-50417/ (accessed on 30 May 2021).
Target Values | NARX-LMA | NARX-BRA | NARX-SCGA | ||||
---|---|---|---|---|---|---|---|
MSE% | R2 | MSE% | R2 | MSE% | R2 | ||
Training | 314 | 29.62 | 0.9889 | 19.81 | 0.9927 | 41.03 | 0.9847 |
Validation | 68 | 14.36 | 0.994 | 0 | 0 | 40.48 | 0.9848 |
Testing | 68 | 72.91 | 0.9741 | 24.96 | 0.9922 | 68.96 | 0.9744 |
Statistical Metric | NARX-LMA | NARX-BRA | NARX-SCGA |
---|---|---|---|
Total IE | 0.3286 | 0.0030 | 0.2928 |
MAE | 1.0466 × 10−3 | 7.8334 × 10−6 | 932.6028 × 10−6 |
MAPE | 0.10466 | 7.8334 × 10−4 | 0.09326028 |
RSSE | 107.9914 × 10−3 | 8.9073 × 10−6 | 85.7537 × 10−3 |
RMSE | 2.962 × 10−2 | 1.981 × 10−2 | 4.103 × 10−2 |
R2 | 0.98899 | 0.99271 | 0.98473 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louzazni, M.; Mosalam, H.; Cotfas, D.T. Forecasting of Photovoltaic Power by Means of Non-Linear Auto-Regressive Exogenous Artificial Neural Network and Time Series Analysis. Electronics 2021, 10, 1953. https://doi.org/10.3390/electronics10161953
Louzazni M, Mosalam H, Cotfas DT. Forecasting of Photovoltaic Power by Means of Non-Linear Auto-Regressive Exogenous Artificial Neural Network and Time Series Analysis. Electronics. 2021; 10(16):1953. https://doi.org/10.3390/electronics10161953
Chicago/Turabian StyleLouzazni, Mohamed, Heba Mosalam, and Daniel Tudor Cotfas. 2021. "Forecasting of Photovoltaic Power by Means of Non-Linear Auto-Regressive Exogenous Artificial Neural Network and Time Series Analysis" Electronics 10, no. 16: 1953. https://doi.org/10.3390/electronics10161953
APA StyleLouzazni, M., Mosalam, H., & Cotfas, D. T. (2021). Forecasting of Photovoltaic Power by Means of Non-Linear Auto-Regressive Exogenous Artificial Neural Network and Time Series Analysis. Electronics, 10(16), 1953. https://doi.org/10.3390/electronics10161953