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Abstract: In recent years, different variants of the botnet are targeting government, private organi-
zations and there is a crucial need to develop a robust framework for securing the IoT (Internet of
Things) network. In this paper, a Hadoop based framework is proposed to identify the malicious IoT
traffic using a modified Tomek-link under-sampling integrated with automated Hyper-parameter
tuning of machine learning classifiers. The novelty of this paper is to utilize a big data platform for
benchmark IoT datasets to minimize computational time. The IoT benchmark datasets are loaded
in the Hadoop Distributed File System (HDFS) environment. Three machine learning approaches
namely naive Bayes (NB), K-nearest neighbor (KNN), and support vector machine (SVM) are used for
categorizing IoT traffic. Artificial immune network optimization is deployed during cross-validation
to obtain the best classifier parameters. Experimental analysis is performed on the Hadoop platform.
The average accuracy of 99% and 90% is obtained for BoT_IoT and ToN_IoT datasets. The accuracy
difference in ToN-IoT dataset is due to the huge number of data samples captured at the edge layer
and fog layer. However, in BoT-IoT dataset only 5% of the training and test samples from the complete
dataset are considered for experimental analysis as released by the dataset developers. The overall
accuracy is improved by 19% in comparison with state-of-the-art techniques. The computational
times for the huge datasets are reduced by 3–4 hours through Map Reduce in HDFS.

Keywords: Hadoop; Internet of Things; anomaly detection; artificial immune network; hyperparam-
eters; K-nearest neighbor; naïve Bayes; support vector machine

1. Introduction

Internets of Things provide internet enabled platform to link heterogeneous devices.
Each of these devices are enabled to act smart with the addition of network connection
and processing power to them [1]. With the rise of IoT technology, smart home technology
has entered the market for controlling the doors, lights, and other appliances in wireless
mode. Due to the absence of an administrator [2], various home devices are prone to
attacks. Smart home devices were also targeted with information destruction, illegal
physical access and privacy violation attacks. These attacks decrease the security level
of IoT devices. Hence, it is necessary to develop a robust framework for identifying the
IoT attack in an IoT ecosystem in an efficient manner using machine learning models.
Traditional classifiers may get biased towards the majority class samples, and this can
cause misclassification of the minor but significant class instances. Information loss can
be reduced by eliminating such instances using a modified Tomek-linked under-sampling
which is detailed in Section 3.
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1.1. Attacks in the IoT Network

The various botnet attacks namely Mirai, Bashlite, and Hajime pose huge challenges
for IoT security. The different categories of botnet attacks are DDoS, identity theft, leakage
of information, keylogging, and pushing [3]. The botmasters perform network mapping
to gather the OS information by fingerprinting and port scanning to find vulnerabilities
and infect the IoT devices. The major purpose to launch a DDoS attack by a botnet is to
render the service inaccessible to authentic users [4]. These attacks are targeted in the
network and application layer of the IoT environment. Besides, the application layer also
has to handle the security issues. The violations of privacy and data disclosure to the
users were the challenges addressed in the research study [5]. Amongst the various fields
of study, the most prominent and ever progressing one has been the study of network
traffic for attack detection and mitigation. The advancements in the technologies have
proportionately increased the network attacks in various environments like IoT, IIoT, etc.,
and therefore novel enhanced approaches are required to cope with the latest updates.
Distributed machine learning with the development of new tools and frameworks like
Hadoop provides a colossal scope of development in this direction [6]. Hence, in this paper
a distributed machine learning based approach is deployed to identify the presence of
malicious behavior in IoT traffic.

The contribution of this proposed work is as follows:

• Hadoop based framework to distribute the processing of huge IoT traffic datasets for
minimizing the computational time.

• Class imbalance of IoT datasets is mitigated by deploying a modified Tomek-linked
under-sampling technique.

• Tuning the individual machine learning models like SVM, KNN, and NB using artifi-
cial immune network for better cross-validation accuracy.

• The proposed model is evaluated with benchmark IoT datasets to show the superiority
of the technique over existing baseline approaches.

Superior performance of the modified Tomek-linked under-sampling (MTL) in com-
parison to the baseline sampling approaches namely, random under-sampling (RUS),
condensed nearest neighbor (CNN), and Tomek-linked under-sampling has motivated to
adapt in our proposed approach. A hyperparameter tuning using AiNet improves the
cross-validation accuracy before predicting the accuracy on BoT-IoT and ToN-IoT datasets.
The performance of the MTL under-sampling with various classifiers has been validated
in the literature with 10 real life data sets [7]. Few of the datasets which were highly
unbalanced, resulted in enhanced performance on various metrics like precision, recall,
specificity, fall out, F-measure, Mathews correlation coefficient (MCC), and area under the
ROC curve (AUC). Hence, this technique is chosen for performing an under sampling in
our proposed model for improved performance.

The remaining of the paper is summarized in the following manner: Section 2 briefs
the extensive literature of IoT security models developed in the recent few years. Section 3
discusses the techniques utilized to implement the proposed approach. Section 4 details
the proposed Hadoop based framework for botnet traffic identification. Section 5 outlines
the experimental analysis. Performance analysis is detailed in Section 6. The conclusion is
given in Section 7.

1.2. Intrusion Detection Systems (IDS)

The security threats on the internet and consumer risks are increasing with the inven-
tion of IoT. An example is the DoS attack on Dyn [8], which is a DNS provider in the year
2016 and also Mirai botnet attacks on devices by misusing default credentials [9,10]. The
major reason for the effectiveness of Mirai Botnet is because of the easy installation of IoT
devices, which were developed with minimal or no security concern and reduced cost [11].
A vulnerable IoT device is very risky, irrespective of its level of security [12]. There were
nearly 10,263 botnets introduced in 2018 in various IoT devices [13]. There were also
13,000 IoT devices which launched a powerful DDoS attack on IoT devices discovered in
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2017 [14]. IoT security would assist measurement platforms to implement innovative user
interfaces for home networks to discover and filter botnet traffic [15]. Besides, users can be
notified about malicious activities. There is a challenge associated with traffic classification
in the IoT domain because there are very few platforms that analyzes this issue [16]. A
limited research is done on IDS using ML deployed on IoT networks [17,18]. The primary
reasons are the lack of datasets and also real hardware deployed for all datasets consisting
of simulated IoT devices [19].

Figure 1 shows typical IDS for IoT environment. The IoT components are monitored by
the detection system and the response mechanisms act against the assumed attacks as soon
as it is known that the traffic is not a legitimate one. A machine learning technique deploys
a learning classifier to train the detection model. Misuse based techniques categorize the
incoming traffic by deploying pattern matching algorithms. Traditional IDS cannot be
implemented on ordinary IoT devices. Hence, network-based IDS is appropriate to build
an IDS for an IoT environment. Huge challenges for Anomaly Detection Systems (ADS)
are high false positives but they are effective for novel attacks. The wide diversity of IoT
devices is also a challenge for implementing ADS. The storage capacity and computation
power require the IDS for IoT to be lightweight.
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2. Related Work

An important step in product development is the security testing of IoT devices
before they are introduced in the market. In this section, a comprehensive literature
review is provided which analyzes various studies of IoT device susceptibilities, testbeds
developed for each IoT device, and various machine learning-based IDS. Security breaches
and vulnerabilities of IoT devices have been studied by various researchers [1,13,20,21],
for implementing security mechanisms. The major challenges to test IoT devices are their
features and limitations [22]. A comprehensive IoT security test bed was developed [23].
Security weakness of IoT devices was evaluated by launching attacks [14,24,25]. The
research on the network and firmware analyses, identified the private address of the
user from IoT device, monitored traffic and utilized proxy TLS traffic for data extraction.
The security of the network protocols due to the DoS attack on VoIP [26] is studied and
enhanced. Constrained IoT devices which implement Constrained Application Protocol
(CoAP) were examined [27]. Table 1 specifies the analysis of various IoT attacks, tools
deployed to initiate the attack, and their effects. It is inferred that different attacks were
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targeted on IoT devices and there is a need to develop robust frameworks to protect from
these attacks.

Table 1. Analysis of various IoT attacks and results.

Attack Products Tested Tools Attack Approach Results

Devices exposed to
peripheral IP address
to crash the server by

creating a Trojan
horse. [28]

Nest Thermostat -
Backdoor and

Hardware access by
physical tampering

Modifiable firmware
and checksum

Channel interception or
attacks on running

apps in [29].
Smart TV Binwalk

Firmware extraction by
compromising devices

in public network
ADSL.

Web browser
vulnerable to XSS

attacks.

Attack on firmware
modification as it is

updated in an insecure
channel.

Kiddie Scripts utilized
to exploit non-IT

devices [24]
Nest Thermostat

Wireshark
Kiddie scripts

Ettercap
Forensic Toolkit (FTK)

Autopsy

Gaining credentials by
physical access
Packet analysis

Unable to gain root
access.

Different attacks on
Haier home
systems [20]

Haier Smart Home
Automation Wireshark, UART

Brute force approach to
access password.

Gaining root access
Network analysis

Root shell access by
exposing telnet

credentials.
Updates on firmware

sent in clear text.

Smart bulb security
issues [25]

Limitless LED
Philips Lux

Own receiver
introduced

API used to extract
secret information

Control packets have
eavesdropped

MITM attack caused
the private data to be

exposed.

Injected malware in an
iOS mobile application.
Peripheral IP devices

were attacked [30]

Camera
Netgear Nightawk

WeMO plug

iOS app
Scan results obtained

from cloud-hosted
server

Devices are located by
nearby LANs

Devices exposed to
public IP address

Server enabled the
attack on exposed

devices.
Device responses are
collected by SSDP to
check for IoT devices.

Smart socket reversed
communication [31] Socket Edimax plug Python scripts

Brute Force
Spoofing
scanning
Firmware

Device authentication
absent.

Insecure
communication

protocols
Feeble password policy.

Communication
protocols analyzed

with Edimax IP camera
architecture and

vulnerabilities [32]

Camera -

Determine all MAC
combinations to check

the status of online
devices. Brute Force

credentials.

Connection status
exposed by the camera.

Brute force attack.
Authentication

information is obtained
by spoofing attack

which impersonates
real cameras.

IP Camera traffic is
analyzed [33] IP Cameras Nmap

Wireshark

MITM and network
analysis

Video streams obtained
by Brute force port

RTSP

Commands/credentials
obtained in clear text.

Video streams not
obtained

Real-time streams are
exposed in RSTP port.

Insecam website sued
to retrieve live streams
of open cameras [34]

IP Cameras Domain scans of
angry IP

Check open-access
devices

Passwords not set for
many IP cameras.
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Table 1. Cont.

Attack Products Tested Tools Attack Approach Results

Attacks and
vulnerabilities on Fitbit

analyzed [35]
Fitbit Gattool

APKtool

Modify protocols by
analyzing firmware.
Information leakage

Access cloud by
modifying mobile app

of Fitbit

Leakage of information
Firmware

compromised
Gain access to cloud by

modifying app.

Smartwatches tested
for exploiting BLE

protocol [36]

Fitbit
Keyboard
LG watch

Wireshark Sniffing of packets

Unable to read personal
data by Ubertooth.
Packet formats not
recognizable due to

unawareness.

2.1. Vulnerability Mitigation Approaches and Security Testbeds

Penetration testing of IoT is performed and architecture was developed [37]. Testing
of various IoT devices such as smart home, wireless sensor networks (WSN), and smart
wearables is done to identify the security holes. An integrated AI security framework
which exploits machine learning approaches to detect new kind of cyber-attacks in IoT is
implemented [38]. Tempo-spatial correlation between different sensor data is analyzed for
threat identification. In this, knowledge-based and anomaly-based IDS were integrated.
Different IDS architectures are developed [39] for IoT devices. A semi-distributed technique
results in an accuracy of 99.97% and long CPU time of 186.26 s. However, in a distributed
approach, the accuracy obtained is only 97.8% but CPU time is relatively low of about
73.52 s. The constraint of the work is updated datasets on IoT are not available. A cost-
effective IDS for IoT was proposed [40], by cooperating between individual sensors and the
edge routers. DoS and botnet attacks are effectively identified by correlating events from
multiple IoT devices and thereby improve the detection rate and minimizing performance
overhead. An IoT dataset for dealing with DDoS attacks is generated [41], and used to
build models to prevent DDoS attacks. IDS datasets are limited for evaluation and testing,
therefore it is critical to confirm maximum interoperability through various developing
technologies. An IDS is developed to detect and minimize ping of death attacks and filter
out packets that are more than the required length [42]. A search strategy is used to solve
the problem.

2.2. IDS for IoT Using Machine Learning

IDS in the IoT environment have fascinated many researchers and developers due
to increase in the real time applicability of IoT devices. Machine learning techniques are
implemented for IDS in an IoT environment in many current studies.

An IDS based on LDA and single hidden layer neural network ELM is developed
for IoT [43]. A good generalization and detection accuracy of 92.35% is obtained which
is superior in comparison to other approaches. An anomaly-based intelligent IDS named
Passban is developed to analyze information collected from various IoT sources and identify
cyber-attacks which have different flow pattern in comparison to normal events [44]. A
real time IoT testbed is deployed on a resource-constrained home automation environment.
Malicious traffic is detected with low false positives and high accuracy. Local Outlier
Factor (LOF) and isolation Forest are deployed for class predictions which are one-class
classification approaches. A supervised three-layer IDS is developed to identify cyber-
attacks in IoT networks [45]. The proposed IDS can automatically differentiate between
normal and benign network activity with a maximum f-measure of 96.2%.

A detection system was proposed for sinkhole attacks which targeted the routing
devices [46]. In another analysis [47], battery exhaustion attacks were prevented on a
low energy Bluetooth network. A novel IDS was built using a rule-based architecture
for IoT environment [48]. The effort was to predict abnormal activity and identification
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of malicious IoT nodes. Naive Bayes was used as the classifier and open-source tool
Weka was used for performance evaluation. Another study proposed a machine learning-
based forensic mechanism for IoT botnets and Weka was used to determine the detection
accuracy [49]. A lightweight IDS on Raspberry Pi is implemented using machine learning to
protect against attacks in the IoT environment. A feature selection technique was integrated
to develop a lightweight system [50]. Ahmad et al. [51], built a machine learning framework
with CFS to identify normal behavior in Command-and-Control Communication channels
and malicious behavior. Real-world data sets were used for evaluation and various cost-
sensitive approaches integrated with various feature combinations to yield a superior
result. A Trust aware Collaborative Learning Automata IDS (T-CLAIDS) is developed for
VANETs [14]. The abnormal events are detected better using the proposed approach. The
scheme outperforms other approaches in terms of false alarm ratio, detection ratio, and
overhead. A standard cryptographic technique is used to develop intrusion detection in
the distributed vehicular cloud [52]. A 10% of detection rate in improvement is obtained
when compared with existing techniques. Figure 2 shows the traffic detection process of
BoT-IoT attacks. Lightweight IDS are necessary for IoT whereas existing IDS only target
high accuracy with a low false alarm.
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2.3. Enhancements for Upcoming IoT Applications

A standard and a well-built framework for an IoT application are not available. Hence,
substantial improvements in the current IoT application are needed to render it trustworthy,
robust, and secure. Therefore,

• Severe penetration testing of IoT devices is required to analyze the risk levels in device
installation for various applications. A priority list can be made according to the risk
involved and appropriately the devices can be deployed.

• Different layers of IoT and protocols are suing encryption techniques. There are
different phases in the application such as encrypt, decrypt, and re-encrypt which
makes the system susceptible to threats. Hence, a viable solution suggested for
preventing various threats is end-to-end encryption.
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• An authentication service must be implemented for interaction between devices.
Digital certificates can provide seamless authentication that is integrated with crypto-
graphic protocols could be a promising solution

• Encryption approaches like RSA and hashing techniques like SHA256 or hash chains
must be deployed for securing the user and environment.

• Cloud services are used by most of the applications for storage and retrieval of data
and hence cloud storage risks must be analyzed. Data security can be enhanced by
storing the encrypted data in the cloud and the provider cannot decrypt any ciphertext.

• IoT devices can be secured by the use of artificial-intelligence-based approaches.

2.4. Class Imbalance Problem in IoT Datasets

There are two major categories to remove class imbalance problem in datasets.

i. Data level solutions
ii. Algorithmic level

Data level solutions result in a balanced data distribution among the class labels
by redistributing the samples in the data space. Sampling is an elementary technique
to achieve class distribution balance within a dataset, either by adding examples into
the minority class called as oversampling or by removing examples from the majority
class. called as under-sampling. Tomek-linked under-sampling is widely preferred to
eliminate boundary samples [7]. Algorithmic level approaches result in an optimal solution
for class imbalance problem by modifying the classifiers. A cost function is defined
against misclassification in cost sensitive approaches and is one of the efficient algorithmic
based approaches. Various techniques for improving the class imbalance problem are
discussed in detail in the next section. In our proposed approach, the IoT traffic is highly
imbalanced—i.e., Minority IoT attack samples—are very less in comparison to normal IoT
traffic. Therefore, an algorithmic level under-sampling technique is adopted and deployed
in the framework.

3. Methods and Framework Adopted for Proposed Approach

This section discusses the approaches primarily used to implement the proposed
scheme in detail.

3.1. Identification of Outlier

A revision is performed on the concept of minority samples related to each Tomek-
linked majority samples. An element xi is considered as an outlier or boundary sample
according to the number of minority instances to which a majority sample, xi is associated
by a Tomek-link pair. The majority element xi is reclined to the data distribution of the
minority region and is responsible for deprivation in performance.

3.2. Identification of Redundant and Noisy Samples

The similarity measure between samples is termed as redundancy. The proposed
scheme employs three different similarity measures, namely, Euclidean Distance (ED),
Cosine Similarity (CS), and City-block Distance (CD). Each of the individual measures is
given in equations below:

(i). City-block distance (da) is represented in Equation (1).

da =
∣∣xi1 − xj1

∣∣+ ∣∣xi2 − xj2
∣∣+ · · ·+ ∣∣xim − xjm

∣∣ (1)

and
sim

(
xi, xj

)
=

1
d1

(2)



Electronics 2021, 10, 1955 8 of 29

(ii). Euclidean distance (db) for two samples xi and xj is represented in Equation (3).

db =

√{(
xi1 − xj1

)2
+
(
xi2 − xj2

)2
+ · · ·+

(
xim − xjm

)2
}

(3)

and
sim

(
xi, xj

)
=

1
db

(4)

(iii). Cosine similarity is a similarity degree which determines the cosine angle among two
samples, xi and xj where the result is within the series [0, 1]. Cosine similarity is given
in Equation (5).

sim
(
xi, xj

)
= cos θ (5)

(iv). Euclidean dot product is defined by

→
xi·
→
xj =

→
xi ×

→
xj cos θ (6)

(v). By substituting the value of cos θ in (6)

sim
(

xi, xj
)
=

∑i,j
(
xi, xj

)√
∑i x2

i × 4
√

∑j x2
j

(7)

The majority pair samples which contribute to the maximum similarity score
are removed.

3.3. Contribution Element, (Contrx)

This element specifies the probability mass function f (·) which specifies a fixed
group of distributions, represented as { f (·|θ ), θ ∈ x}, where θ represents model parameter
elements and the entire observation set is represented as x.

An estimator for predicting the parameter true value, θ is to be determined by
the function f (·). Thus, Equation (8) represents joint density function belonging to a
specific category.

f (x1, x2, · · · , xn|Cl) = f (x1|Cl)× f (x2|Cl)× · · · × f (xn|Cl) (8)

In Equation (8), Cl represents the majority class label and (x1, x2, · · · , xn) ∈ S′maj
where S′maj represents the redundant and noisy bulk samples.

The likelihood calculation of each sample, x1(1 ≤ i ≤ n, n = total number of samples)
is the objective of f (x1|Cl). This specifies the Cl possibility to be arranged in the discrete
class label set (0 or 1); if the class label of Cl available in the dataset is true. The likelihood
is represented in Equation (9) below

L(Cl |xi) = f (xi|Cl) = ∏n
i=1 f (xi|Cl) (9)

The disadvantage of maximum likelihood of zero estimation is overcome by the log-
likelihood function while determining the class label is Cl . A modified log-likelihood
function is a combination of each attribute value, xik (1 ≤ k ≤ a, where a is the number of
attributes) with the joint density function as given below

ln L(Cl |xik) = ln
n

∏
i=1

∏
k∈1, f

f (xik|Cl) =
n

∑
i=1

a

∑
k=1

ln f (xik|Cl) (10)
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Thus, the contribution term is represented as

Contrx =
1
N
× ln L(Cl |xik)× P(Cl)

P(x1, x2, · · · , xn)
=

1
N
×

n

∑
i=1

m

∑
k=1

ln f (xik|Cl) (11)

where, the prior probability of class is represented by P(Cl) and the log-likelihood function
is specified as ln f (xik|Cl).

3.4. Hadoop Architecture Overview

Big Data platforms are flexible in terms of data acquisition as it supports structured
and unstructured data. In addition, big data platforms like Hadoop are also used for data
integration, aggregation, representation, and query processing. Multiple tools are deployed
in the Hadoop environment thereby the computational complexity is minimized and
readily programmable. Huge volume of IoT network traffic records need to be processed
and Hadoop server can send the files to the server and obtain the desirable result. The
Hadoop ecosystem utilizes the pig tool to aggregate, MapReduce, join and filter the dataset
tuples to produce an optimal result. Figure 3 shows a high-level application architecture
design of Hadoop. A master slave approach is followed by Hadoop for storage and
data processing. The master node in HDFS is called as the NameNode and the slave
nodes manage data storage and complex computations. DataNode is responsible for
CPU intensive processes like statistics, machine learning tasks, language, and semantic
analysis. In addition, I/O intensive activities like data import, export, clustering, search,
decompression, and indexing are also executed by the DataNode. Thus, in our proposed
model, Hadoop architecture is implemented for faster and efficient processing of data.
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4. Proposed IoT Intrusion Detection Model
4.1. Machine Learning to Predict IoT Threats

Different IoT attacks listed below can be effectively identified by machine
learning techniques.
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• DoS Attacks: A serious concern is DoS attacks that originate from IoT devices. Multi-
Layer Perceptron (MLP) is one approach that secures networks against such attack.
MLP trained by integrating particle swarm optimization with backpropagation tech-
nique [53] was proposed which can enhance the security of wireless networks. The
detection accuracy will increase by using ML techniques and IoT devices will be
secured from the DoS attacks.

• Eavesdropping: ML techniques are used for protecting from eavesdrop on messages
during data transmission. ML techniques namely non-parametric Bayesian tech-
niques [54] and Q-learning based offloading strategy [55] can be used.

• Spoofing: Attacks can be avoided using Dyna-Q, Support Vector Machines (SVM) [10],
distributed FrankWolfe (DFW) [9], and Deep Neural Network [10], techniques. Classi-
fication accuracy increases using these techniques and the false alarm rate and average
error rate gets reduced.

• Privacy Leakage: IoT application trust [56] is developed by commodity integrity
detection algorithm (CIDA) developed from Chinese remainder theorem (CRT).

• Digital Fingerprinting: IoT systems can be secured by digital fingerprinting and
thereby end users will be confident to utilize applications. Smartphones, payments, un-
locking car and home doors are implementing fingerprinting. Nontraditional solutions
are developed using various machine learning algorithms which are given below.

Machine learning detects undesirable events in IoT devices by training algorithms
for data loss prevention and other security concerns. SVM algorithms are widely used
in digital fingerprinting and compared their approach with traditional models. SVM is
trained using the feature vector obtained based on the fingerprint pixel values. Artificial
Neural Network (ANN) provides several benefits such as generalization, adaptive learning,
and fault tolerance. A framework for identifying fingerprints digitally by using ANN has
been developed [56]. Hence, ML is capable of securing the IoT environment. Liang et al.
used machine learning techniques for analyzing the security models for IoT [57]. The
authors presented many review techniques using ML for IoT security.

4.2. Secure Model for IoT Traffic

The proposed model is developed in two phases as represented in Figure 4. A multi-
level architecture is implemented in the proposed model. In the initial stage, the bench-
marks IoT datasets are uploaded into the HDFS. Yarn, which is the resource manager
of Hadoop manages the name node, data node and secondary name node of the cluster.
The pig script is then executed in the Map Reduce node to implement the Map Reduce
functionality. The processed data is saved in the HDFS for further analysis. In the next level,
a data pre-processing is performed by standard scaling, label encoder, and under-sampling
of majority labeled samples. In the under-sampling technique, the samples with majority
class records concerning noise, contribution factor, and redundancy is performed. The final
stage is the prediction of the IoT network traffic by deploying three classifiers KNN, SVM,
and NB to predict the class labels. This approach improves the accuracy and minimizes
the false alarm rate. A hyperparameter optimization is performed using artificial immune
network. The desired accuracy is obtained in minimal amount of time because the datasets
are processed in Hadoop environment which is discussed in the experimental section. The
parameters of SVM, KNN, and naïve Bayes are tuned for optimal accuracy as shown in
Tables 2 and 3. The pseudocode of the various classifier predictions given in Appendix A.

Table 2. Optimal aiNet parameters.

Parameters Default Values Optimized Values

Threshold suppression 0.1 0.1
Number of clones generated 30 50

Number of clones multiplier (N) 20 50
Maximum number of generations 100 50
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Table 3. Tuned hyper classifier parameters.

Machine Learning Classifiers Parameter Name Default Parameter Value Optimized Parameter Range

SVM
Sigma (σ) 0.7 (0.1,0.9)
Cost (C) 1 (0.25,4)

KNN
Number of Neighbors (k) 3 (1,17)

Exponent (E) 3 (0.5,5)

NB Distribution 0 Normal (0,1)Electronics 2021, 10, x FOR PEER REVIEW 12 of 30 
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4.3. Data Pre-Processing
4.3.1. Identification of Outlier and Tomek-Link Pairs

Input:

• Dataset, D using ‘s’ samples and the feature space consisting of ‘a’ number of attributes.
• Smin, Smaj, and threshold (t) to calculate the majority index samples, xj.

Every sample is represented as (
→
xmyn), where (

→
xm) is the input vector for m-th sam-

ple, denoted as
→
xm = (xm1, xm2, . . . xmh), where h is the total feature set, 1 ≤ m ≤ s, and

yn = (yn1, yn2, . . . ync) is the selected class labels of the samples with a maximum of c-classes.
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Notation:

• Ss×h—An imbalanced dataset, with ‘s’ number of samples and ‘a’ represents the
number of attributes

• Smin—Minority class set samples, Smin = {xi|i = 1, 2, · · · , p}, ‘p’ is the sum of minor-
ity class samples.

• Smaj—Majority class set samples, Smaj =
{

xj
∣∣j = 1, 2, · · · , q

}
, ‘q’ is the sum of majority

class samples.
• Tk—Set of Tomek-linked samples.
• Indexxj —Total minority samples, to which majority sample, xj is connected as Tomek-

linked pair.
• Tk′—Improved subset of Tk, after removing xj samples, identified to be outliers.

Begin:

1. Split the complete dataset, Ss×l into two subsets, Smaj and Smin.
2. For every xi ∈ Smin, calculate the k-nearest neighbor using Euclidean measure,

xj, xj ∈ Smaj for k = 1.
3. The nearest neighbor

(
xj, xj

)
pairs are included in the subset,

Tk =
{(

xi, xj
)∣∣xi ∈ Smin, xj ∈ Smaj

}
.

4. For each xj ∈ Smaj, determine index xj.
5. If index xj > h, where h represents threshold; xj is identified as ‘outlier’, existing in

the minority area of the subset, REM =
{

xj
∣∣∀xj, index xj > h

}
and are removed.

6. Updating the subset Tk to Tk′ as Tk′ = Tk−
{

xj
}

7. Updating the subset Smaj to S′maj as S′maj = Smaj − {REM}.
Samples present in the set REM represent the outliers. There is a greater chance

of samples creating Tomek-link pair with multiple minority samples to be placed on the
incorrect side of the decision boundary. Samples belonging to Tk′ are represented as Tomek-
link paired samples which were sent to the subsequent phase for checking redundancy.

4.3.2. Estimation of Redundancy among Majority Samples

The majority class instances which exist close to the decision margin are identified
by redundancy and noise factors and are maximum similar to other majority samples.
The similarity measures which has been considered are CB, CS, and ED as detailed in
Section 3.2.

Input:

• S′maj, Tk′, r = number of utmost redundant samples which helps to create, Redn. Set
r = 1.

Begin:

1. For every xm ∈ S′maj, deploy the various distance measures like ED, CB and CS to
calculate the redundant pairs, S′maj specified in Equations (1)–(7) and transferred to the

subset, Redn as Redn =
{
(xm, xr)|∀xm, xr ∈ G′maj and sim(xm, xr) = maximum

}
.

2. A revised subset, T1_Redn is generated by eliminating the majority samples con-
tributing to redundancy and noise. Thus, the intersection of T′1 and Redn, is given as:

Tk_Redn =
{
∩xm ∈ G′maj|xm ∈ Tk, xm ∈ Redn

}
.

4.3.3. Estimation of the Contribution Factor

The contribution element, Contre is deployed to the majority category samples within
the set, Tk_Redn. The steps to calculate Contre is detailed in Section 3.3.

4.3.4. Under-Sampling of Majority Samples

The outliers xj are the initial ones to be removed from the majority samples. These
samples are determined based on their redundancy factor and contribution term. Noisy
samples which contribute to maximum redundancy and minimum contribution will be
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identified for removal. Hence, the objective function that can exclude a majority sam-
ple, from a pair which is redundant, (xu, xv) where (1 < u, v ≤ j ≤ q) is represented by
Equation (12) as

objective
(
eliminationxu or xv

)
← max

(
sim(xu, xv)

contxu

,
sim(xu, xv)

contxv

)
(12)

xu, xv ∈ Tk_Redn, i.e., it is to be noted that the sample with the minimum contribution
term will be removed if two noise samples are detected.

4.3.5. Algorithm

The pseudo code of the proposed pre-processing phase is summarized in
Algorithm 1 below:

Algorithm 1. Tomek-linked and redundancy-based under-sampling

Input:
A dataset, S with “n” samples and the feature space using “h” features. Each sample is
represented by (

→
xa, yb) where

→
xa is the vector input for ath th-sample, identified as

→
xa = (xa1, xa2, . . . . . . xah) with a sum of h-features and yb = (y1, f2, . . . .yc) are the chosen
category labels from the samples containing the sum of c-classes; where k = total of nearest
neighbors with set k = 1 to identify Tomek-link pair.
Begin:

Step 1:The two subsets of the data are, Smin and Smaj; Smin : {xi|i = 1, 2, . . . , p} and

Smaj :
{

xj

∣∣∣j = 1, 2, . . . , q
}

Step 2:Identification of Tomek-link pair and outlier:

2.1: For ∀xi ∈ Smin, create a subset, Tk with its k-NN from Smaj, as

Tk =
{(

xi, xj

)∣∣∣xi ∈ Smin, xj ∈ Smaj

}
.

2.2: Determine indexxj ← xi to which xj is linked, ∀xj ∈ Tk.
2.3: Hold xj in Tk, if indexxj < h; where h = threshold, otherwise, generate a subset,

REM as REM =
{

xj

∣∣∣∀xj, indexxj > h
}

, and is selected for direct removal. Tk is

updated to Tk′ as Tk′ = Tk′ −
{

xj

}
.

2.4: Smaj is updated to S′maj as S′maj = S′maj − {REM}.

Step 3:Redundant pair identification:

3.1: ∀xm ∈ S′maj(1 < m ≤ j), construct a set, Redn by using similarity methods given in
Equations (1)–(7) as Redn = {(xm, xm)}|∀xm ∈ S′maj}.

3.2: A modified subset, Tk_Redn is built as the intersection of Tk′ and Redn as
Tk_Redn = {∩xm ∈ S′maj|xm ∈ Tk, xm ∈ Redn}.

3.3: For each (xu, xv) ∈ Tk_Redn, determine contribution term for individual xu or xv,
according to Equation (11).

3.4: Delete xu or xv(xu, xv ∈ Tk_Redn), if either xu or xv fulfils the objective of removal,
specified in Equation (12).

3.5: Modify S′maj to S′′maj as S′′maj ← S′maj − Tk_Redn .

3.6: Integrate the updated S′′maj and Smin to build a balanced dataset,
SB as SB ← Smin∪ S′′maj

Output: New dataset, SB containing a balanced distribution of category labels

4.3.6. Naive Bayes (NB)

NB belongs to the category of probabilistic algorithm wherein the probability of all the
attributes and their outcome. This approach determines the event probability with regard
to earlier events occurrence which is called as the posterior probability.
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4.3.7. KNN

KNN is the simplest of all the existing models because training will be done only
while we classify the data [58,59]. Related data points will be grouped and also it examines
the closest data point having the K value. It is most widely used in the intrusion detection.
The KNN is used to examine the normal data and attack data.

4.3.8. SVM

Support vector machine (SVM) is a supervised learning approach that practices a
hyperplane to classify future predictions and to separate the training data. It splits a dataset
into two categories and the decision boundaries which helps to classify the data points.
SVM is widely deployed for intrusion detection as observable by the tremendous volume
of studies done over the years [57].

The detailed pseudocode of each of the three classifiers for prediction is given in the
Algorithm A1 of Appendix A section.

4.4. Classification

The model deploys three classifiers. Each classifier in this stage is trained with the
newly updated training set obtained after under-sampling. The prediction is then computed
using the test set. The three classifiers used in the proposed approach are:

1. Naive Bayes;
2. KNN; and
3. SVM

4.5. Artificial Immune Network (aiNet) for Hyperparameter Optimization

An optimization version (Opt-aiNet) which can be used in optimization problems is
available in aiNet [60]. A population is grown in Opt-aiNet which consist of a network of
antibodies and the population size can be dynamically adjustable.

The optimal hyper-parameters of machine learning techniques are determined by
Opt-aiNet as shown in Figure 5. SVM consists of the hyper-parameters σ and C. The
misclassification cost is represented by ‘C’ which represents the distance from the error and
margin. A balance of ‘C’ and σ is very crucial because the model gets overfitted if there is a
high value of C and σ. The hyperparameters of KNN are K which represents the number of
neighbors and E is Minkowski distance. NB has the hyperparameter namely distribution
type which can be normal or kernel density estimation. Table 2 shows the optimal aiNet
parameters. Table 3 represents the optimal parameter range of different machine learning
techniques obtained from aiNet.
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An initial population is created randomly with a size of 50. The antigen and anti-
body values are determined and the similarity between antibody and antigen (Ag) is also
determined. The similarity function is calculated as

Similarity(Aba, Abb) =
1

d(Aba, Abb),
(13)

where Similarity
(

Abx, Aby
)

is the association among antibodies and d represents the
euclidean distance between two antibodies Aba and Abb. The performance obtained by
every classifier is determined and the optimization process is iterated till the specified
number of generations perform satisfactorily. The similarity mutation is given as

C′ = c + γ·F(0, 1) (14)

α = (1/β)·e· − I∗ (15)

where C and C′ represent cell and mutated cell, the Gaussian random value of mean zero
and standard deviation σ = 1 is specified by F(0, 1), the control parameter is given by β
for determining the mutation range and the inverse exponential function decay, γ is the
similarity proportional and i∗ is the individual fitness. A mutation is accepted only when
the value of ‘c’ lies in the domain range. In the final step, new antibodies replace the old
ones. The fitness function process ends when the stopping criteria are reached. Thus, the
hyper-parameters are optimized and the optimal accuracy is achieved.

5. Results and Analysis

The model is implemented in the Hadoop and Jupyter platform. The performance of
the proposed scheme is evaluated with benchmark IoT datasets.

5.1. Datasets
5.1.1. ToN-IoT Dataset

Data is collected from different heterogeneous data sources such as IIoT sensors,
Operating Systems datasets of Windows and Linux from the UNSW Cyber Range and
IoT labs. These are the recent new generations of IoT and IIoT datasets for evaluating the
models built using machine learning approaches. The attributes of the dataset are different
for the edge, fog, and cloud layer captured data samples which are detailed in [7]. Different
attacks such as DDoS, DoS, and ransomware were implemented against IoT gateways, web
applications and computer systems within the IIoT network. In the proposed approach,
only edge layer data samples are used for analysis.

5.1.2. BoT-IoT Dataset

A dataset generated from the UNSW Canberra Cyber Range lab is deployed for
the analysis. The dataset encompasses both normal and malicious traffic. The different
attacks included in the dataset are Keylogging, DDoS, DoS, OS, service scan, and data
exfiltration attacks. The BoT-IoT dataset [6] is extracted using MYSQL by the researchers
of that lab and they have utilized only 5% of the original samples as the original dataset
is huge. The extracted 5% of data is approximately 1.07 GB of the total size, which is
about 3 million records. This is the motivation for adopting Hadoop framework in our
proposed work as the dataset is huge and can be processed only in a distributed cluster-
based environment. The different attributes in the data are detailed in [61]. Table 4 shows
the brief statistics of the various dataset files of BoT-IoT and ToN-IoT utilized for analysis.
In this table, the number of samples, features, number of minority samples, majority
samples, and imbalance ratio for every dataset is specified. Majority samples are the
instances in the dataset containing larger amount of class labels. Minority samples are
the instances in the dataset containing minimum amount of class labels. Tomek-linked
under-sampling is widely preferred to eliminate boundary samples [7]. For example from
Table 4, for the dataset Train_Test_Windows7, the following are Majority samples: Normal—
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10,000 samples and Minority samples: Backdoor-1780 samples, DDoS-2135, Injection-999,
Password-758, Ransomware-83, Scanning-227 and XSS-5. Imbalance ratio is calculated to
determine which datasets will require an under sampling based on the minimum difference
between minority and majority class labels. Thus, a modified Tomek-linked sampling is
deployed to perform under sampling. Similarly, the same procedure is followed for all
the datasets specified in Table 4. Imbalance ratio is the number of majority samples
to minority samples. Low IR specifies the minimum difference between minority and
majority class labels regarding sample count and hence those datasets will be preferred for
under-sampling.

Table 4. Statistics of dataset.

Dataset Dataset_Files Samples Features Minority
Samples

Majority
Samples

Imbalance
Ratio (IR)

ToN-IoT dataset

Train_Test_IoT_Fridge 59,944 5 24,944 35,000 1.40
Train_Test_Iot_garage_door 59,587 5 24,587 35,000 1.42
Train_Test_Iot_gps_tracker 58,960 5 23,960 35,000 1.46
Train_test_iot_modbus 51,106 7 16,106 35,000 2.17
Train_test_iot_thermostat 52,775 5 17,774 35,000 1.96
Train_test_iot_weather 59,260 6 24,260 35,000 1.44
Train_test_iot_motion_light 59,488 5 24,488 35,000 1.42

Train_test_Network 461,043 43 161,043 300,000 1.86
Train_test_Windows7 15,980 132 5980 10,000 1.67

Train_test_Windows10 21,104 124 10,000 11,104 1.11

BoT-IoT dataset Final_10_Best_testing 733,705 16 348,395 385,310 1.10

5.2. Comparison with Baseline Approaches

The proposed approach is compared with baseline models for performance. The
various baseline approaches for comparative analysis are:

1. Random under-dampling (RUS): This is one of the basic techniques for undersampling
to eliminate majority samples randomly.

2. Condensed nearest neighbor (CNN): This approach eliminates samples randomly
concerning nearest neighbor rule.

3. Tomek-link: This is a modification of CNN which eliminates interior samples that are
in the closeness of the decision boundary.

5.3. Setting Appropriate Values for Parameter ‘t’

In this approach, a parameter ‘t’ is deployed to identify an outlier from the samples of
Tomek-link pairs. The main objective is to identify the outliers from the Tomek-associated
samples. It is therefore required to select the value of ‘t’ in a medium scale. If the value
of ‘t’ is very high, then it can incorrectly identify outlier as potential samples. Similarly, a
low value of ‘t’ can delete important majority class samples. Selecting the ‘t’ parameter
is influenced by the classifier and similarity type measure for a particular category. The
impact of changing ‘t’ values over this proposed approach is evaluated for sensitivity
analysis. It is observed that ‘t’ value ranging from 10–15 are appropriate. The ‘t’ value that
results in the maximum accuracy for an explicit dataset is identified as the ideal ‘t’ value
for a specific dataset. The investigations are accomplished on three classifiers and three
distance measures as discussed in Sections 3 and 4.3. The sensitivity analysis results of
BoT-IoT and ToN-IoT dataset is presented in Tables 5 and 6 respectively. The best train
accuracy obtained is highlighted in tables for changing ‘t’ values. Table 7 presents the
statistics of various IoT datasets on which under-sampling is executed.
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Table 5. Sensitivity analysis of BoT-IoT dataset.

Distance Measure Classifier
Average Accuracy with Changing Values of ‘t’

t = 10 t = 11 t = 12 t = 13 t = 14 t = 15

Euclidean distance
KNN 98.52% 99.26% 97.08% 95.04% 96.69% 97.23%
SVM 96.24% 96.37% 97.37% 95.57% 94.37% 93.37%

Naïve Bayes 96.23% 96.02% 95.76% 95.59% 95.76% 96.49%

City-block
Distance

KNN 97.22% 95.22% 97.08% 96.89% 96.64% 96.64%
SVM 97.08% 97.23% 96.37% 97.37% 96.89% 97.08%

Naïve Bayes 95.91% 95.91% 95.47% 95.47% 95.47% 96.05%

Cosine
similarity

KNN 97.22% 97.22% 98.22% 96.93% 96.78% 96.78%
SVM 96.67% 96.79% 96.79% 96.85% 96.85% 97.08%

Naïve Bayes 95.76% 96.05% 96.05% 95.85% 97.61% 95.61%

Table 6. Sensitivity analysis of ToN-IoT dataset.

Distance
Measure Classifiers

Average Accuracy with ‘t’

t = 10 t = 11 t = 12 t = 13 t = 14 t = 15

Euclidean
distance

KNN 92.26% 92.37% 92.67% 90.89% 92.37% 91.37%
SVM 91.29% 91.37% 91.37% 91.37% 91.37% 92.54%

Naïve Bayes 94.45% 92.20% 90.59% 90.59% 92.34% 93.34%

City-block
distance

KNN 93.67% 91.08% 91.89% 92.89% 90.79% 91.79%
SVM 91.90% 92.23% 90.23% 93.23% 91.37% 92.22%

Naïve Bayes 92.59% 90.76% 91.22% 92.76% 92.05% 91.05%

Cosine
similarity

KNN 91.69% 91.37% 91.37% 91.69% 90.64% 92.12%
SVM 93.02% 90.37% 92.37% 90.37% 91.37% 90.89%

Naïve Bayes 92.64% 91.64% 90.64% 91.23% 92.61% 93.61%

Table 7. Imbalance ratio statistics of IoT datasets.

Dataset Dataset_Files IR (Prior
Undersampling)

IR (Post
Undersampling)

ToN-IoT dataset

Train_Test_IoT_Fridge 1.40 0.41
Train_Test_Iot_garage_door 1.42 0.44
Train_Test_Iot_gps_tracker 1.46 0.48

Train_test_iot_modbus 2.17 1.12
Train_test_iot_thermostat 1.96 0.94

Train_test_iot_weather 1.44 0.47
Train_test_iot_motion_light 1.42 0.44

Train_test_Network 1.86 0.91
Train_test_Windows7 1.67 0.90
Train_test_Windows10 1.11 0.25

BoT-IoT dataset Final_10_Best_testing 1.10 0.23

5.4. Hyper Tuning Parameters Using AiNet

Tables 8 and 9 presents the different parameter values tuned by aiNet during cross-
validation for SVM, KNN, and NB on BoT-IoT and ToN-IoT datasets, respectively. The
parameter value which produces minimum training errors and optimum cross-validation
accuracy are selected. The parameter setting performed by aiNet with varying parameter
values results in the highest average accuracy for further experimental analysis. The
proposed approach and the baseline techniques are analyzed by five-fold cross-validation.
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Table 8. Hyper parameter tuning cross-validation results on BoT-IoT dataset.

Model Name Precision Recall F1-Score Accuracy MCC Score

SVM 92.05% 91.62% 92.22% 90.07% 91.71%
NB 90.56% 91.12% 90.14% 91.57% 90.03%

KNN 91.86% 91.93% 91.07% 90.73% 93.00%

Table 9. Hyper parameter tuning cross-validation results on ToN-IoT dataset.

Model Name Precision Recall F1-Score Accuracy MCC Score

SVM 97.15% 95.58% 94.26% 95.11% 95.71%
NB 98.45% 96.11% 96.15% 98.59% 98.03%

KNN 96.77% 96.89% 98.10% 97.73% 99.05%

5.5. Results

Tables 10–12 shows the graphical illustration of the average test accuracy achieved
by the classifiers for all 11 datasets as described in Table 4. It can be observed from
Tables 10–12, there is a substantial improvement of the proposed work in case of seven
datasets which have imbalance ratio less than 1.5. There are four datasets which have
imbalance ration more than 1.5. Low IR specifies the minimum difference between minority
and majority class labels concerning sample count. The implementation of under-sampling
is a good option in these cases because the elimination of a specific amount of potential
weak samples creates a balanced dataset. The outliers, noisy, and redundant samples
are removed from the common group. The removal of likely weak samples modifies
the decision boundary near the minority region, thereby creating a satisfactory state for
training the three classifiers, KNN, NB, and SVM.

Table 10. KNN classifier prediction on all datasets.

Datasets
Existing Approaches Proposed Approach

RUS CNN TOMEK-LINK Euclidean City-Block Cosine
Similarity

Train_Test_IoT_Fridge 91.90% 92.70% 91.10% 91.90% 93.00% 94.90%
Train_Test_Iot_garage_door 90.80% 91.90% 89.80% 96.67% 92.81% 93.37%
Train_Test_Iot_gps_tracker 91.37% 92.17% 93.56% 94.68% 92.67% 93.82%

Train_test_Iot_modbus 91.60% 92.80% 89.80% 91.00% 92.00% 91.40%
Train_test_Iot_thermostat 87.00% 86.00% 89.00% 90.00% 89.90% 88.78%

Train_test_Iot_weather 90.30% 91.70% 91.50% 92.38% 92.78% 92.80%
Train_test_Iot_motion_light 90.00% 90.22% 90.30% 93.00% 92.00% 92.80%

Train_test_Network 82.70% 80.20% 80.20% 81.80% 82.05% 80.00%
Train_test_Windows7 81.48% 80.60% 82.30% 81.70% 80.40% 80.00%
Train_test_Windows10 92.80% 91.30% 92.50% 93.00% 93.40% 92.75%
Final_10_Best_testing 96.01% 97.21% 95.10% 98.10% 97.50% 98.40%

The datasets highlighted in bold in Tables 10–12 represent the low IR datasets wherein the undersampling is performed and resulted in
improved performance.

Table 11. NB classifier prediction on all datasets.

Datasets
Existing Approaches Proposed Approach

RUS CNN TOMEK-LINK Euclidean
Distance

City-Block
Distance

Cosine
Similarity

Train_Test_IoT_Fridge 89.10% 88.10% 89.60% 92.80% 91.10% 92.10%
Train_Test_Iot_garage_door 87.94% 88.37% 89.80% 90.80% 91.80% 92.80%
Train_Test_Iot_gps_tracker 89.30% 90.30% 91.24% 93.65% 94.10% 92.70%

Train_test_Iot_modbus 87.50% 88.00% 86.90% 89.00% 89.30% 89.70%
Train_test_Iot_thermostat 86.40% 87.60% 88.70% 89.00% 90.00% 90.40%

Train_test_Iot_weather 89.70% 88.50% 89.00% 90.14% 92.10% 93.30%
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Table 11. Cont.

Datasets
Existing Approaches Proposed Approach

RUS CNN TOMEK-LINK Euclidean
Distance

City-Block
Distance

Cosine
Similarity

Train_test_Iot_motion_light 92.30% 93.40% 91.30% 93.70% 94.00% 95.51%
Train_test_Network 87.00% 88.73% 86.50% 89.70% 89.00% 88.40%

Train_test_Windows7 86.26% 88.00% 89.60% 90.10% 90.56% 91.00%
Train_test_Windows10 89.90% 87.75% 89.40% 90.00% 91.30% 92.43%
Final_10_Best_testing 96.30% 97.30% 96.75% 98.40% 99.10% 99.30%

Table 12. SVM classifier prediction on all datasets.

Datasets
Existing Approaches Proposed Approach

RUS CNN TOMEK-LINK Euclidean City-Block Cosine
Similarity

Train_Test_IoT_Fridge 91.10% 90.10% 92.50% 94.50% 93.10% 94.10%
Train_Test_Iot_garage_door 91.50% 92.10% 90.80% 92.30% 94.00% 95.00%
Train_Test_Iot_gps_tracker 92.94% 94.60% 93.70% 96.00% 94.10% 94.70%

Train_test_iot_modbus 88.53% 87.37% 90.00% 94.80% 95.00% 93.00%
Train_test_iot_thermostat 89.40% 87.23% 82.30% 88.50% 88.34% 89.56%

Train_test_iot_weather 86.90% 84.70% 88.50% 83.70% 93.65% 91.40%
Train_test_iot_motion_light 94.30% 92.75% 91.40% 94.70% 96.00% 96.61%

Train_test_Network 89.80% 89.60% 85.90% 89.30% 90.60% 91.10%
Train_test_Windows7 82.30% 83.50% 87.00% 88.50% 89.00% 90.10%
Train_test_Windows10 91.37% 93.90% 94.50% 95.80% 98.10% 96.61%
Final_10_Best_testing 89.90% 88.24% 87.50% 92.50% 93.80% 93.25%

The results are better for the following datasets namely, IoT_Fridge, IoT_garage_door,
gps_tracker, IoT_modbus, IoT_Weather, IoT_motion_light, IoT_Windows10, and Final_10_
Best_Testing of BoT-IoT dataset. The KNN classifier accomplishes minimum for unbalanced
datasets because the majority voting inclines the decision of the classifier. This limitation of
KNN is overcome in the implemented proposed work as shown in Table 10. The execution
of the proposed scheme with NB and SVM is also illustrated in the results obtained in
Tables 11 and 12. It is observed from the tables that the proposed model achieves good
average accuracy in comparison to the Tomek-link technique, for seven datasets which have
low imbalance ratio. In the case of naïve Bayes, the approach aims to maintain the prior
probability of classes and eliminating boundary samples rather than outliers. The dataset
characteristics are represented by imbalance ratio (IR) which is as a statistical parameter.
Both prior under-sampling and post oversampling cases are evaluated in context to the
scenario and the statistics are shown in Table 7.

The proposed approach comes with an inbuilt under-sampling technique inclusive
of three similarity measures to estimate similarity among the samples namely, Euclidean,
city-block, and Cosine. It is observed that every dataset performance is influenced by
IR. Besides, it is also observed that Euclidean distance produces reasonable results in a
substantial number of datasets with all three classifiers. Therefore, Euclidean is considered
as the superior similarity measure in the proposed approach. Bold highlighted values in
Tables 10–12 show the high imbalance datasets resulting in low accuracy and the proposed
approach producing better results for all other seven datasets.

6. Performance Analysis

The performance of the proposed model is determined based on the performance
measures given in the next subsection.
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6.1. Confusion Matrix

The actual and real classification performed by a learner is obtained in the confusion
matrix. The various data entries present in a confusion matrix for a binary classifier
are following:

• True Positive (TP)—represents the total ‘positive’ samples characterized as positive
• False Positive (FP)—represents the total ‘negative’ samples characterized as positive
• False Negative (FN)—represents the total ‘positive’ samples characterized as negative
• True Negative (TN)—represents the total ‘negative’ samples characterized as negative

The various performance measures for binary categorization retrieved from the con-
fusion matrix values are shown in Table 13. The area-under-curve among two samples is
determined by calculating an integral among two separate data samples. An AUC test can
be confirmed according to the values given in Table 14.

Table 13. Performance measure assessment.

Assessment Formulae

Precision (P) TP/(TP + FP)
Recall (TPR/Sensitivity/R) TP/(TP + FN)

Specificity TN/(TN + FP)
F-measure 2 × P × R/(P + R)

AUC 1
2 ((TP/(TP+FN)) + TN/(TN + FP))

Table 14. Test validation using AUC score.

Range of AUC Test Result

0.5–0.6 Fail
0.6–0.7 Poor
0.7–0.8 Fair
0.8–0.9 Good
0.9–1.0 Excellent

The advantage of the proposed scheme is shown for derived performance measures.
The outliers, noisy and redundant sample of around 5% are removed from the majority
group. Thus, only a minor amount of potential weak sample is removed from the dataset
to create a balanced one. Tables 15 and 16 signify the performance measure assessment of
edge layer of ToN_IoT dataset and Final_10_Best_Testing of BoT_IoT dataset. Similarly,
performance is calculated for remaining datasets also. However, the outcomes of other
datasets are not represented because of space restrictions. The bold highlighted values of
Tables 15 and 16 shows the paramount results.

Table 15. Performance metric values for edge layer of ToN-IoT dataset.

Type of Classifier Distance
Function Precision Recall Specificity F-Measure AUC

Classifier:
KNN

RUS - 92.36% 90.24% 91.36% 91.67% 0.9231

CNN - 92.36% 91.15% 91.29% 90.08% 0.9131

Tomek-link Euclidean 92.36% 90.24% 90.36% 92.67% 0.9231

Proposed
scheme

Euclidean 93.00% 92.91% 92.14% 93.50% 0.9459
City-block 92.37% 93.50% 91.49% 92.87% 0.9377

Cosine
Similarity 91.56% 92.90% 93.00% 90.14% 0.9495
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Table 15. Cont.

Type of Classifier Distance
Function Precision Recall Specificity F-Measure AUC

Classifier:
SVM

RUS - 91.59% 89.83% 89.12% 92.07% 0.9023

CNN - 92.45% 90.82% 93.31% 91.11% 0.9103

Tomek-link Euclidean 90.45% 90.82% 92.31% 93.11% 0.9204

Proposed
scheme

Euclidean 92.00% 92.75% 92.22% 91.48% 0.9075
City-block 91.00% 92.25% 91.59% 90.99% 0.8907

Cosine
Similarity 90.00% 91.73% 91.22% 89.48% 0.8857

Classifier:
Naive Bayes

RUS - 89.45% 88.13% 88.45% 88.67% 0.8873

CNN - 89.27% 89.11% 89.01% 87.18% 0.8864

Tomek-link - 90.45% 90.00% 89.45% 89.67% 0.8973

Proposed
scheme

Euclidean 89.23% 90.00% 90.59% 91.99% 0.9112
City-block 88.00% 89.00% 89.11% 90.48% 0.8934

Cosine
Similarity 89.56% 89.36% 88.59% 90.99% 0.9056

The bold values highlighted in Tables 15 and 16 represent the best results obtained for the resepective undersampling technique integrated
with the classifier.

Table 16. Performance metric values for Final_10_Best_Testing of BoT-IoT dataset.

Type of Classifier Distance
Function Precision Recall Specificity F-Measure AUC

Classifier:
KNN

RUS - 95.61% 90.00% 94.00% 90.40% 0.9189

CNN - 90.25% 100.00% 93.33% 97.27% 0.9596

Tomek-link - 97.91% 96.76% 92.96% 97.94% 0.8987

Proposed
scheme

Euclidean 98.12% 95.00% 96.67% 99.18% 0.9424
City-block 97.45% 99.59% 96.96% 91.82% 0.9088

Cosine
Similarity 98.79% 98.60% 97.78% 98.00% 0.9626

Classifier:
SVM

RUS - 97.37% 96.19% 93.14% 93.00% 0.9231

CNN - 95.54% 91.58% 94.55% 92.06% 0.9693

Tomek-link - 96.34% 95.32% 91.81% 97.55% 0.9525

Proposed
scheme

Euclidean 96.79% 98.93% 97.74% 100.00% 0.9754
City-block 97.22% 97.04% 95.29% 98.47% 0.9683

Cosine
Similarity 98.05% 98.33% 99.71% 98.34% 0.9895

Classifier:
Naive Bayes

RUS - 85.85% 87.98% 92.52% 91.73% 0.9071

CNN - 88.89% 93.94% 91.33% 90.73% 0.9374

Tomek-link Euclidean 92.82% 87.84% 90.76% 90.78% 0.9104

Proposed
scheme

Euclidean 96.70% 95.86% 96.41% 92.13% 0.9163
City-block 97.90% 97.87% 95.41% 92.69% 0.9214

Cosine
Similarity 98.77% 94.85% 97.96% 98.76% 0.9591

6.2. Intrusion Detection in Hadoop

Different sub packages of the org.apache are utilized for various functionality of
execution and storage in the Hadoop environment. The various packages used in the
Hadoop environment is executed and shown in Figure 6. It is inferred from Figure 6 that the
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job subclass package present in the org.apache.hadoop is used to allow the user to configure
the job, submit, control the execution and query the state. In general, the user creates the
application, describes various aspects of the job and submits the job and monitors the
progress. The JobSubmitter class can specify access control lists for viewing or modifying a
job via the configuration properties mapreduce.job.acl-view-job and mapreduce.job.acl-
modify-job respectively. By default, nobody is given access in these properties. In addition,
MapReduceLauncher is a main class that launches pig for Map Reduce. The other class
namely RMProxy which is a subclass of org.apache.hadoop.yarn.client is utilized for
connecting to the Resource Manager and used by the NodeManagers only. This class
creates a proxy for the specified protocol. An Inter-process communication is established
between client and server by utilizing the following class of org.apache.hadoop.ipc.client.
The ClientServiceDelegate class is responsible for monitoring the application state of the
process running in various namenode clusters. It returns the FinalApplicationStatus as
succeeded and redirects to job history.
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Figure 6. HDFS dataset partitioning—initial level.

Figure 6 shows the HDFS partitioning of the dataset files at the initial level which
will be executed in three different slave nodes. Various commands are executed such
as $start-dfs.sh for invoking namenode, datanode, and secondary namenode. The node
manager and resource manager are initialized with the command $start-yarn.sh. This is
required for distributing the resources and data in HDFS. Thus, from the figure, it is evident
that three files are executed in map reduce and shows the percentage of complete as 0%,
7%, and 20% in yellow color in the figure. Figure 7 shows the shows the HDFS partitioning
at final level where in the computation is 100% complete after partitioning and executing
the computation in a distributed manner. Our input data is the rawdataset.csv which is
in HDFS. After executing the store statement, the following output will be obtained. A
directory is created with the specified name and the data will be stored in it. The statistics
inferred from Figure 7 is there are five Job Ids which have various feature outputs to
perform mapping, sampling, ordering, querying, and mapping to the final job status. The
complete BoT-IoT dataset is executed in 24 min 39 s in comparison to 6 h in a normal
stand-alone environment.
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Table 17 shows the computational time of the benchmark datasets in Hadoop environ-
ment. The datasets having less samples do not contribute much in the computational time
in a Big Data platform. However, samples of Train_test_network containing 461,043 records
and final_10_best_testing samples containing 733,705 records have been executed in less
than 30 min whereas in standalone environment, execution time was more than 3 to 4 h.

6.3. Discussion

The proposed model implements a Hadoop based framework, effective pre-processing
using under-sampling technique to remove outlier, noisy and redundant samples from the
majority group. The threshold, for identifying the outlier is considered between 10 and 15.
The sensitivity analysis result indicates the impact of the parameter, ‘t’ on the effectiveness
of the model and the similarity measure choice is critical for the model. The deployment of
three classifiers such as KNN, naïve Bayes, and SVM is used to test the superiority of the
baseline schemes with different parameter settings as shown in Table 3. A hyper parameter
tuning using AiNet also improves the cross-validation accuracy before prediction on
BoT-IoT and ToN-IoT datasets.

Table 17. Computational time of the benchmark datasets in Hadoop environment.

Datasets No. of Samples Computational Time

Train_Test_IoT_Fridge 59,944

1 min 15 s

Train_Test_Iot_garage_door 59,587
Train_Test_Iot_gps_tracker 58,960

Train_test_iot_modbus 51,106
Train_test_iot_thermostat 52,775

Train_test_iot_weather 59,260
Train_test_iot_motion_light 59,488

Train_test_Network 461,043 12 min 14 s

Train_test_Windows7 15,980
40 sTrain_test_Windows10 21,104

Final_10_Best_testing 733,705 24 min 39 s
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The various performance measure results of the proposed approach are shown in
Section 6.1 and baseline techniques using three classifiers for all dataset samples of BoT-IoT
and ToN-IoT. The classification accuracy increases by detecting outliers for the minority
samples, which results in increased recall and precision in maximum cases for the proposed
approach. Concerning specificity, the proposed approach outdoes the baseline techniques
for both datasets. Table 7 presents a statistics of IR on datasets which demonstrates the
efficiency of the proposed approach as it focused on a balanced IoT traffic.

Figure 8 demonstrates the performance of various machine learning approaches [62]
on the Bot-IoT dataset. It is evident from the results that the integration of the two phases,
namely, modified Tomek link under-sampling and machine learning parameter tuning
provides the best performance with an accuracy of 99% for BoT-IoT dataset. The proposed
model is also compared with a recent literature [17] which has been verified on BoT-IoT
dataset. The proposed model has an overall 19% improvement in accuracy in comparison
with the state of the art techniques. Figure 9 signifies the performance comparison of differ-
ent machine learning approaches on the edge layer of ToN-IoT dataset with the proposed
approach [57,60–64]. The proposed model integrates modified Tomek link under-sampling
and hyper parameter tuning using AiNet approach for the supervised machine learning
classifiers which enhances the overall performance on both the datasets. Conflicting with
prevailing works, our analysis shows a broad assessment for the real attack and simulated
attack data which were generated by simulating a realistic network at the University of
New South Wales where real attacks on IoT networks were recorded.
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7. Conclusions

Autonomous malware attacks are increasing day by day in IoT. This malware affects
cross-platform applications and spread between platforms thereby resulting in a devastat-
ing effect on connected devices. Numerous researchers have proposed different machine
learning techniques for developing a secure framework for IoT. The major contribution
of this paper is the usage of a Hadoop based framework integrating an enhanced Tomek-
link under-sampling technique for preprocessing and classification using three different
supervised classifiers namely NB, SVM, and KNN. The huge volume of IoT traffic datasets
increases the computational time in a stand-alone environment. Hence, a HDFS is deployed
and all the datasets are loaded inside the Hadoop repository for faster computation. The
datasets are hugely imbalanced and hence there is a need to perform under-sampling of
majority samples during preprocessing and the classification is performed by machine
learning models. A hyper-parameter tuning is performed using Opt-AiNet for tuning the
parameters of NB, SVM, and KNN for improved cross-validation accuracy. The perfor-
mance of BoT-IoT and ToN-IoT datasets on the proposed approach was experimented with
various performance metrics like precision, recall, specificity, f-measure, and AUC. The
results are compared with traditional approaches to illustrate the supremacy. This is be-
cause big data platform is deployed to minimize the computational time and an increase in
accuracy is obtained due to the effective data pre-processing and model tuning techniques.
There has been a significant increase in average accuracy in BoT-IoT and ToN-IoT datasets
in comparison with the contemporary IDS techniques for IoT using machine learning
approaches. The computational time is also significantly reduced for the datasets in an
HDFS environment.
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CFS Correlation based Feature Selection
CST-GR Correlated-set thresholding on gain-ratio
DNS Domain Name System
ELM Extreme Learning Machine
FAR False Alarm Rate
IDS Intrusion Detection System
IoMT Internet of Medical Things
IoT Internet of Things
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LMT Logistic Model Tree
NB Naïve Bayes
PCA-GWO Principal Component Analysis-Grey Wolf Optimization
RF Random Forest
SVM Support Vector Machine
VFDT Very Fast Decision Tree
VoIP Voice Over Internet Protocol
WSN Wireless Sensor Network

Appendix A

Pseudocode of machine learning classifiers of the proposed approach:
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Algorithm A1. Proposed Approach

Given: Classifier M1(SVM), M2(NB), M3(KNN)i
Input: Optimal featured dataset D Output: Class label

Step 1:Set all weights in Wi = 1/n, where n represents the total sample count.
Step 2:For every sample data di

• Fit the SVM classifier to (Xt, Yt) using weights Wi
• For each class label k = 1 . . . K obtain the hypothesis

• xs ← argmin(λ
∣∣∣ f(xj

)∣∣∣+ (1− λ)max |k(xi ,xj)√
k(xi ,xj)k(xj ,xj)

• D ← D ∪ {xs}
• Label (D)
• L← L ∪ {S}

Step 3:For every sample data di

• Fit the NB classifier to (Xt, Yt), using weights Wi
• For each class label k = 1 . . . K obtain the prior and posterior probabilities
• Calculate the posterior probability
• P(x|cj) = ∑n

i=1 P(Xi = xi|cj)

• And the class label is assigned as follows:

L∗ = hNB(x) = argmaxP
(

cj

)
∑n

i=1 P(Xi = xi|cj)

Step 4:if Label(M1) 6= Label(M2)
Step 5:Fit the KNN to (Xt, Yt) using weights Wi

• Choose the value of K
• Calculate the Euclidean distance for all the training samples.
• Store the Euclidean distances in an array to sort it.
• Determine the first k points.
• Assign a class to the test sample by estimating the majority of classes identified in the

chosen points
• Perform hyper parameter tuning of SVM, NB and KNN using Artificial

Immune Network

Step 6:Predict the test data label from steps (2), (3) and (4) using a majority voting
Step 7:Determine the performance metrics.
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