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Abstract: Single image super-resolution task aims to reconstruct a high-resolution image from a
low-resolution image. Recently, it has been shown that by using deep image prior (DIP), a single
neural network is sufficient to capture low-level image statistics using only a single image without
data-driven training such that it can be used for various image restoration problems. However, super-
resolution tasks are difficult to perform with DIP when the target image is noisy. The super-resolved
image becomes noisy because the reconstruction loss of DIP does not consider the noise in the target
image. Furthermore, when the target image contains noise, the optimization process of DIP becomes
unstable and sensitive to noise. In this paper, we propose a noise-robust and stable framework based
on DIP. To this end, we propose a noise-estimation method using the generative adversarial network
(GAN) and self-supervision loss (SSL). We show that a generator of DIP can learn the distribution of
noise in the target image with the proposed framework. Moreover, we argue that the optimization
process of DIP is stabilized when the proposed self-supervision loss is incorporated. The experiments
show that the proposed method quantitatively and qualitatively outperforms existing single image
super-resolution methods for noisy images.

Keywords: image restoration; deep image prior; super-resolution

1. Introduction

Single image super-resolution (SISR) aims to generate a high-resolution (HR) image
from a low-resolution (LR) image. SISR has become one of the important tasks in com-
puter vision. Unlike most deep learning models that are trained on large-scale datasets,
Ulyanov et al. [1] recently proposed a deep image prior (DIP) that utilizes a deep neural
network (DNN) as a strong prior for image restoration by using only a single image. The
results of DIP show that the DNN is useful for capturing meaningful low-level image statis-
tics. With the success of DIP [1], it has been utilized in several ways due to its usefulness
for a variety of purposes. DIP has significance in the applications where collecting large-
scale of datasets is difficult and expensive, such as hyperspectral image processing [2,3].
Furthermore, DIP can be used for optimization methods when solving inverse problems
such as super-resolution, deblurring and denoising [4,5].

In particular, it was demonstrated that the super-resolution (SR) problem for a given
target image x0 can be solved using DIP by minimizing the following reconstruction
loss term:

E(x; x0) = ||DS(x)− x0||2, (1)

where DS(·) is a downsampling operation and x is the restored HR image. By using the
downsampling operation, the spatial resolution of x becomes the same as that of x0.

In practice, the images taken from cameras equipped in the mobile embedded system
are prone to have low-resolution and be corrupted by noise due to the small sizes of the
camera sensors and apertures [6]. In such situations, the performance of DIP in the SR task
(DIP-SR) [1] is significantly degraded (see Figure 1a). The degradation is attributable to
the following two reasons. First, the reconstruction loss (Equation (1)) of DIP-SR does not
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consider the noise in x0. The loss term only minimizes the pixel-wise difference between
DS(x) and x0; hence, DS(x) tends to be noisy. As DS(x) is dependent only on x, the fact
that DS(x) contains noise implies that x also contains noise. Therefore, DIP-SR requires an
additional constraint to handle noise effectively. Second, the DIP optimization process is
unstable and sensitive to noise. It has been shown that, for a noisy input image, DIP needs
early-stopping during the optimization process in order to avoid overfitting the generated
image to the noise so that a clean image can be obtained. However, DIP is limited in the
absence of a ground-truth image because it cannot be determined whether the result of the
early-stopping is the optimal solution. Therefore, it is essential to obtain a method for DIP
to achieve noiseless results through a reliable optimization process without early-stopping.

Herein, we propose a novel DIP-based SR framework that can restore a clean HR
image from a noisy LR image. As mentioned earlier, one of the main drawbacks of DIP-
SR [1] is that it does not consider noise when minimizing the reconstruction loss in the LR
space. Since the noisy LR image contains both signal and noise, the signal needs to be learnt
by separating the noise from the LR image. However, separating the noise from an image is
very challenging in the absence of ground-truth information. In order to overcome this, we
propose a framework to learn the distribution of noise, even when the ground-truth of noise
is unknown. As shown in Chen et al. [7], generative adversarial networks (GANs) [8] have
the capacity to learn the complex distribution of noise. Inspired by this finding, we employ
the GAN framework to estimate noise. Specifically, our framework consists of a generator
and a discriminator. The generator aims to reconstruct a clean HR image from a noisy LR
image. If a clean HR output is restored by the generator, the downsampled result is also a
noise-free LR image. Thus, the difference between the downsampled result and the noisy
target image must follow the distribution of the real noise. Based on this, we trained our
discriminator to determine whether the distribution of the extracted noise follows the real
noise distribution. We sampled the real noise sample from Gaussian distribution because it
is one of the most common noise models in the image restoration field [9]. The use of an
adversarial framework allows our generator to learn how to reconstruct noiseless HR image.
In contrast to [7], which utilizes large scale datasets, our framework is trained to extract the
noise for only a single image. In addition, we propose a self-supervision loss to increase the
stability of the optimization process and prevent early-stopping. In general, signals tend
to have high self-similarity (low entropy and low patch diversity) whereas noise has low
self-similarity (high entropy and high patch diversity) [1,10]. Ulyanov et al. [1] showed that
the parameters of convolutional neural networks (CNNs) have high impedance to noise
and low impedance to signals. Owing to this characteristic, when the target image is noisy,
the signals are learnt by the CNN in the early stages of optimization before overfitting to
noise occurs. In other words, the results of the early stages of optimization are noiseless and
significant. Thus, we assume that the result of the early stage of optimization can be used
as an effective regularizer for noise-free signal reconstruction. Based on this assumption,
we propose a self-supervision loss that utilizes the result of the previous iteration step
during the optimization process. By comparing the output image of the current step with
that of the previous step, the reconstructed image can retain the learned signal without
following the noise in the target image. Thus, the proposed loss prevents the reconstructed
image from becoming noisy and it results in stable optimization process without the need
for early-stopping.

Extensive experiments on the SISR task in various scenarios show that our method
achieves the best quantitative and qualitative results in comparison to the existing SISR
methods. Figure 1 exemplifies that our method generates realistic and clean HR image,
whereas DIP-SR [1] suffers from noise.

Our main contributions can be summarized as follows:

• We present a GAN [8] framework to estimate the noise in a target image. Given only
a noisy LR image without the ground truth, our generator reconstructs a clean HR
image. The noise is estimated by learning the noise distribution in the LR image.
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• We introduce the self-supervision loss (SSL), a novel approach for resolving the
dependency on early-stopping and instability in the DIP [1] optimization process.

• We achieve competitive results in various experiments on Set5 [11] and Set14 [12]
datasets. The proposed method outperforms the existing SISR methods.

(a) (b) (c) (d) (e)

Figure 1. Generated images and PSNR results obtained from bicubic upsampling, DIP-SR [1], and
our method when the input LR image is noisy (scaling factor = 2). Note that our method does not
suffer from noise, unlike bicubic upsampling and DIP-SR. (a) Input (21.05 dB), (b) Bicubic (23.66 dB),
(c) DIP-SR [1] (18.43 dB), (d) Ours (26.67 dB) and (e) Ground Truth.

2. Related Works

Learning-based approaches using convolutional neural networks (CNNs) have re-
cently achieved excellent performance in image SR. Most CNN-based SR models are trained
in a supervised manner using large-scale datasets that contain LR and HR image pairs.
Thus, these models learn a well-generalized distribution of the HR images from the training
data. SRCNN [13], which learns the mapping from an interpolated LR image to a HR
image, was first proposed in the pioneering work. However, the direct mapping of the
input image to the target image is difficult to achieve. In order to alleviate this difficulty,
a VDSR that learns only the residuals between the input and target images in a process
called global residual learning was proposed in [14]. Since the global residual learning
greatly reduces the learning difficulty and model complexity [15], it has been used in many
SR models including [16–22]. Ledig et al. [16] proposed a SRResNet that combines the
ResNet [23] architecture with global residual learning. In addition, the authors applied
adversarial training [8] to image SR in order to generate realistic images. EDSR [17] em-
ploys a multi-scale architecture with global residual learning and is able to restore HR
images with various upscaling factors in a single model. Guo et al. [18] proposed a wavelet
prediction network for SR by using residuals. SRDenseNet [24], RDN [20], ESRGAN [19]
and DRLN [22] combined DenseNet [25] blocks and global residual learning in order to
capture rich features. Benefiting from global residual learning, most existing SR methods
are trained to enhance high-frequency information. Due to this characteristic, they also
amplify the noise in the LR images. In addition, they do not leverage the information
specific to a single image as a prior because they are trained to model the distribution
of large external datasets. By contrast, we propose a noise-robust image SR method that
focuses on the internal information in a given single image.

Instead of using large scale training datasets, a deep image prior (DIP) [1] framework
that requires only a single observation for image SR was recently proposed. The authors
found that convolutional layers can be used as a prior for image restoration tasks such
as SR, denoising and inpainting. DIP optimizes the CNNs in a self-supervised training
scheme without the use of ground-truth image. By minimizing the pixel-wise difference
between the reconstructed image and the target image, DIP generates a natural image with
fine details. However, DIP-based SR often fails when the target LR image contains noise.
Moreover, the performance of DIP relies heavily on early-stopping. In contrast to DIP, our
method can restore a clean HR image from a noisy LR image without early-stopping.
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3. Proposed Method

Our goal is to restore a clean HR image from a noisy LR image based on the DIP
framework. In this section, we first introduce a DIP for a SR task (DIP-SR) [1], which is
closely related to our work. We further analyze why DIP-SR fails to restore a high-quality
image from a given noisy LR image. We then describe the proposed noise estimation
method, which effectively reduces the noise elements while performing image SR. We
subsequently describe our novel loss function, called the self-supervision loss (SSL), which
helps to provide a stable optimization process in our network. Finally, we introduce the
total loss.

3.1. Deep Image Prior (DIP)

Given an input LR image ILR ∈ RH×W×C and the scaling factor s, DIP-SR [1] generates
a HR image IHR ∈ RsH×sW×C. By using a generator G, a code vector z ∈ RsH×sW×C is
mapped to a super-resolved image ÎHR ∈ RsH×sW×C as ÎHR = G(z). The reconstruc-
tion loss for measuring the error between the downsampled generated image and ILR is
defined as follows:

Lrec = ||DS( ÎHR)− ILR||2, (2)

where DS(·) is a downsampler with scaling factor s. Since DIP uses the most common
downsampling operators, such as Lanczos, the downsampler is not trainable.

However, when DIP-SR attempts to super-resolve a LR image that has noise, DS( ÎHR)
is likely to be noisy because a pixel-wise comparison between DS( ÎHR) and ILR is per-
formed in the reconstruction loss (Equation (2)). Since DS is not trainable, DS( ÎHR) is
dependent only on ÎHR. Thus, the fact that DS( ÎHR) contains noise signifies that ÎHR also
contains noise. In addition, we observe that there exists a point at which the quality of
the reconstructed image deteriorates as the optimization process proceeds further. From
that point, the output is overfitted to the noisy input image and the performance of DIP
deteriorates noticeably. This observation emphasizes that DIP early-stopping is required in
DIP in order to obtain a reasonable result. However, it is difficult to determine when to
stop the optimization process if the clean image is absent.

To this end, both a solution to handle noise in the target image and a method to avoid
early-stopping are required for DIP [1]. In order to address these problems, we first propose
a noise estimation method to help our generator estimate the noise in the target image
using the GAN [8] framework in Section 3.2. We also propose a self-supervision loss, which
provides a stable optimization process and is described in detail in Section 3.3. Finally,
the total loss and the algorithm of our framework are introduced in Section 3.4.

3.2. Noise Estimation Using GAN

In general, a noisy image IN can be modeled as the summation of the clean image IC
and noise n as follows.

IN = IC + n. (3)

The noisy LR image can be handled more easily if the noise can be estimated and
extracted. We therefore propose a GAN-based [8] noise estimation method to separate the
noise from the reconstructed image.

As illustrated in Figure 2, our framework consists of a generator G and discriminator
D. Given a noisy LR image ILR

N , our generator G maps a code vector z to the reconstructed
image ÎHR

C .
ÎHR
C = G(z). (4)

For comparison with the target LR image, ÎHR
C is downsampled to ÎLR

C through the
downsampler DS(·). Our discriminator D is trained to generate the probability y for
predicting whether the input noise nin is real or fake as y = D(nin). In the case that nin is
real, then y becomes yreal . If nin is fake, y becomes y f ake. While the real noise sample n is
generated synthetically, the fake noise sample can be extracted as follows.
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n̂ = ILR
N − DS(G(z)) = ILR

N − ÎLR
C . (5)

Figure 2. Overall architecture of the proposed model. Through a generator G, the input code tensor
z is mapped to a noiseless HR image. For comparison with the target image, the generated image is
downsampled via the downsampler. The discriminator D encourages G to learn the noise distribution
in the target image.

The extracted noise n̂ is made to follow the distribution of the real noise using the GAN
framework. Adopting the WGAN loss [26], which stabilizes the optimization, the min-max
game between the generator G and discriminator D is defined as follows:

min
G

max
D

En[D(n)]−En̂[D(n̂)], (6)

where E[·] represents the expectation operation. Finally, the adversarial loss is defined as
the following.

Ladv = −En̂[D(n̂)]. (7)

This adversarial loss Ladv penalizes the generator G by using the distance between the
distribution of n and the distribution of the extracted sample n̂.

3.3. Self-Supervision Loss (SSL)

In general, noise has low self-similarity and high entropy because it contains no
structure. Unlike noise, signals have high self-similarity and low entropy [27]. In a
previous study on DIP [1], it was found that the parameters of CNNs have high impedance
to noise and low impedance to signals. Due to this, when the target image is noisy, CNNs
learn the signals in the early stage of the DIP optimization process before learning the
noise components.

Inspired by this property of CNNs, we present a novel loss function called the self-
supervision loss. The proposed framework is optimized through several iterations. In each
optimization step, the proposed network outputs the reconstructed image. We hypothesize
that the result of an earlier stage can be used as a constraint to reconstruct a noiseless HR
image for the following stage. Accordingly, our self-supervision loss utilizes the output
of the previous iteration step during training. SSL compares the output image of the
current step with that of the previous step. By performing this, the reconstructed image
maintains the learned signal without following the noise in the target image. In other
words, by adding a constraint to the output image to preserve the learned signal, we avoid
early-stopping and a dependency on the number of steps. The SSL for each step is defined
as follows:
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Lssl = || ÎHR
C,i − ÎHR

C,i−1||2 + || ÎLR
C,i − ÎLR

C,i−1||2, (8)

where ÎHR
C,i and ÎLR

C,i represent ÎHR
C and ÎLR

C at the ith optimization step, respectively.

3.4. Total Loss Functions

Our total loss function Ltotal consists of the reconstruction loss Lrec (Equation (2)),
the adversarial loss Ladv (Equation (7)) and the self-supervision loss Lssl (Equation (8))
as follows:

Ltotal = Lrec + λadvLadv + λssl Lssl , (9)

where λadv and λssl are hyperparameters that are empirically set as 1.2 and 1, respectively.
The proposed algorithm for our framework is summarized in Algorithm 1. z and n

are sampled from the uniform distribution U and Gaussian distribution G, respectively.
We solve the SR problem with a noisy image in the case where the noise distribution and
noise level σ are known. The code tensor z is perturbed with additional noise before z
enters the network. At each iteration, we first train the discriminator. Our generator is
then trained using Equation (9). Note that randomly-initialized parameters are used in the
downsampler DS(·).

Algorithm 1: Training scheme of proposed method.

Require: Maximum iteration number T, noise level σ, noisy LR image ILR
N ,

randomly-initialized Generator G0, randomly-initialized Downsampler DS,
randomly-initialized Discriminator D0

1: z← U(0, 0.1)
2: n← N(0, σ)

3: for i = 0 to T do
4: perturb z
5: n̂← ILR

N − DS(Gi(z))
6: Calculate the discriminator loss using Equation (6)
7: Compute the gradient w.r.t. Di

8: Update the parameters of Di

9: perturb z
10: ÎLR

C ← DS(Gi(z))
11: Calculate the reconstruction loss using Equation (2)
12: n̂← ILR

N − DS(Gi(z))
13: Calculate the adversarial loss using Equation (7)
14: if i = 0 then
15: Lssl ← 0
16: ÎHR

C,0 ← Gi(z)
17: ÎLR

C,0 ← DS(Gi(z))
18: else
19: ÎHR

C,i ← Gi(z)
20: ÎLR

C,i ← DS(Gi(z))
21: Calculate the self-supervision loss using Equation (8)
22: end if
23: Calculate the total loss for generator using Equation (9)
24: Compute the gradient w.r.t. Gi

25: Update the parameters of Gi

26: end for
27: IHR

C ← GT(z)
28: return Clean HR image IHR

C
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4. Experimental Results
4.1. Dataset

We evaluate our method on the general SR test sets including Set5 [11] and Set14 [12].
Unlike the existing SR methods, our approach considers the degradation of the given
LR image by noise. Therefore, we prepare LR noisy images by downsampling the HR
images by a factor s and then adding Gaussian noise of level σ. In order to evaluate the
general SR performance for various degradations, we use multiple upsampling factors (i.e.,
s = ×2,×4) and noise levels (i.e., σ = 15, 25).

4.2. Implementation Details

Our framework is implemented in Pytorch [28]. The proposed generator is similar to
U-net [29] and the discriminator is the same as a Markovian discriminator [30] with a patch
size of 11× 11. In order to train both the generator and the discriminator, we adopt the
Adam optimizer [31]. The learning rates are set to 1× 10−2 for the generator and 1× 10−4

for the discriminator. We optimize the generator and discriminator by using our objectives
for 2000 iterations in the same manner as DIP-SR [1]. We use a single NVIDIA TITAN XP
GPU for every single image in all the experiments.

4.3. Comparison with Existing Methods

We compare our approach with various SR methods such as DIP [1] and data-driven
DL methods (i.e., DRLN [22], HAN [32] and SAN [33]). Two different sets of experiments
with DIP were performed because the denoising problem and the SR problem were solved
individually by DIP using different architectures and optimization methods. The first set
involved the use of DIP for the SR task with noisy LR images; this is denoted as DIP-SR.
The second set involved the sequential applications of two DIP networks, which were used
for noise removal and SR, and denoted as DIP-Seq. For DIP-Seq, we optimize DIP for noise
reduction and the SR task over 1800 iterations and over 2000 iterations, respectively. All
experiments are performed with the authors’ official code.

4.3.1. Quantitative Comparison

We evaluate the performance of our method using PSNR, SSIM [34] and FSIM [35],
which are widely used in image quality assessment. Table 1 shows the quantitative compar-
isons for Set5 [11] and Set14 [12] at scaling factors of ×2 and ×4 and the noise levels σ = 15
and σ = 25. From the results, it can be observed that our method significantly outperforms
the existing methods and achieves the best performance at all scaling factors and noise
levels, except at s = 2 and σ = 15 on the Set14 dataset. The results for the SR methods
(i.e., DIP-SR [1], DRLN [22], HAN [32] and SAN [33]) show that the existing approaches
are vulnerable to noise in images. Even when the noise level is low (i.e., σ = 15), their
performances are significantly worse than that of our method (see Table 1). When DIP was
sequentially applied for noise removal and DIP-SR, the performance improves compared to
DIP-SR (compare the results of DIP-SR and DIP-Seq in Table 1). However, the performance
is still not as good as that of our method. We attribute the superior performance of our
method to the effects of our GAN [8] framework in which the discriminator encourages
the generator to reconstruct a clean output image and estimates the noise. In addition,
the results show that the proposed self-supervision loss Lssl in Equation (8) permits a more
reliable optimization of the existing DIP algorithm for image restoration.

4.3.2. Qualitative Comparison

Visual comparisons are shown in Figures 3–6. The results of the bicubic upsampling
method suffer significantly from noise. This is because the resulting images are generated
using the pixel values of the given image, which contains the unexpected noise. The results
of DIP-SR, DRLN, HAN and SAN clearly show the side effects of the existing SR algorithms
that amplifies the noise when input images are contaminated by noise (see the second,
fourth, fifth and sixth columns in Figures 3–6). By contrast, the proposed method restores
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clean SR images that are close to ground truth. As shown in third columns in Figures 3–6,
the results of DIP-Seq are less noisy than those from existing SR methods. However, noise
artifacts still exist prominently in the resulting images. This indicates that the sequential
optimization using two DIP networks for noise and SR is insufficient for handling both
noise and SR. By contrast to the results of existing methods, we effectively remove the
noise during the SR process and achieve clean HR image.

Table 1. Quantitative comparisons on Set5 [11] and Set14 [12]. The best results are highlighted in bold.

Method Scale Noise
Set5 Set14

PSNR SSIM FSIM PSNR SSIM FSIM

Bicubic ×2 σ = 15 25.74 0.8447 0.8620 24.44 0.7723 0.8831
DRLN [22] ×2 σ = 15 22.03 0.7136 0.7545 21.40 0.6592 0.8241
HAN [32] ×2 σ = 15 21.81 0.7055 0.7519 21.19 0.6488 0.8206
SAN [33] ×2 σ = 15 22.06 0.7162 0.7573 21.36 0.6575 0.8237
DIP-SR [1] ×2 σ = 15 23.07 0.7680 0.7881 22.59 0.7125 0.8561
DIP-Seq [1] ×2 σ = 15 26.97 0.9050 0.8926 25.64 0.8253 0.9100
Ours ×2 σ = 15 27.81 0.9127 0.8886 24.96 0.7871 0.8658

Bicubic ×2 σ = 25 22.91 0.7473 0.7882 22.06 0.6703 0.8212
DRLN [22] ×2 σ = 25 17.71 0.5438 0.6181 17.38 0.4925 0.7187
HAN [32] ×2 σ = 25 17.73 0.5413 0.6273 17.29 0.4850 0.7214
SAN [33] ×2 σ = 25 17.73 0.5444 0.6284 17.24 0.4858 0.7214
DIP-SR [1] ×2 σ = 25 18.35 0.5676 0.6478 18.44 0.5330 0.7469
DIP-Seq [1] ×2 σ = 25 22.36 0.7695 0.7872 23.08 0.7367 0.8643
Ours ×2 σ = 25 26.72 0.8906 0.8806 24.15 0.7631 0.8495

Bicubic ×4 σ = 15 22.81 0.7862 0.7945 21.81 0.6553 0.7954
DRLN [22] ×4 σ = 15 20.77 0.6913 0.7425 19.85 0.5931 0.7513
HAN [32] ×4 σ = 15 20.92 0.6909 0.7453 19.88 0.5900 0.7538
SAN [33] ×4 σ = 15 20.58 0.6804 0.7430 19.75 0.5745 0.7533
DIP-SR [1] ×4 σ = 15 21.43 0.7153 0.7627 20.69 0.6241 0.7874
DIP-Seq [1] ×4 σ = 15 22.86 0.7960 0.8084 22.23 0.6988 0.8372
Ours ×4 σ = 15 25.13 0.8710 0.8457 23.26 0.7742 0.8414

Bicubic ×4 σ = 25 21.04 0.7025 0.7563 20.31 0.5933 0.7549
DRLN [22] ×4 σ = 25 16.91 0.5312 0.6234 16.15 0.4359 0.6373
HAN [32] ×4 σ = 25 17.31 0.5371 0.6360 16.66 0.4466 0.6529
SAN [33] ×4 σ = 25 16.95 0.5242 0.6330 16.29 0.4343 0.6463
DIP-SR [1] ×4 σ = 25 17.58 0.5421 0.6479 17.16 0.4610 0.6753
DIP-Seq [1] ×4 σ = 25 18.83 0.6150 0.6976 18.76 0.5481 0.7428
Ours ×4 σ = 25 22.03 0.7696 0.7909 21.10 0.6589 0.7931

4.3.3. Runtime Comparison

As shown in Table 2, we compare the runtime of our method with those of existing
methods. The measured runtime is the average value over 10 images with the size of
256× 256× 3 on a PC with a single NVIDIA Titan XP GPU. Even though data-driven DL
methods show fast inference time, they require training time for a large dataset. Note that
since our method optimizes the network only for a given image, we do not need additional
training time. The runtime of our method is similar to DIP-SR. However, our runtime is
faster than that of DIP-Seq because DIP-Seq sequentially performs noise removal and SR,
while our method efficiently generates noise-free SR images.

Table 2. Comparison of the averaged runtime when the size of the input LR image is 256× 256× 3.

Method DRLN [22] HAN [32] SAN [33] DIP-SR [1] DIP-Seq [1] Ours

Runtime (s) 0.663 1.258 0.946 149.815 225.087 146.334
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3. Qualitative comparisons of Set5 [11] and Set14 [12] (×2, σ = 15). (a) Bicubic, (b) DIP-SR [1], (c) DIP-Seq, (d) DRLN [22],
(e) HAN [32], (f) SAN [33], (g) Ours and (h) Ground truth.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Qualitative comparisons of Set5 [11] and Set14 [12] (×2, σ = 25). (a) Bicubic, (b) DIP-SR [1], (c) DIP-Seq, (d) DRLN [22],
(e) HAN [32], (f) SAN [33], (g) Ours and (h) Ground truth.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Qualitative comparisons of Set5 [11] and Set14 [12] (×4, σ = 15). (a) Bicubic, (b) DIP-SR [1], (c) DIP-Seq, (d) DRLN [22],
(e) HAN [32], (f) SAN [33], (g) Ours and (h) Ground truth.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Qualitative comparisons of Set5 [11] and Set14 [12] (×4, σ = 25). (a) Bicubic, (b) DIP-SR [1], (c) DIP-Seq, (d) DRLN [22],
(e) HAN [32], (f) SAN [33], (g) Ours and (h) Ground truth.
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4.4. Ablation Study

We propose a noise estimating framework using GAN [8] to estimate the noise and a
SSL to provide stable optimization for DIP [1]. In order to demonstrate the effectiveness of
our method, we conduct ablation studies by gradually adding the noise estimation method
(i.e., Equation (7)) and SSL (Equation (8)) based on the reconstruction loss (Equation (2)).
For the ablation studies, the scale factor and noise level are set to 2 and 25, respectively.

As depicted in Figure 7, when only reconstruction loss is used, the optimization pro-
cess becomes overfitted within approximately 500 iterations, resulting in poor performance.
When the noise estimation method is applied, the optimization process performs stably
without overfitting in the early stage. Furthermore, after 800 iterations, our framework
with the noise estimation method outperforms the case that only reconstruction loss is used.
The final proposed model, which includes both the noise estimation method and SSL, not
only shows the most stable optimization process but also achieves the best performance.
At the 2000th iteration, our final model shows the best performance compared to the other
methods. Although the number of iterations is set to 2000 in DIP [1], we optimized each
algorithm to run for 3500 iterations to show the independence from early-stopping. We can
therefore confirm that even when the number of iterations exceeds 2000, the performance
of our method improves steadily.

Figure 7. PSNR vs. iteration plot. The plot demonstrates the instability of DIP and the ability of our
self-supervision loss to stabilize the optimizing process and avoid overfitting.

The results in Figure 8 clearly show the qualitative effectiveness of our proposed
method. In the early stages, when only the reconstruction loss is used, the results are
optimized more quickly than those from our method (see the results of 100 and 600 itera-
tions in Figure 8). However, as the iteration progresses, the generator reconstructs more
unwanted noise elements, resulting in unpleasant images. Therefore, its results suffer
from the presence of noise components in the target image. By contrast, when only the
noise estimation method is applied, the results were reliably restored as the iterations
proceeded. In this case, the noise elements are observed at approximately 1300 iterations.
In comparison, our final model, which adopts both the noise estimation method and SSL,
can restore the details well without generating noise elements until 2000 iterations. The
PSNR, SSIM and FSIM results are shown in Table 3. When we additionally use the noise
estimation method, our method performs much better than when only the reconstruction
loss is used with average increase in PSNR of 7.5 dB, SSIM of 0.3094 and FSIM of 0.2217.
After the additional adoption of SSL, our final method generates higher quality HR images
with average increase in PSNR of 0.87 dB, SSIM of 0.0136 and FSIM of 0.0111.
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Lrec

input

Lrec + Ladv

Lrec + Ladv + Lssl

Lrec

input

Lrec + Ladv
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100
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600
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1.3k
iterations

2k
iterations
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truth

Figure 8. Ablation study for “bird” image and “baby” image in SET5 dataset (s = 2, σ = 25).
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Table 3. Ablation study on the Set5 [11] dataset (s = 2, σ = 25). The best results are highlighted in bold.

Method Loss
Baby Bird Butterfly Head Woman Avg.

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Baseline Lrec 19.32 0.5766 0.7806 18.43 0.6129 0.6041 17.36 0.7302 0.6175 18.54 0.3808 0.6051 18.12 0.5375 0.6319 18.35 0.5676 0.6478
+ noise estimation Lrec + Ladv 27.94 0.9036 0.9335 25.49 0.8921 0.8382 23.92 0.9253 0.8580 26.50 0.7661 0.8449 25.38 0.8980 0.8729 25.85 0.8770 0.8695
+ noise estimation + SSL Lrec + Ladv + Lssl 28.09 0.8983 0.9226 26.67 0.9129 0.8824 24.91 0.9401 0.8854 27.23 0.7840 0.8233 26.68 0.9175 0.8893 26.72 0.8906 0.8806
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5. Conclusions

In this paper, we propose a DIP based noise-robust SR method. Our framework
combines a noise estimation method and the self-supervision loss with DIP-SR. By adopting
the proposed noise estimating method, the noise in the given LR target image can be
estimated. The use of the self-supervision loss increases the stability of the optimization
process. By using extensive experiments, it can be concluded that our method achieves
outstanding performance both quantitatively and qualitatively.

Author Contributions: Conceptualization, S.H., T.B.L. and Y.S.H.; software, S.H.; validation, S.H.;
investigation, S.H. and T.B.L.; writing—original draft preparation, S.H. and T.B.L.; writing—review
and editing, S.H., T.B.L. and Y.S.H.; supervision, Y.S.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Ministry of Science and ICT (MSIT), South Korea, un-
der the Information Technology Research Center (ITRC) Support Program supervised by the Institute
for Information and Communications Technology Promotion (IITP) under Grant IITP-2021-2018-0-01424.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9446–9454.
2. Ma, X.; Hong, Y.; Song, Y. Super resolution land cover mapping of hyperspectral images using the deep image prior-based

approach. Int. J. Remote Sens. 2020, 41, 2818–2834. [CrossRef]
3. Sidorov, O.; Yngve Hardeberg, J. Deep hyperspectral prior: Single-image denoising, inpainting, super-resolution. In Proceedings

of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019.
4. Sagel, A.; Roumy, A.; Guillemot, C. Sub-Dip: Optimization on a Subspace with Deep Image Prior Regularization and Application to

Superresolution. In Proceedings of the ICASSP 2020—IEEE International Conference on Acoustics, Barcelona, Spain, 4–8 May 2020;
pp. 2513–2517. [CrossRef]

5. Mataev, G.; Milanfar, P.; Elad, M. Deepred: Deep image prior powered by red. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019.

6. Abdelhamed, A.; Lin, S.; Brown, M.S. A high-quality denoising dataset for smartphone cameras. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1692–1700.

7. Chen, J.; Chen, J.; Chao, H.; Yang, M. Image blind denoising with generative adversarial network based noise modeling. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 3155–3164.

8. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. arXiv 2014, arXiv:1406.2661.

9. Cattin, D.P. Image restoration: Introduction to signal and image processing. MIAC Univ. Basel Retrieved 2013, 11, 93.
10. Gandelsman, Y.; Shocher, A.; Irani, M. “Double-DIP”: Unsupervised Image Decomposition via Coupled Deep-Image-Priors.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 11026–11035.

11. Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi Morel, M.L. Low-Complexity Single-Image Super-Resolution based on
Nonnegative Neighbor Embedding. In Proceedings of the British Machine Vision Conference, Surrey, UK, 3–7 September 2012;
pp. 135.1–135.10. [CrossRef]

12. Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up Using Sparse-Representations. In Proceedings of the International
Conference on Curves and Surfaces, Avigon, France, 24–30 June 2010; pp. 711–730.

13. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199.

14. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

15. Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020.
[CrossRef] [PubMed]

16. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.
Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

17. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144.

http://doi.org/10.1080/01431161.2019.1698079
http://dx.doi.org/10.1109/ICASSP40776.2020.9054270
http://dx.doi.org/10.5244/C.26.135
http://dx.doi.org/10.1109/TPAMI.2020.2982166
http://www.ncbi.nlm.nih.gov/pubmed/32217470


Electronics 2021, 10, 2014 15 of 15

18. Guo, T.; Seyed Mousavi, H.; Huu Vu, T.; Monga, V. Deep wavelet prediction for image super-resolution. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 104–113.

19. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial
networks. In Proceedings of the European Conference on Computer Vision Workshops, Munich, Germany, 8–14 September 2018.

20. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481.

21. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 286–301.

22. Anwar, S.; Barnes, N. Densely residual laplacian super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [CrossRef]
[PubMed]

23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

24. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4799–4807.

25. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

26. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223.

27. Fan, W.; Yu, H.; Chen, T.; Ji, S. OCT Image Restoration Using Non-Local Deep Image Prior. Electronics 2020, 9, 784. [CrossRef]
28. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–12 December 2019; pp. 8026–8037.

29. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015;
pp. 234–241.

30. Li, C.; Wand, M. Precomputed real-time texture synthesis with markovian generative adversarial networks. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 702–716.

31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (Poster), San Diego, CA, USA, 7–9 May 2015.

32. Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single image super-resolution via a
holistic attention network. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
pp. 191–207.

33. Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11065–11074.

34. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

35. Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process.
2011, 20, 2378–2386. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TPAMI.2020.3021088
http://www.ncbi.nlm.nih.gov/pubmed/32877331
http://dx.doi.org/10.3390/electronics9050784
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1109/TIP.2011.2109730
http://www.ncbi.nlm.nih.gov/pubmed/21292594

	Introduction
	Related Works
	Proposed Method
	Deep Image Prior (DIP)
	Noise Estimation Using GAN
	Self-Supervision Loss (SSL)
	Total Loss Functions

	Experimental Results
	Dataset
	Implementation Details
	Comparison with Existing Methods
	Quantitative Comparison
	Qualitative Comparison
	Runtime Comparison

	Ablation Study

	Conclusions
	References

