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Abstract: The paradigm of Internet-of-things (IoT) systems is changing from a cloud-based system to
an edge-based system. These changes were able to solve the delay caused by the rapid concentration
of data in the communication network, the delay caused by the lack of server computing capacity, and
the security issues that occur in the data communication process. However, edge-based IoT systems
performance was insufficient to process large numbers of data due to limited power supply, fixed
hardware functions, and limited hardware resources. To improve their performance, application-
specific hardware can be installed in edge devices, but performance cannot be improved except for
specific applications due to a fixed function of an application-specific hardware. This paper introduces
an edge-centric metamorphic IoT (mIoT) platform that can use various hardware modules through on-
demand partial reconfiguration, despite the limited hardware resources of edge devices. In addition,
this paper introduces an RISC-V based metamorphic IoT processor (mIoTP) with reconfigurable
peripheral modules. We experimented to prove that the proposed structure can reduce the server
access of edges and can be applied to a large-scale IoT system. Experiments were conducted in a
single-edge environment and a large-scale environment combining one physical edge and 99 virtual
edges. According to the experimental results, the edge-centric mIoT platform that executes the
reconfiguration prediction algorithm at the edge was able to reduce the number of server accesses by
up to 82.2% compared to our previous study in which the prediction process was executed at the
server. Furthermore, we confirmed that there is no additional reconfiguration time overhead even for
the large IoT systems.

Keywords: IoT (Internet of Things); hardware reconfiguration; edge computing; metamorphic platform

1. Introduction

The IoT is a system in which diverse social infrastructures such as electronic devices,
cars, and buildings are connected through the Internet, and where the connected objects
transmit and receive data from each other and operate organically. With the recent uni-
versalization of the IoT, the number of things connected to the IoT network has increased
rapidly, and, accordingly, the amount of generated data is also increasing rapidly [1,2].
In this paper, both the things that generate data and embedded devices located close to
data sources are defined as edges.

Unlike PCs and servers, edges cannot have a stable power supply and sufficient
computing resources. As such, in most IoT systems, the edge only handles simple tasks that
can be processed with limited computing resources such as data collection, preprocessing,
and environmental control. Complex tasks such as inference, situation judgment, and big
data processing are processed by sending data to the server. In addition, applications that
need to process large numbers of data such as artificial intelligence (AI) and healthcare
have been increasing recently [3,4]; however, large numbers of data were transmitted to
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the server due to the lack of computing power at the edge. Due to these changes, delays
due to network congestion, bandwidth limitations, and server workload limitations are
occurring [5,6].

The scope of application of the IoT is also diversifying [7–9]. As the numbers of
facilities and objects that are integrated with the IoT—such as smart factories, smart
buildings, and smart cars—are increasing, the number of edges that have to process
various data and various operations is also increasing. For these requirements, if a general-
purpose micro-controller is used, various operations can be performed, but processing
performance is very poor. In addition, if a specific application hardware is used, the high-
speed processing of specific operations is possible, but it is not possible in other operations.
Recently, like ARM NEON, a structure that processes repeated parallel multiply-accumulate
(MAC) operations using single instruction multiple data (SIMD) instructions is also used
for parallel data processing [10,11]. However, although the architecture that supports SIMD
shows some performance improvements, it cannot show more than the parallel architecture
hardware designed for specific applications [12]. Therefore, edge-computing-based IoT
systems that process data directly at the edge still experience processing delays due to
performance limitations [13].

In order to increase the computing performance of the edge, implementing all the
necessary hardware is also limited by the environmental constraints of the edge such
as limited hardware resources and limited power supply. In general, it is rare that all
implemented hardware is active at the same time. In most cases, the hardware has the
characteristic that only the necessary parts are partially activated. Therefore, if only the
necessary hardware can be implemented in real time, the system will benefit greatly in
terms of hardware resources and power [14–16].

A typical example of the above case is a fault tolerance structure or a fault monitor
module. The critical section of IoT edge hardware is not fixed but rather changes according
to the operation. Therefore, it is necessary to implement data observation functions for
various operations of IoT devices [17–19]. However, software-based fault monitoring is
inadequate because it has limitations in observing data that change every hour faster than
the instruction execution speed and affect the performance of the main application. There-
fore, in systems where reliability is important, a hardware-based fault monitor is required.
However, implementing all monitors for various critical sections is not appropriate in
terms of hardware size, power consumption, and cost due to the characteristic of edge
environments. Therefore, it is necessary to efficiently monitor the target system in terms
of energy and cost using a system that can implement only the necessary hardware in
real time.

This paper proposes a second mIoT platform based on mIoTP in order to efficiently
operate hardware in the fault tolerance applications, as shown in Figure 1. The mIoTP
is a reconfigurable processor that can reconfigure some peripheral modules on demand.
The processor requests the necessary hardware modules to the mIoT server while executing
the main application, and the server reconfigures the module in the reconfigurable region
by transmitting the requested hardware bitstream to the edge.

It is in the hardware reconfiguration process that the overhead for communication
between the edges and the server, the processing of reconfiguration requests in the server,
and the reconfiguration of the hardware occur. In a previous work by the authors of this
paper, we used a callability-based reconfiguration prediction technique to reduce this
overhead, along with a three-layer structure consisting of a main server, edge servers,
and edges. The callability is a probabilistic value indicating which hardware will be called
in the next processor’s operation. Through these techniques, effective reconfiguration
management at the server and reduction of reconfiguration time overhead were possible
in a large-scale IoT system. However, the bitstream caching algorithm (BCA), which is a
callability-based reconfiguration prediction algorithm, was operated on the edge server.
Accordingly, the control-flow information of the edge software had to be transmitted
to the edge server for reconfiguration prediction. Thus, it was found that unnecessary



Electronics 2021, 10, 2088 3 of 17

server access to transmitting edge operation information occurs excessively, as shown in
Table 1. Therefore, in this paper, server access could be further reduced with an edge-centric
structure that processes the BCA algorithm at each edge and accesses the server only when
prediction fails. Through this structural change, this study was able to reduce server access
for the edge hardware reconfiguration by up to 82.2% compared with the author’s work.
In addition, the changed structure could be applied both to large-scale IoT systems without
requiring any additional reconfiguration time overhead and to more dynamic applications
by updating the callability look-up table (LUT) at each edge in real time.
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Figure 1. Overall structure of mIoT platform.

Table 1. Type of communication between edge and server.

Type L1-Miss Information Transfer Pre-Reconfiguration

Composition >0.1% 82% 17.9%
Time(s) 0.8 >0.001 0.8

This paper is organized as follows: Section 1 (Introduction) contains the necessity of
the study and a brief description of the study, Section 2 (Background) explains the basic
knowledges of the study, Section 3 (Edge-Centric mIoT Platform) explains the proposed
structure in detail, Section 4 (implementation) explains the implementation of the proposed
structure by applying it to the fault-tolerance case, Section 5 (Experiment) presents an
experiment to verify the proposed structure, Section 6 (Discussion) considers the research
results in terms of power consumption and reconfiguration time overhead, and finally
Section 7 (Conclusions) explains the research conclusion.

2. Background
2.1. Dynamic Partial Reconfiguration (DPR)

The biggest advantage of the field-programmable gate array (FPGA) is its re-
programmability. With this advantage, the designer can continuously update the design.
However, as with updating the system software firmware, there is a disadvantage in
that an operation gap occurs when reconfiguring the entire FPGA logic using a new bit-
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stream [20,21]. However, with the DPR technology provided by Xilinx, it is possible to
overcome this disadvantage and design more flexible systems. DPR is a technology that can
partially reconfigure only the reconfigurable region while ensuring continuous operation
of the static region by separating the design into a static logic and a reconfigurable logic
during the design flow, as shown in Figure 2 [22,23]. In general, the entire hardware is not
activated at the same time. Therefore, if a module with less probability of being used could
be replaced with another module, it would be possible to perform more diverse operations
with smaller hardware resources [24–26].

Reconfig. Block “A”

A1.bit
A2.bit

A3.bitFPGA
Static logic

Reconfigurable logic

Reconfig. Block “B”

B1.bit
B2.bit

B3.bit

Full.bit

Static

Reconf

Initialization

Figure 2. Dynamic partial reconfiguration.

DPR techniques can be classified depending on whether or not an external flash
memory is used to store partial bitstreams. If the partial bitstream to be used is stored in
an external flash memory, the reconfiguration can be quickly processed. However, there
are two drawbacks to this. First, an external memory, such as the SPI-flash memory, is
required. In general, external memories are known to consume 100 times more power
than an internal memory logic, which is inappropriate in IoT edge environments where
the power supply is insufficient. Second, an additional internal logic is needed to read
partial bitstream from an external memory and reconfigure the FPGA itself [27]. In addition,
software to access the external DRAM memory and several Xilinx’s modules such as partial
reconfiguration controller (PRC) and internal configuration access port (ICAP) are required.
Therefore, the method of using external memory did not fit the purpose of the present
research to implement only the necessary internal logic. In addition, since only the partial
bitstream pre-stored in an external memory can be used, the operation flexibility of edge
devices is limited by the size of the external memory. As a result, DPR techniques that
do not use an external memory in IoT edge environments are effective in terms of power
consumption, flexibility of operation, and the utilization of internal logic.

2.2. Metamorphic IoT Platform (mIoT)

In general, cloud-based platforms such as Hardware-as-a-Service (HaaS) have been
widely adopted for IoT systems in order to overcome the insufficient computing power of
the edge [28,29]. However, due to the universalization of the IoT, the number of edges that
are connected to servers is increasing, and bottlenecks are occurring due to constraints on
network bandwidth [30]. This problem can be partly improved by the recent development
of wireless communication technologies such as 5G and Bluetooth, and wired communica-
tion technologies such as optical fiber. However, as the volume of data processed by the
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server increases, server workload problems occur due to the limited server resources [30].
Thus, the edge cannot reduce processing delays without reducing network and server
dependency. On the other hand, if all calculations are processed on an edge, as mentioned
before, processing delays also occur due to the poor performance and flexibility of the
edge [31,32]. Therefore, this paper proposes a metamorphic IoT platform that can reduce
server workload and network dependency compared to the cloud-based system and in-
crease the processing performance and flexibility compared to the edge-based IoT system.

The mIoT platform is an IoT platform that has metamorphism that can change the
hardware configuration of the edge in real time depending on the situation [33]. The
dictionary definition of metamorphism is “(of rock) changed into a new form and structure
by very great heat and pressure;” in other words, its structure and shape are changed by the
external environment. The proposed mIoT can be reconfigured with appropriate hardware
according to the external environment of the IoT operation and the operation state of the
application software.

The proposed platform can overcome network congestion and the delays caused by
server resource overload, which are the main problems of the server-centric IoT platform,
and improve the lack of performance and flexibility, which are the main problems of the
edge-centric IoT platform. The mIoT platform is a three-layer structure composed of edges,
edge servers, and main servers and the server reconfigures the edge’s FPGA when the edge
requests hardware from the server. In other words, the edge requests the hardware from the
edge server in a timely manner, and the edge server sends the bitstream to the edge if it has
the requested hardware bitstream. If the edge server does not have the requested bitstream,
however, the edge server requests the main server to create the bitstream. The edge of the
mIoT platform is an FPGA-based device equipped with DPR technology, and the edge logic
is designed by dividing it into static logic and reconfigurable logic at the FPGA’s design
flow. The server reconfigures the requested logic in the reconfigurable region according to
the edge operation, while the edge server processes the reconfiguration operation according
to the reconfiguration request of the edge, and the main server is responsible for hardware
synthesis and bitstream generation. This type of platform structure allows diverse hardware
modules and accelerators to be used on the edge devices despite the limited hardware
resources while enhancing the performance and flexibility of the edge devices.

The proposed mIoT platform consists of edge devices with an embedded FPGA
that can process various data and server structures for reconfiguring the FPGA with low
reconfiguration time overhead. To reconfigure an FPGA, network connections are required
because the bitstream must be transmitted from the server, but the system is safe from
security threats and attackers because data are not transmitted to the outside; however,
if reconfiguration is not needed, the data can be processed directly at the edge regardless
of the network connection. Thus, the proposed platform offers better security, network
independence, and flexibility than existing cloud-centric (CC) and edge-centric (EC) IoT
systems. Thus, the CC-based platform shown in Figure 3a can perform powerful and
diverse operations by transferring data from the edge to the cloud, but bottlenecks, latency,
and security threats can occur; whereas the EC-based platform shown in Figure 3b can
address the cloud problem by directly processing data at the edge, although various
computing operations are not possible in this case. Finally, as shown in Figure 3c, the mIoT
system can not only mitigate the disadvantages of the CC by directly processing data at
the data source but can also mitigate the disadvantages of the EC by receiving various
hardware functions from the server.

In edge environments, power consumption also needs to be minimized. Edge device
FPGAs use dynamic partial reconfiguration (DPR) to reconfigure the hardware, and most
DPR-based platforms use external memory to store various bitstreams. However, external
memories are unsuitable for edge environments because they require additional power
consumption. Therefore, the proposed platform can minimize edge’s power consumption
by adopting the on-demand reconfiguration method without requiring an external memory.
As with power consumption, the reconfiguration overhead should be minimized. To reduce
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the FPGA reconfiguration overhead, this study devised a three-layer structure composed
of the main server-edge server-edge device and callability-based prediction and prefetch-
ing techniques.

(a) Cloud-centric (CC) IoT system

Bottleneck
Latency

Security threats

Computing 
resources

(b) Edge-centric (EC) IoT system (c) mIoT-based IoT system

Poor flexibility

Figure 3. Comparison between CC, EC, and mIoT-based IoT systems.

As edge devices also require a processor to work in FPGAs, it is necessary to design
the optimal processor according to the operating environment due to the constraints of the
edge environment. Therefore, this study adopted a Chisel (Constructing Hardware In a
Scala Embedded Language)-based processor design technique that can easily redesign the
optimal processor by parameterizing the hardware module. Finally, a fault-safe reconfig-
urable platform was built to verify the overall mIoT, and a large-scale simulation with real
devices was conducted to verify that the server can manage reconfiguration tasks with low
time overhead, even in large-scale applications.

The first mIoT proposed in the author’s previous study was a server-centric mIoT
platform [33]. The edges transmitted all the operational information needed to predict
the next reconfiguration to the edge server, and all the reconfiguration tasks, such as
next reconfiguration predictions and callability LUT updates, were processed by the edge
server. Thus, excessive communication occurred because large-scale edge devices were
managed by each edge server. To solve this problem, this paper proposes a second mIoT
platform, namely an edge-centric mIoT platform. The edge-centric structure is a structure
that accesses the edge server only when a prediction failure occurs by executing all re-
configuration predictions at each edge. As a result, it is possible to reduce network load
and unnecessary communication. In addition, the mIoT structure can also be applied to
dynamic applications through real-time callability LUT updates, which are the basis for
BCA operations. The edge of the previous study was an ASIC-FPGA co-design structure
that implemented static regions such as ASICs and dynamic regions as FPGAs. However,
in this study, the entire reconfigurable processor was integrated into the FPGA to simplify
the design and make updates easier, while the reconfigurable and static regions were
designed separately to prevent the reconfigurable region update process from affecting the
operation of the static region.

3. Edge-Centric mIoT Platform
3.1. Metamorphic IoT Processor (mIoTP)

The mIoTP proposed in this paper is the RISC-V based on an on-demand reconfig-
urable processor that was designed in the FPGA. During the design process, the processor
was designed by dividing the logic into static and reconfigurable regions. Thus, the RISC-V
core and the basic peripheral modules were implemented in the static regions, while the
peripheral modules, which could change depending on the processor operation, were
implemented in the reconfigurable regions. In the previous research, the static region was
designed as an ASIC, and only the reconfigurable module was implemented in the FPGA.
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However, in this paper, the static and reconfigurable regions were integrated into the FPGA
in order to simplify the design and make updates easier.

The overall edge hardware structure and operating principles are shown in Figure 4.
The RISC-V processor in the FPGA was designed by dividing it into static and reconfig-
urable regions, and the reconfigurable region can have space to implement one or more
modules. Xilinx’s DPR technology can determine the number of reconfigurable modules in
the implementation stage of the FPGA’s design flow. Two or more reconfiguration spaces
are similar to the cache in the computer architecture, and it is a structure to increase the ac-
curacy of callability based reconfiguration prediction techniques to reduce reconfiguration
overhead, because the number of modules in the reconfiguration region and the probability
of having the necessary modules are proportional. Furthermore, the edge was mounted
with an external SPI-flash memory for storing the application binaries to be executed by
the processor.

: Static module(SM)

Partial 
bitstream
(RM_B.v)

0101110110
1010000001
1001011101
0111011001
1000110110
1101110000
0000010100Flash load

request RM_B

RM
s

Co
nt

ro
l

Processor core
(RISC-V)

Peri.

: Reconfigurable module(SM)

#include“BCA.h”
~~

int main() {
~~~

}

A
B

CD

E

Figure 4. mIoT edge device structure.

The mIoTP reads the main application binary from SPI-flash memory and executes it,
and the edge requests the necessary hardware bitstream to the edge server to reconfigure
some peripheral modules. Since the reconfiguration process should not affect the core
operation of the static region, the DPR technique provided by Xilinx was applied to the
design. Thus, the mIoTP can reduce the on-demand reconfiguration overhead through
reconfigurable regions divided into one or two spaces and DPR techniques, while the
processor can ensure the continuity of static logic operation regardless of the reconfigura-
tion process.

3.2. Callability-Based Bitstream Caching Algorithm

The mIoT platform uses probability-based reconfiguration prediction techniques to
minimize the reconfiguration overhead required for the on-demand hardware reconfig-
uration of edge devices. The probability values for the prediction techniques are called
callability. Through the control flow analysis of the software, one can represent a proba-
bilistic value concerning which function will be executed next according to the previous
execution history. This probabilistic value is the callability. The mIoT platform minimizes
the reconfiguration overhead by pre-implementing modules with high callability on the
edge’s FPGA before the request. Based on this method, a bitstream caching algorithm
(BCA) was proposed with the mIoT platform structure, which is a three-layer structure.

The previous first mIoT platform executed the BCA on each edge server. All of the
edges sent their application operation information to the edge server, and the edge server
managed the control flow history of all the edge devices. The edge server performed tasks
such as saving edges application execution history, updating callability LUTs, and pre-
dicting the next module of each edge. The purpose of the mIoT platform was to reduce
both network congestion and server workload compared to cloud-based IoT platforms.
This purpose was also achieved in the author’s first research. Because, the mIoT platform
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reconfiguration task on the server required only 8-bit application control flow data for next
module prediction. Therefore, only 8-bit information was transmitted from the edge to the
server instead of transmitting a large number of data, and the server only had to reconfig-
ure the edge hardware instead of complex data processing. However, unnecessary server
access occurred in the process of transmitting the operation information of each edge when
large-scale edges were connected to the server. These additional communications occurred
to record edge operation history, update callability LUT, and predict next reconfiguration
module in the edge server. Thus, if the BCA algorithm operates at the edge, it should be
possible to reduce these unnecessary accesses and the network load. Therefore, in this mIoT
platform, the next modules were predicted at each edge by managing their own operation
information and updating their callability without transmitting operation information to
the server. As a result, since the edge accesses the edge server only in situations where
reconfiguration is necessary, unnecessary access to the edge server can be reduced.

BCA in edge devices is shown in Algorithm 1. First, a BCA library to replace the
server’s BCA operation is added to the main application of the edge, as shown in Figure 4.
Since the increased size of the main application binary due to the BCA library is approxi-
mately 0.3 KB, the additional increase in the size due to the BCA library is small compared
to the sizes of the MB flash memory and the 4 KiB instruction cache. The edges update
the callability by recording the control flow history in real time. Based on this callability,
the reconfigurable peripheral module of the processor is reconfigured by predicting the
hardware prior to execution of the function requiring reconfiguration. In this process, if the
prediction is hit when a function requiring hardware reconfiguration is called, the edge’s
processor can operate immediately without any pause and additional reconfigurations.
This situation is represented as an L1-hit and the reconfiguration overhead as almost zero.
If this prediction is a miss, an additional hardware reconfiguration request must be sent to
the edge server, and this situation is represented as an L1-miss. When an L1-miss occurs,
the operation of the edge device pauses until the reconfiguration operation is completed.
In order to reduce the reconfiguration overhead due to the L1-miss, the divided reconfig-
uration region case is also presented in previous our work. In the previous work, it was
confirmed that the reconfiguration overhead decreases as the number of divided reconfig-
uration regions increases. In this case, the L1-hit ratio can be increased by implementing
the hardware with the highest callability and that with the second highest callability in
the reconfiguration region of the edge. This principle is similar to the locality of the cache
in computer architecture, and the reconfiguration overhead can be greatly reduced by
increasing the L1-hit ratio.

3.3. Metamorphic IoT Server

The mIoT platform server structure consists of edge servers and main servers. The edge
servers receive and process the reconfiguration requests of the edges. If the requested hard-
ware bitstream exists in the edge server repository, it immediately sends the bitstream to
the edges and finishes the reconfiguration task. This situation is called an L2-hit. However,
if the requested hardware bitstream does not exist in the edge server repository, the edge
server requests bitstream synthesis and generation to the main server to generate the
requested bitstream. This situation is expressed as an L2-miss and requires the largest
reconfiguration overhead compared to other cases, as shown in Figure 5. The main server
sends the requested hardware bitstream to the edge server through the logic synthesis,
place and route (P&R), and bitstream generation process.
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A: Launching Vivado (ignorable)
B: Open HW server (ignorable)
C: Reconfigure the FPGA
D: Verilog generation
E: RM synthesis
F: Linking RM and SM
G: Place and route
H: Generate partial bitstream
I : Additional Processing delay (Large-scale edges)

D E F G H
0.9s 14.9s

17.4s

34.4s 57.4s

0s

(b). L2-miss Overhead 

A B C I

I

0s 4.9s

5.7s

6.5s

(a). L1-miss (L2-hit) Overhead 

Figure 5. Overhead composition for each case.

Algorithm 1: Edge bitstream caching algorithm.

1 Goal : Predict and request reconfiguration
2 BITreq : Partial bitstream requested from the edge
3 BITprog : Pre-programmed partial bitstream
4 Erecon : Reconfiguration event at the edge
5 FUNCRM : Programed RM in FPGAs

6 if Erecon then
7 Check control flow history
8 Find the highest callability
9 Determine BITreq

10 Request BITreq
11 Reconfigure BITreq

12 if Run FUNCRM then
13 Pause processor
14 if BITreq = BITprog then
15 break // L1-hit

16 else
17 Request BITreq
18 Reconfigure BITreq

19 Re-run processor

The mIoT platform server structure is as shown in Figure 6. The first version of the
mIoT consisted of a structure in which the BCA was integrated into the reconfiguration
processing engine (RPE) of the edge servers. However, in this paper, since the BCA is
executed at each edge, the edges only access the edge server when an L1-miss occurs. With
this method, the number of server accesses, as well as server workload and network load,
was reduced. To summarize the entire server structure, the edge requests the required
hardware bitstream according to its application execution, the edge server reconfigures the
edge’s reconfigurable region using the RPE, and the main server synthesizes and generates
the requested hardware bitstreams.

ttotal_avg =

N
∑ trecon

N
∑ Etotal_recon

(1)

where:
N = Number of edges of the entire system
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ttotal_avg = Reconfiguration time overhead average of all edges
trecon = Reconfiguration time overhead of one edge
Etotal_recon = Number of reconfiguration events of one edge

trecon = tmiss + ttrans + tpre (2)

where:
tmiss = Reconfiguration time overhead due to L1-miss
ttrans = Reconfiguration time overhead due to edge’s information transfer
tpre = Reconfiguration time overhead due to pre-reconfiguration
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Figure 6. mIoT server structure.

4. Implementation

This paper proposes a metamorphic fault-safe processor (mFSP) that applied the
proposed mIoT structure to fault monitoring application. IoT edges mainly operate in an
unstable external environment. Since the edges are connected to each other and operate
organically, malfunctions generated from a single edge can affect the entire IoT system
through the propagation between the edges [34,35]. Therefore, a structure that allows stable
operation of the IoT edges is needed [36].

Several techniques for operating the IoT edges safely have been presented in the
past. First, techniques to compare processing results using the duplicate and comparison
circuits for critical modules in the system or to add redundancy circuits in the system
for voting techniques to maintain reliability are mainly used [37–39]. However, these
techniques have problems in that both their logic area and power consumption increase
due to redundant circuits. The second is the addition of monitoring functions using software
or hardware [40,41]. However, software monitoring techniques cannot be applied to clock-
level defects, and they also affect the main application performance, because the code
for data monitoring is inserted into the main application. In addition, since a general
hardware monitoring circuit can only monitor the point specified in the initial design
process, it cannot protect the various modules and various data paths. Furthermore, there
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is a disadvantage in that the logic area increases as the observing point is added. Therefore,
this paper proposes a fault-safe mIoT platform that can reconfigure the monitoring circuit
according to the processor’s operation in order to overcome these constraints. Since the
proposed structure uses a hardware monitoring circuit, the system can be monitored by
clock-levels, and since only the necessary monitoring circuits are implemented on demand,
the logic area can be reduced.

The mFSP presented in this paper is an RISC-V-based processor that can reconfigure
peripheral modules on demand, and its detailed structure is shown in Figure 7. The proces-
sor was implemented in Xilinx’s Arty FPGA and Freedom E300 SoC platform environments.
The processor was designed based on RV32IMAC ISA and has a 16 KiB tightly coupled
data memory (TCDM) and a 4 KiB instruction cache. In the processor, the static peripheral
modules include UART, SPI, and JTAG, while the reconfigurable modules include system
monitoring modules. A main application binary is stored in the external SPI-flash memory,
and it is executed as an execute-in-place (XiP). Unlike the previous mIoT, it is possible to
minimize server access for the FPGA reconfiguration of the edges by running the applica-
tion, including the BCA library, on the edges.

Parameters Skeleton code
sk_i2c.c
sk_spi.c

sk_uart.c
sk_data.c

sk_pc.c

i2c_A i2c_B i2c_C
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data_A data_B pc_A
pc_B pc_C pc_D

N(parameters) = N(RM type)
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Figure 7. mFSP structure.

The reconfiguration requests generated while executing the applications on the mFSP
are transmitted to the edge servers. In the edge servers, the C language and the TCL-based
RPE process the reconfiguration requests. If the partial bitstream requested from the edge
exists in the edge server, the partial bitstream is immediately transmitted to the edge.
If the requested bitstream does not exist, the edge servers request synthesis and bitstream
generation by the main server. The main server generates Verilog HDL codes by combining
the parameters and the skeleton codes prepared for each application using C language and
TCL and performs synthesis, P&R, and bitstream generation, as shown in Figure 7. Finally,
the generated bitstream is delivered to the edge through the edge server.

5. Experiment

In order to verify the proposed mFSP platform, the authors built the following exper-
imental environment after designing the edge mFSP based on Xilinx Arty-7 35T FPGA.
The RISC-V processor and the reconfigurable peripheral modules were designed in the
internal logic of the FPGA, and the main application was stored in the external SPI-flash
memory. The edge server was implemented on a laptop, while the main server was im-
plemented on a PC. The server’s performance was not critical because most of the tasks
are FPGA reconfiguration. All of the server environments used C and TCL-based scripts,
Vivado 2018.01 version in Windows environment. In the proposed platform structure,
the edge and the server were wirelessly connected to manage the reconfiguration processes.
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Several studies have already been published in which FPGAs are programmed and recon-
figured wirelessly [42,43]. Therefore, in the actual commercialization stage, the method
of wireless programming proposed in other research studies will be adopted, but in the
present paper, JTAG-based programming was used for the experiment.

The main application of the edge for measuring performance changes the monitoring
spot of the monitoring module according to the situation, and has a control flow, as shown
in Figure 8a. In the control flow, a gray circle such as L means a function that requires
hardware operation of the reconfigurable region, and a white circle such as A means a
function that does not require the hardware operation. To compare the reconfiguration
overhead and the server access frequency, the application used in the previous mIoT
study was used, and the callability of the application was obtained, as shown in Figure 8b.
The callability was obtained through 1000 iterations of main application of the edge in
advance, and unlike the first mIoT platform, the callability was updated in real time during
the execution of the program.

Function
Callability

Stage 1 Stage 2 Stage 3
5 B L 0

M 0.37
N 0.63

C L 0
M 0
N 0

E P 1.00
Q 0

F P 1.00
Q 0

G P 1.00
Q 0

Function
Callability

Stage 1 Stage 2 Stage 3
6 B L 0

M 0.15
N 0.85

C L 0.67
M 0.33
N 0

E P 0
Q 1.00

F P 0.73
Q 0.27

G P 0.63
Q 0.38

(b)

: Function with hardware reconfigurations

1
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5 6

7

9 A8

T

B C D E F G

H I J K

L M N O P Q

R S
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Figure 8. Application control flow and extracted callability.

The result of reducing server access in the edge-centric mIoT platform is shown in
Figure 9 and Table 2. The main application of the edge was repeatedly executed 1000 times,
and the edge server used three RPEs, and as a result, the number of server accesses was
compared with the results of previous research. In the edge-centric structure, the single RM
structure with a single reconfiguration space reduced server access by 69.7% compared to
the server-centric mIoT. In addition, server access could be reduced by 82.2% in the double
RMs structure with two reconfiguration spaces. Futhermore, this reduction had the effect
of reducing the power consumed by communications between the edges and the servers.
Since the edge’s mFSP has an instruction cache size of 4 KiB, designers should also pay
attention to the instruction code size of the edge. Therefore, this study can confirm that the
increase in binary size due to the inclusion of the BCA in the edge application is 352 bytes,
which is about 8.6% of the total size of the instruction cache. Therefore, although the BCA
operation was added in the edge, it was confirmed that the proposed structure could
operate without any additional reconfiguration overhead. In Figure 10, 100 nodes could be
managed with an average of 0.21 s reconfiguration time overhead using three RPEs.
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Table 2. Edge-centric mIoT platform experiment results.

Type [33] (Double RMs) EC mIoT (Single RM) EC mIoT (Double RMs)

# Server access 2716 824 484
# Server access (relative) 1.000 0.303 0.178

BCA Lib size - 352 byte 352 byte
BCA Lib size/ICache size - 8.6% 8.6%

EC = Edge-centric; BCA Lib size = BCA library binary size = Increased edge’s application binary size; BCA Lib size/ICache size = BCA
library binary size versus edge’s instruction cache size (4 KiB).
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Figure 9. Edge-centric mIoT platform experiment results.
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Average reconfiguration time overhead: 0.21 sec

Figure 10. Large-scale simulation results with reconfiguration overheads.
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The equation for calculating the reconfiguration time overhead ttotal_avg is shown in
Equation (1). Since each IoT edge operation changes depending on the situation, the average
value of the entire system is calculated to obtain the average reconfiguration time overhead.
Therefore, the sum of the reconfiguration time overhead trecon consumed at every edge is
divided by the sum of the number of reconfiguration events Etotal_recon occurring at every
edge [33]. This is about 5% faster than 0.22 s, which was the result obtained using the
same configuration in the previous server-centric mIoT, but it cannot be clearly established
that the reconfiguration overhead decreased due to the characteristic of large-scale edges
operating independently and accessing the server irregularly. Depending on the order
of server access by multiple edges and the execution of programs at each edge, the edge
server’s reconfiguration processing operation may be slightly different. Therefore, it is
concluded that the edge-centric mIoT platform can greatly reduce unnecessary server
access; and even when a reconfiguration operation is added to the edges, it can be applied
without any additional reconfiguration overhead in a large-scale configuration.

6. Discussion

Power consumption: The results of this study showed that server access can be re-
duced by up to 82.2%. The reason for this result was that the edge operation information
transmitted to the server was reduced by processing the reconfiguration prediction task at
the edge. External communication and internal processing always show a trade-off relation-
ship in terms of power consumption, but it was confirmed that external communication
consumes more power than simple pre-processing, as in the author’s previous study [44].
Thus, although simple prediction operations were added to the edge, server access could
be greatly reduced, making it reasonable to expect a reduction in power consumption.

Reconfiguration time overhead: This study confirmed that there was no significant
difference in the reconfiguration time overhead, although the server access for reconfig-
uration was drastically reduced. This is because the task that takes a large portion of the
communication between edges and servers and the task that takes a long processing time
are different, as shown in Table 1 and Equation (2). Therefore, it is important to reduce
the pre-configuration time overhead, because pre-configuration requires the same time
as an L1-miss but takes a large portion of the communication. Based on our previous
work, if we store the partial bitstream at the edge and reconfigure it directly on the edge,
the edge will be able to complete the reconfiguration in a very short time without server
access [45]. Therefore, tpre of Equation (2) can be converged to almost 0, and the total
reconfiguration time overhead can be close to 0 depending on the accuracy of the bitstream
caching prediction.

7. Conclusions

This paper proposed a reconfigurable processor-based edge hardware that can par-
tially reconfigure peripheral modules on demand and an IoT platform that can efficiently
manage the reconfiguration process of the edges. It also proposes a three-layer structure
consisting of edges, edge servers, a main server, and a callability-based BCA in order
to reduce the overhead required for on-demand reconfiguration of the edges. Finally, it
proposes an edge-centric mIoT platform that can reduce unnecessary server access by
operating the BCA at each edge, and a reconfigurable processor structure in which re-
configurable peripheral modules and a static RISC-V core are integrated. With the pro-
posed structure, server access can be reduced by up to 82.2%, even when the code size
increases by 352 bytes (8.6% of the instruction cache’s size), as the BCA was added to
the edge application. In addition, the proposed structure could be applied equally to a
large-scale edge configuration without any additional reconfiguration overhead. In this
study, we reduced the number of server accesses of the edge by inserting BCA into the
edge, but the reconfiguration time overhead could not be significantly reduced because
the server access for pre-reconfiguration could not be reduced. However, by analyzing the
reconfiguration overhead based on the experimental results, we found that if bitstream
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storage memory and hardware logic for self-configuration were added to edge, the recon-
figuration time overhead could be significantly reduced by reducing pre-configuration
overhead. Therefore, in future works, we will reduce the reconfiguration time overhead
by adding a self-reconfiguration circuit and bitstream storage memory to the mIoT device
structure. Through this, various functions will be able to operate without pause on the
minimum hardware.
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