Digital Suppression of EMI-Induced Errors in a Baseband Acquisition Front-End including Off-the-Shelf, EMI-Sensitive Operational Amplifiers
Abstract
:1. Introduction
2. Acquisition Front-End Immunity by Digital Post-Processing
2.1. Proposed Sensor Readout
2.2. EMI Distortion in the Conditioning Amplifiers
2.3. EMI Compensation by Digital Post-Processing
2.4. EMI Suppression Coefficient Calibration
3. Experimental Validation
3.1. EMI Test PCB
3.2. Experimental Test Setup
4. Experimental Results
- zero nominal input and CW EMI;
- low frequency (100 Hz) sinewave nominal input and AM EMI, with square-wave, sine-wave and exponential modulating signals;
4.1. Tests under CW EMI Excitation
4.2. Low Frequency Sinewave Nominal Input and AM EMI Excitation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dhia, S.B.; Ramdani, M.E.S. Electromagnetic Compatibility of Integrated Circuits: Techniques for Low Emission and Susceptibility, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Redouté, J.-M.; Steyaert, M. EMC of Analog Integrated Circuits; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Totev, E.D. Out-of-Band Interference Immunity of Negative-Feedback Amplifiers. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2021. [Google Scholar]
- Gago, J.; Balcells, J.; GonzÁlez, D.; Lamich, M.; Mon, J.; Santolaria, A. EMI Susceptibility Model of Signal Conditioning Circuits Based on Operational Amplifiers. IEEE Trans. Electromagn. Compat. 2007, 49, 849–859. [Google Scholar] [CrossRef]
- Zhang, Y.; Rasmussen, K. Detection of electromagnetic interference attacks on sensor systems. In Proceedings of the 2020 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 18–21 May 2020; pp. 203–216. [Google Scholar] [CrossRef]
- Aiello, O.; Crovetti, P.S.; Fiori, F. Susceptibility to EMI of a Battery Management System IC for electric vehicles. In Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, 16–22 August 2015; pp. 749–754. [Google Scholar] [CrossRef]
- Maouloud, A.; Klingler, M.; Besnier, P. A Test Setup to Assess the Impact of EMI Produced by On-Board Electronics on the Quality of Radio Reception in Vehicles. IEEE Trans. Electromagn. Compat. 2021. [Google Scholar] [CrossRef]
- Sacco, E.; Vergauwen, J.; Gielen, G. Improving the EMI Robustness of Feedback-based Time-Encoding Readout Architectures for Resistive Sensor Interfaces. In Proceedings of the 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Bassen, H.; Mendoza, G. Comparison of injected and radiated EMC testing of active implanted cardiac medical devices at the boundary frequency of 450 MHz. IEEE Electromagn. Compat. Mag. 2016, 5, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O.; Crovetti, P.; Fiori, F. Investigation on the susceptibility of hall-effect current sensors to EMI. In Proceedings of the 10th International Symposium on Electromagnetic Compatibility, York, UK, 26–30 September 2011; pp. 368–372. [Google Scholar]
- Shoaib, N.; Zaidi, S.N.F.; Shafqat, A.; Cheema, H.M. EMC/I Analysis of Miniaturized Bio-Mechanical Sports Wearables. In Proceedings of the 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo), Hangzhou, China, 21–23 October 2019; pp. 210–212. [Google Scholar] [CrossRef]
- Have, B.T.; Azpúrua, M.A.; Hartman, T.; Pous, M.; Moonen, N.; Silva, F.; Leferink, F. Estimation of Static Energy Meter Interference in Waveforms Obtained in On-Site Scenarios. IEEE Trans. Electromagn. Compat. 2021, 1–8. [Google Scholar] [CrossRef]
- Wu, J.; Qi, Y.; Gong, G.; Fan, J.; Miao, M.; Yu, W.; Ma, J.; Drewniak, J.L. Review of the EMC Aspects of Internet of Things. IEEE Trans. Electromagn. Compat. 2020, 62, 2604–2612. [Google Scholar] [CrossRef]
- Crovetti, P.; Fiori, F. Efficient BEM-based substrate network extraction in silicon SoCs. Microelectron. J. 2008, 39, 1774–1784. [Google Scholar] [CrossRef]
- Crovetti, P.S.; Fiori, F. Distributed conversion of common-mode into differential-mode interference. IEEE Trans. Microw. Theory Tech. 2011, 59, 2140–2150. [Google Scholar] [CrossRef]
- Musolino, F.; Crovetti, P.S. Interference of Spread-Spectrum Modulated Disturbances on Digital Communication Channels. IEEE Access 2019, 7, 158969–158980. [Google Scholar] [CrossRef]
- Crovetti, P.S.; Musolino, F.; Aiello, O.; Toledo, P.; Rubino, R. breaking the boundaries between analogue and digital. Electron. Lett. 2019, 55, 672–673. [Google Scholar] [CrossRef]
- Crovetti, P.S.; Musolino, F. Interference of Spread-Spectrum EMI and Digital Data Links under Narrowband Resonant Coupling. Electronics 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Graffi, S.; Masetti, G.; Golzio, D. New macromodels and measurements for the analysis of EMI effects in 741 op-amp circuits. IEEE Trans. Electromagn. Compat. 1991, 33, 25–34. [Google Scholar] [CrossRef]
- Kovacs-Vajna, Z.; Sardini, E.; Speciale, N. Chaotic behavior of 741 opamps subjected to EMI conveyed to power supply rails. In Proceedings of the 2000 IEEE International Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland, 28–31 May 2000; Volume 1, pp. 727–730. [Google Scholar] [CrossRef]
- Fiori, F.; Crovetti, P. Nonlinear effects of radio-frequency interference in operational amplifiers. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2002, 49, 367–372. [Google Scholar] [CrossRef]
- Fiori, F. A new nonlinear model of EMI-induced distortion phenomena in feedback CMOS operational amplifiers. IEEE Trans. Electromagn. Compat. 2002, 44, 495–502. [Google Scholar] [CrossRef]
- Abuelma’atti, M. Analysis of the effect of radio frequency interference on the DC performance of bipolar operational amplifiers. IEEE Trans. Electromagn. Compat. 2003, 45, 453–458. [Google Scholar] [CrossRef]
- Fiori, F.; Crovetti, P. Prediction of high-power EMI effects in CMOS operational amplifiers. IEEE Trans. Electromagn. Compat. 2006, 48, 153–160. [Google Scholar] [CrossRef]
- Crovetti, P.S. Finite Common-Mode Rejection in Fully Differential Nonlinear Circuits. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 507–511. [Google Scholar] [CrossRef]
- Richelli, A.; Delaini, G.; Grassi, M.; Redouté, J.M. Susceptibility of Operational Amplifiers to Conducted EMI Injected Through the Ground Plane into Their Output Terminal. IEEE Trans. Reliab. 2016, 65, 1369–1379. [Google Scholar] [CrossRef]
- Zupan, D.; Deutschmann, B. Comparison of EMI Improved Differential Input Pair Structures Within an Integrated Folded Cascode Operational Transconductance Amplifier. In Proceedings of the 2020 Austrochip Workshop on Microelectronics (Austrochip), Vienna, Austria, 7 October 2020; pp. 47–52. [Google Scholar] [CrossRef]
- Gundla, J.; Boyapati, S.; Pasupureddi, V.S.R. Compact CMOS Miller OpAmp With High EMI-Immunity. IEEE Trans. Electromagn. Compat. 2020, 62, 2394–2400. [Google Scholar] [CrossRef]
- Lavarda, A.; Petruzzi, L.; Radež, N.; Deutschmann, B. On the Robustness of CMOS-Chopped Operational Amplifiers to Conducted Electromagnetic Interferences. IEEE Trans. Electromagn. Compat. 2018, 60, 478–486. [Google Scholar] [CrossRef]
- Becchetti, S.; Richelli, A.; Colalongo, L.; Kovacs-Vajna, Z. A Comprehensive Comparison of EMI Immunity in CMOS Amplifier Topologies. Electronics 2019, 8, 1181. [Google Scholar] [CrossRef] [Green Version]
- Pudi N.S., A.K.; Redouté, J.M.; Baghini, M.S. A Generic EMI-Immune Technique for Differential Amplifiers With Single-Ended Output. IEEE Trans. Electromagn. Compat. 2018, 60, 958–964. [Google Scholar] [CrossRef]
- Richelli, A.; Kennedy, S.; Redouté, J.M. An EMI-Resistant Common-Mode Cancelation Differential Input Stage in UMC 180 nm CMOS. IEEE Trans. Electromagn. Compat. 2017, 59, 2049–2051. [Google Scholar] [CrossRef]
- Boyapati, S.; Redouté, J.M.; Baghini, M.S. Modeling and design of an EMI-immune source-buffered Miller OpAmp in 0.18-μm CMOS technology. In Proceedings of the 2017 International Symposium on Electromagnetic Compatibility—EMC EUROPE, Angers, France, 4–7 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Boyapati, S.; Redouté, J.M.; Shojaei Baghini, M. Design of A Novel Highly EMI-Immune CMOS Miller OpAmp Considering Channel Length Modulation. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2679–2690. [Google Scholar] [CrossRef]
- Boyapati, S.; Redouté, J.M.; Baghini, M.S. Modeling and Design of EMI-Immune OpAmps in 0.18-μm CMOS Technology. IEEE Trans. Electromagn. Compat. 2016, 58, 1609–1616. [Google Scholar] [CrossRef]
- Fiori, F. On the Susceptibility of Chopper Operational Amplifiers to EMI. IEEE Trans. Electromagn. Compat. 2016, 58, 1000–1006. [Google Scholar] [CrossRef]
- Richelli, A.; Matig-A, G.; Redouté, J.M. Design of a folded cascode opamp with increased immunity to conducted electromagnetic interference in 0.18 μm CMOS. Microelectron. Reliab. 2015, 55, 654–661. [Google Scholar] [CrossRef]
- Redouté, J.M.; Richelli, A. A methodological approach to EMI resistant analog integrated circuit design. IEEE Electromagn. Compat. Mag. 2015, 4, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Amer, A.; Sanchez-Sinencio, E. Electromagnetic Interference Resisting Operational Amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1917–1927. [Google Scholar] [CrossRef]
- Richelli, A. Increasing EMI Immunity in Novel Low-Voltage CMOS OpAmps. IEEE Trans. Electromagn. Compat. 2012, 54, 947–950. [Google Scholar] [CrossRef] [Green Version]
- Richelli, A. CMOS OpAmp Resisting to Large Electromagnetic Interferences. IEEE Trans. Electromagn. Compat. 2010, 52, 1062–1065. [Google Scholar] [CrossRef] [Green Version]
- Crovetti, P. Operational amplifier immune to EMI with no baseband performance degradation. Electron. Lett. 2010, 46, 207–208. [Google Scholar] [CrossRef]
- Walravens, C.; Van Winckel, S.; Redoute, J.M.; Steyaert, M. Efficient reduction of electromagnetic interference effects in operational amplifier. Electron. Lett. 2007, 4, 84–85. [Google Scholar] [CrossRef]
- Fiori, F.; Crovetti, P. Complementary differential pair with high immunity to RFI. Electron. Lett. 2002, 38, 1663–1664. [Google Scholar] [CrossRef]
- Crovetti, P.S. A Digital-Based Analog Differential Circuit. IEEE Trans. Circuits Syst. I Reg. Pap. 2013, 60, 3107–3116. [Google Scholar] [CrossRef]
- Crovetti, P.S. A Digital-Based Virtual Voltage Reference. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1315–1324. [Google Scholar] [CrossRef]
- Crovetti, P. Acquisition front-end immune to EMI. Electron. Lett. 2012, 48, 1114–1115. [Google Scholar] [CrossRef]
- Integrated Circuits, Measurement of Electromagnetic Immunity, 150 kHz–1 GHz, IEC Standard, IEC62132; Technical Report; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2006.
- Kashinath, S.A.; Mostafa, S.A.; Mustapha, A.; Mahdin, H.; Lim, D.; Mahmoud, M.A.; Mohammed, M.A.; Al-Rimy, B.A.S.; Fudzee, M.F.M.; Yang, T.J. Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis. IEEE Access 2021, 9, 51258–51276. [Google Scholar] [CrossRef]
- OPAx277 High Precision Operational Amplifiers; Technical Report; Texas Instruments: Dallas, TX, USA, 2015.
- MCP6V01/2/3 300 μA, Auto-Zeroed Op Amps; Technical Report; Microchip Technologies Inc.: Chandler, AZ, USA, 2008.
- Aimonetto, M.B.; Fiori, F. On the effectiveness of EMIRR to qualify OpAmps. In Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, 16–22 August 2015; pp. 40–44. [Google Scholar] [CrossRef]
- LMV861 Single 30 MHz Low Power CMOS, EMI Hardened Operational Amplifiers, Rev. C; Technical Report; Texas Instruments: Dallas, TX, USA, 2013.
Performance | Unit | OPA2277 | MCP6V02 |
---|---|---|---|
Power Supply Voltage | V | +2.5 V/−2.5 V | +2.5 V/−2.5 V |
Supply Current | 800 | 300 | |
DC gain | dB | 134 | 130 |
CMRR | dB | 140 | 130 |
PSRR | dB | 130 | 130 |
Input Offset Voltage (max.) | 10 | 2 | |
Input Referred Noise (0.1 Hz–10 Hz) | 0.22 | 2.5 | |
THD | % | 0.0002 | N/A |
Gain-Bandwidth Product | MHz | 1 | 1.3 |
Slew Rate | V/s | 0.8 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crovetti, P.; Musolino, F. Digital Suppression of EMI-Induced Errors in a Baseband Acquisition Front-End including Off-the-Shelf, EMI-Sensitive Operational Amplifiers. Electronics 2021, 10, 2096. https://doi.org/10.3390/electronics10172096
Crovetti P, Musolino F. Digital Suppression of EMI-Induced Errors in a Baseband Acquisition Front-End including Off-the-Shelf, EMI-Sensitive Operational Amplifiers. Electronics. 2021; 10(17):2096. https://doi.org/10.3390/electronics10172096
Chicago/Turabian StyleCrovetti, Paolo, and Francesco Musolino. 2021. "Digital Suppression of EMI-Induced Errors in a Baseband Acquisition Front-End including Off-the-Shelf, EMI-Sensitive Operational Amplifiers" Electronics 10, no. 17: 2096. https://doi.org/10.3390/electronics10172096
APA StyleCrovetti, P., & Musolino, F. (2021). Digital Suppression of EMI-Induced Errors in a Baseband Acquisition Front-End including Off-the-Shelf, EMI-Sensitive Operational Amplifiers. Electronics, 10(17), 2096. https://doi.org/10.3390/electronics10172096