Diagnosis of Faults Induced by Radiation and Circuit-Level Design Mitigation Techniques: Experience from VCO and High-Speed Driver CMOS ICs Case Studies
Abstract
:1. Introduction
2. Radiation Effect on MOSFET Devices
2.1. Single-Event Effects
2.2. Total Ionising Dose Effects
3. TID and SEE in Simulation-before-Test
3.1. Drivers for Electro-Optical Modulators
3.2. Voltage-Controlled Oscillator
4. RHBD Mitigation Techniques
4.1. Drivers for Electro-Optical Modulators
4.2. Voltage-Controlled Oscillator
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sinclair, D.; Dyer, J. Radiation Effects and COTS Parts in SmallSats. In Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 10−15 August 2013; paper SSC13-IV. pp. 1–12. [Google Scholar]
- Binu, D.; Kariyappa, B. A survey on fault diagnosis of analog circuits: Taxonomy and state of the art. AEU Int. J. Electron. Commun. 2017, 73, 68–83. [Google Scholar] [CrossRef]
- Luyue, L.; Kehong, L.; Guanjun, L.; Jing, Q. Intelligent Diagnosis Method for Intermittent Fault of Digital Circuit Based on Dynamic Power Current. In Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9−11 April 2021; pp. 786–791. [Google Scholar] [CrossRef]
- Tadeusiewicz, M.; Halgas, S. A Method for Local Parametric Fault Diagnosis of a Broad Class of Analog Integrated Circuits. IEEE Trans. Instrum. Meas. 2017, 67, 328–337. [Google Scholar] [CrossRef]
- Tian, S.; Yang, C.; Chen, F.; Liu, Z. Circle Equation-Based Fault Modeling Method for Linear Analog Circuits. IEEE Trans. Instrum. Meas. 2014, 63, 2145–2159. [Google Scholar] [CrossRef]
- Grasso, F.; Luchetta, A.; Manetti, S.; Piccirilli, M.C. Symbolic techniques in neural network based fault diagnosis of analog circuits. In Proceedings of the 2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD), Gammarth, Tunisia, 4–6 October 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Roche, P.; Gasiot, G.; Autran, J.L.; Munteanu, D.; Reed, R.A.; Weller, R.A. Application of the TIARA Radiation Transport Tool to Single Event Effects Simulation. IEEE Trans. Nucl. Sci. 2014, 61, 1498–1500. [Google Scholar] [CrossRef]
- Reed, R.A.; Weller, R.A.; Mendenhall, M.; Fleetwood, D.M.; Warren, K.M.; Sierawski, B.D.; King, M.P.; Schrimpf, R.D.; Auden, E.C. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code. IEEE Trans. Nucl. Sci. 2015, 62, 1441–1461. [Google Scholar] [CrossRef]
- Uznanski, S.; Gasiot, G.; Roche, P.; Semikh, S.; Autran, J.-L. Combining GEANT4 and TIARA for Neutron Soft Error-Rate Prediction of 65 nm Flip-Flops. IEEE Trans. Nucl. Sci. 2011, 58, 2599–2606. [Google Scholar] [CrossRef]
- Hubert, G.; Bourdarie, S.; Artola, L.; Duzellier, S.; Roussel, J.-F. Multi-scale modeling to investigate the single event effects for space missions. Acta Astronaut. 2011, 69, 526–536. [Google Scholar] [CrossRef]
- European Cooperation for Space Standardization, SpaceFibre Standard, ECSS-E-ST-50-11C-DIR1. 2019. Available online: http://ecss.nl/standard/ecss-e-st-50-11c-dir1 (accessed on 1 September 2021).
- Haddad, N.F.; Kelly, A.T.; Lawrence, R.K.; Li, B.; Rodgers, J.C.; Ross, J.F.; Warren, K.M.; Weller, R.A.; Mendenhall, M.H.; Reed, R.A. Incremental Enhancement of SEU Hardened 90 nm CMOS Memory Cell. IEEE Trans. Nucl. Sci. 2011, 58, 975–980. [Google Scholar] [CrossRef]
- Clark, L.T.; Mohr, K.C.; Holbert, K.E.; Yao, X.; Knudsen, J.; Shah, H. Optimizing Radiation Hard by Design SRAM Cells. IEEE Trans. Nucl. Sci. 2007, 54, 2028–2036. [Google Scholar] [CrossRef]
- Lv, H.; Sun, Y.; Li, P.; Luo, L.; Zhang, H.; Yu, Q.; Tang, M. Research on optimization design of radiation dose shield hardening for aerospace components. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Kwon, I.; Jeon, D. 2020. TID-tolerant inverter designs for radiation-hardened digital systems. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 954, 161473. [Google Scholar] [CrossRef]
- Jeon, H.; Kwon, I.; Je, M. Radiation-Hardened Sensor Interface Circuit for Monitoring Severe Accidents in Nuclear Power Plants. IEEE Trans. Nucl. Sci. 2020, 67, 1738–1745. [Google Scholar] [CrossRef]
- Dodd, P.; Massengill, L. Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans. Nucl. Sci. 2003, 50, 583–602. [Google Scholar] [CrossRef]
- Andrews, J.L.; Schroeder, J.E.; Gingerich, B.L.; Kolasinski, W.A.; Koga, R.; Diehl, S.E. Single Event Error Immune CMOS RAM. IEEE Trans. Nucl. Sci. 1982, 29, 2040–2043. [Google Scholar] [CrossRef]
- Johnston, A.H. The influence of VLSI technology evolution on radiation induced latchup in space systems. IEEE Trans. Nucl. Sci. 1996, 43, 505–521. [Google Scholar] [CrossRef]
- Taghinejad, M.; Taghinejad, H.; Ganji, M.; Rostamian, A.; Mohajerzadeh, S.; Abdolahad, M.; Kolahdouz, M. Integration of Ni2Si/Si Nanograss Heterojunction on n-MOSFET to Realize High-Sensitivity Phototransistors. IEEE Trans. Electron Devices 2014, 61, 3239–3244. [Google Scholar] [CrossRef]
- Rathore, P.; Nakhate, S. Development of Radiation Hardened by Design (RHBD) of NAND gate to mitigate the effects of single event transients (SET). In Proceedings of the IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Bkeller, B.K. Project UPSET: Under-Standing and Protecting against Single Event Transients. Available online: https://www.semanticscholar.org/paper/Project-UPSET-%3A-Understanding-and-Protecting-Single-bkeller/ee76ac31beefd6dacf6e094656c5b603a09ce762 (accessed on 1 September 2021).
- Wirth, G.I.; Vieira, M.G.; Neto, E.H.; Kastensmidt, F.L. Modeling the sensitivity of CMOS circuits to radiation induced single event transients. Microelectron. Reliab. 2008, 48, 29–36. [Google Scholar] [CrossRef]
- Wrobel, F.; DiLillo, L.; Touboul, A.D.; Pouget, V.; Saigne, F. Determining Realistic Parameters for the Double Exponential Law that Models Transient Current Pulses. IEEE Trans. Nucl. Sci. 2014, 61, 1813–1818. [Google Scholar] [CrossRef]
- Heijmen, T.; Giot, D.; Roche, P. Factors That Impact the Critical Charge of Memory Elements. In Proceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS’06), Como, Italy, 10–12 July 2006; pp. 57–62. [Google Scholar] [CrossRef]
- Loveless, T.D.; Kauppila, J.S.; Jagannathan, S.; Ball, D.R.; Rowe, J.D.; Gaspard, N.J.; Atkinson, N.M.; Blaine, R.W.; Reece, T.R.; Ahlbin, J.R.; et al. On-Chip Measurement of Single-Event Transients in a 45 nm Silicon-on-Insulator Technology. IEEE Trans. Nucl. Sci. 2012, 59, 2748–2755. [Google Scholar] [CrossRef]
- Dasgupta, S.; Witulski, A.F.; Bhuva, B.L.; Alles, M.L.; Reed, R.A.; Amusan, O.A.; Ahlbin, J.R.; Schrimpf, R.; Massengill, L.W. Effect of Well and Substrate Potential Modulation on Single Event Pulse Shape in Deep Submicron CMOS. IEEE Trans. Nucl. Sci. 2007, 54, 2407–2412. [Google Scholar] [CrossRef]
- Black, D.A.; Robinson, W.H.; Wilcox, I.Z.; Limbrick, D.B.; Black, J.D. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization. IEEE Trans. Nucl. Sci. 2015, 62, 1540–1549. [Google Scholar] [CrossRef]
- Lee, C.; Cho, G.; Unruh, T.; Hur, S.; Kwon, I. Integrated Circuit Design for Radiation-Hardened Charge-Sensitive Amplifier Survived up to 2 Mrad. Sensors 2020, 20, 2765. [Google Scholar] [CrossRef]
- Saks, N.S.; Ancona, M.G.; Modolo, J.A. Radiation Effects in MOS Capacitors with Very Thin Oxides at 80degK. IEEE Trans. Nucl. Sci. 1984, 31, 1249–1255. [Google Scholar] [CrossRef]
- Ding, L.; Gerardin, S.; Bagatin, M.; Mattiazzo, S.; Bisello, D.; Paccagnella, A. Drain Current Collapse in 65 nm pMOS Transistors After Exposure to Grad Dose. IEEE Trans. Nucl. Sci. 2015, 62, 2899–2905. [Google Scholar] [CrossRef]
- Faccio, F.; Michelis, S.; Cornale, D.; Paccagnella, A.; Gerardin, S. Radiation-Induced Short Channel (RISCE) and Narrow Channel (RINCE) Effects in 65 and 130 nm MOSFETs. IEEE Trans. Nucl. Sci. 2015, 62, 2933–2940. [Google Scholar] [CrossRef]
- Faccio, F.; Borghello, G.; Lerario, E.; Fleetwood, D.M.; Schrimpf, R.D.; Gong, H.; Zhang, E.X.; Wang, P.; Michelis, S.; Gerardin, S.; et al. Influence of LDD Spacers and H+Transport on the Total-Ionizing-Dose Response of 65-nm MOSFETs Irradiated to Ultrahigh Doses. IEEE Trans. Nucl. Sci. 2017, 65, 164–174. [Google Scholar] [CrossRef]
- Menouni, M.; Barbero, M.; Bompard, F.; Bonacini, S.; Fougeron, D.; Gaglione, R.; Rozanov, A.; Valério, P.; Wang, A. 1-Grad total dose evaluation of 65 nm CMOS technology for the HL-LHC upgrades. J. Instrum. 2015, 10, C05009. [Google Scholar] [CrossRef] [Green Version]
- Ciarpi, G.; Saponara, S.; Magazzù, G.; Palla, F. Radiation Hardness by Design Techniques for 1 Grad TID Rad-Hard Systems in 65 nm Standard CMOS Technologies. In International Conference on Applications in Electronics Pervading Industry, Environment and Society; Springer: Cham, Switzerland, 2018; pp. 269–276. [Google Scholar] [CrossRef]
- Monda, D.; Ciarpi, G.; Saponara, S. Analysis and Comparison of Rad-Hard Ring and LC-Tank Controlled Oscillators in 65 nm for SpaceFibre Applications. Sensors 2020, 20, 4612. [Google Scholar] [CrossRef] [PubMed]
- Monda, D.; Ciarpi, G.; Saponara, S. Design and Verification of a 6.25 GHz LC-Tank VCO integrated in 65 nm CMOS Technology Operating up to 1 Grad TID. IEEE Trans. Nucl. Sci. 2021. [Google Scholar] [CrossRef]
- Razavi, B. RF Microelectronics; Prentice Hall: Hoboken, NJ, USA, 1998; Volume 1. [Google Scholar]
- Ciarpi, G.; Magazzù, G.; Palla, F.; Saponara, S. Design, implementation, and experimental verification of 5 Gbps, 800 Mrad TID and SEU-tolerant optical modulators drivers. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 67, 829–838. [Google Scholar] [CrossRef]
Control Voltage | Clock Cycles | Frequency Variations | Amplitude Variations | |
---|---|---|---|---|
hit1 | 0 | 15 | 1.24% | 43.8% |
VDD/2 | 26 | 5.58% | 48.82% | |
VDD | 24 | 2.45% | 57.49% | |
hit2 | 0 | 6 | 0.11% | 1.55% |
VDD/2 | 12 | 0.5% | 3.85% | |
VDD | 13 | 0.46% | 3.17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monda, D.; Ciarpi, G.; Saponara, S. Diagnosis of Faults Induced by Radiation and Circuit-Level Design Mitigation Techniques: Experience from VCO and High-Speed Driver CMOS ICs Case Studies. Electronics 2021, 10, 2144. https://doi.org/10.3390/electronics10172144
Monda D, Ciarpi G, Saponara S. Diagnosis of Faults Induced by Radiation and Circuit-Level Design Mitigation Techniques: Experience from VCO and High-Speed Driver CMOS ICs Case Studies. Electronics. 2021; 10(17):2144. https://doi.org/10.3390/electronics10172144
Chicago/Turabian StyleMonda, Danilo, Gabriele Ciarpi, and Sergio Saponara. 2021. "Diagnosis of Faults Induced by Radiation and Circuit-Level Design Mitigation Techniques: Experience from VCO and High-Speed Driver CMOS ICs Case Studies" Electronics 10, no. 17: 2144. https://doi.org/10.3390/electronics10172144
APA StyleMonda, D., Ciarpi, G., & Saponara, S. (2021). Diagnosis of Faults Induced by Radiation and Circuit-Level Design Mitigation Techniques: Experience from VCO and High-Speed Driver CMOS ICs Case Studies. Electronics, 10(17), 2144. https://doi.org/10.3390/electronics10172144