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Abstract: This paper aims at discussing the resolution achievable in the reconstruction of both
circumference sources from their radiated far-field and circumference scatterers from their scattered
far-field observed for the 2D scalar case. The investigation is based on an inverse problem approach,
requiring the analysis of the spectral decomposition of the pertinent linear operator by the Singular
Value Decomposition (SVD). The attention is focused upon the evaluation of the Number of Degrees
of Freedom (NDF), connected to singular values behavior, and of the Point Spread Function (PSF),
which accounts for the reconstruction of a point-like unknown and depends on both the NDF and on
the singular functions. A closed-form evaluation of the PSF relevant to the inverse source problem is
first provided. In addition, an approximated closed-form evaluation is introduced and compared
with the exact one. This is important for the subsequent evaluation of the PSF relevant to the inverse
scattering problem, which is based on a similar approximation. In this case, the approximation
accuracy of the PSF is verified at least in its main lobe region by numerical simulation since it is the
most critical one as far as the resolution discussion is concerned. The main result of the analysis is
the space invariance of the PSF when the observation is the full angle in the far-zone region, showing
that resolution remains unchanged over the entire source/investigation domain in the considered
geometries. The paper also poses the problem of identifying the minimum number and the optimal
directions of the impinging plane waves in the inverse scattering problem to achieve the full NDF;
some numerical results about it are presented. Finally, a numerical application of the PSF concept is
performed in inverse scattering, and its relevance in the presence of noisy data is outlined.

Keywords: inverse source problem; inverse scattering problem; Number of Degrees of Freedom;
Point Spread Function; resolution

1. Introduction

Inverse problems have been widely studied by mathematicians, scientists, and engi-
neers. Broadly speaking, the direct problem can be defined as given the cause, find the
effect, whereas for the inverse problem, given an effect, the cause would be determined.
The inverse problem solution provides fruitful information valuable to many applications,
such as inverse seismic methods in geophysics, ultrasonic methods in medical imaging,
computed tomography [1], and inverse electromagnetic problems.

The inverse electromagnetic problem includes inverse source and inverse scattering
problems. The inverse source problem is a linear problem that entails reconstructing a
current source, using information about its radiated field in the frequency domain and
some prior knowledge; for instance, the current distribution of an antenna can be evaluated
from its radiation pattern. As a result, it is meaningful in a range of applications, including
antenna design, testing, and diagnostics.

When a known electromagnetic field illuminates a scatterer, the inverse scattering
problem aims at reconstructing its features, such as its material, geometry (shape), and
location, based on the sensing of the scattered field data. It is a non-linear problem and can
be linearized under suitable approximations.
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The imaging system and the inversion algorithm determine the achievable resolution
in reconstructions. In particular, the Point Spread Function (PSF) represents the recon-
struction of a point-like source/scatterer in the spatial domain, and the resolution can be
defined in terms of the PSF of the system. The PSF is a suitable tool for understanding the
efficiency of the system because it provides the minimum detail that can be reconstructed.

The analysis of PSF behavior is additionally connected to the Number of Degrees
of Freedom (NDF) of the problem, i.e., the number of independent pieces of information
which can be reconstructed faithfully by an imaging algorithm in the presence of noise on
data [2]. The NDF for a few decades has been researched in Refs. [3–5] to be used for optical
imaging applications. The concept of the NDF in solving inverse source [6–8] and inverse
scattering problems [9–12] has been widely proposed and turns out to be very helpful.

The Singular Values Decomposition (SVD) of the relevant operator is the mathematical
tool to provide the NDF; in fact, it is related to the number of its significant singular values
and might be roughly supposed as the number of independent point-like sources/scatterers
that can be reconstructed reliably in the presence of noisy data. Therefore, it can be helpful
to provide the maximum achievable resolution.

The most critical criterion for evaluating the efficiency of a radar system is its ability to
differentiate between two close objects. The resolution [13] describes this criterion, and it
can be measured by using a numerical analysis based on the system function. The concept
of PSF has been studied in Refs. [14,15]. For instance, in Ref. [16], a new analytical PSF
for 3D inverse source imaging based on integral analytical solutions has been proposed.
Furthermore, characterizing the PSF behavior of radially displaced point scatterers for
circular synthetic aperture radar has been presented in Ref. [17]. In Ref. [18], an analytical
estimation for achievable resolution and linking it to configuration parameters have been
addressed by using the PSF for the magnetic and electric strip sources.

In Ref. [19], we have addressed the PSF analysis of inverse source and scattering
problem for strip geometry; moreover, an approximated PSF, the achievable resolution,
and two applications of PSF have been provided. For the considered geometries, λ/2
and λ/4 resolution have also been appreciated for the inverse source and scattering
problems, respectively.

This paper aims at providing a PSF analysis for far-field observations to investigate
achievable resolution in imaging. To this end, we address circumference geometries for
investigation, as it is possible to find the NDF in closed-form, at the variance of Ref. [19].
Moreover, again a valuable approximation of the relevant PSFs for both inverse source
and inverse scattering problems in the 2D scalar geometry is introduced. The relationship
between NDF, PSF, and resolution in reconstructions can be highlighted in this way. Some
numerical simulations for each geometry are presented to validate the analytical NDF, the
analytical evaluation of the PSFs, and their role in the resolution. In addition, we deal with
the problem of investigating the minimum number of independent plane waves and their
directions in the inverse scattering problem.

The inversion of linear operators, as the radiation operator, connecting the source
current to the far-field, depends not only on their kernel function but also on the geometry
of both the domain and the codomain sets. We have considered a circumference source
geometry in different papers, mainly for a full angle observation domain. In Ref. [20], for
the first time, we examined the PSF for this geometry and compared the numerical results
for an approximate evaluation for both the full and the limited observation angle far-field
cases. Then, we observed a spatially variant resolution for the latter case of limited angular
observation domains.

In Ref. [21], we examined more general conic geometries and, for the first time,
introduced a closed-form approximate evaluation of the PSF for the full observation angle
case. This leads to a uniform resolution in point-like source reconstructions, i.e., it does not
depend on the source position.

In Ref. [22], we investigated the role of a limited observation domain in the source
radiation by a similar inverse problem approach. An original accurate closed-form evalua-
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tion of the pertinent PSF allows us to establish its angular variant behavior. This leads to
introducing a numerical procedure to define an optimal source discretization: the spacing
of the array elements whose radiated field has the same Number of Degrees of Freedom of
the continuous circumference source. A non-uniform spacing is derived, which means that
the resolution in reconstructions of point-like sources depends on the source position.

In the present paper, again, we consider a full angle observation domain, and we
not only recall the previous results of the inverse source problem but also extend the
approximate evaluation of the PSF to the (linearized) inverse scattering operator. Again, a
different, but uniform, resolution is achieved.

The paper is organized as follows. Section 2 is devoted to the NDF and PSF analysis
in the inverse source problem. The same analysis is addressed in Section 3 for the inverse
scattering problem. The discussion in Section 4 focuses on the optimal number of inde-
pendent plane waves, and their directions in the inverse scattering are found for some
examples. Finally, an example referring to the application of the present PSF in inverse
scattering imaging is provided in Section 5. Conclusions follow in Section 6.

2. The Inverse Source Problem

This section aims at providing an analysis of the PSF in the inverse source problem for
circumference geometries. In particular, we consider the case of a source domain composed
of two concentric circumferences and evaluate the NDF and the PSF in closed form (the
details are provided in Appendix A). Next, we introduce and validate an approximate
evaluation of the PSF to establish a helpful approach in the following section. We start by
demonstrating the relationship between the PSF definition and the NDF and introducing
its approximated evaluation. To this end, we investigate how to estimate them when the
radiated field is obtained over the whole observation domain in the far zone over the
angular observation sector (−π, π), because the whole discussion is strictly linked to the
behavior of the singular values of the radiation operator.

Let us consider two circumferences sources, as shown in Figure 1. The geometry is a z-
invariant electric current source J=

[
J1(φ1) J2(φ2)

]T , where T means transpose, defined
on each circumference, where ρ1 and ρ2 are the radius of the inner and outer circumference,
respectively, and φi, i = 1, 2 are the angular variable on each circumference. The source is
embedded in a homogeneous medium with the free-space dielectric permittivity (ε0) and
magnetic permeability (µ0).
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Figure 1. The geometry of the problem.
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At a single frequency, the total electric far-field E(θ) in the angular source sector
(−π, π) can be provided by the linear integral operator.

E(θ) = L J (1)

where
L =

[
L1 L2

]
(2)

and

Li(Ji(φi)) =

π∫
−π

Ji(φi) ejβρi cos (θ−φi) ρi dφi (3)

The wavenumber is β = ω
√

ε0µ0 = 2π/λ, and ω and λ denote the angular frequency
and the wavelength, respectively.

Since the operator (1) is linear and compact, the SVD can be defined for each source
geometry and consists of the triple {vn(φ), σn, un(θ)} [23], where un and vn are the singular
functions, and σn is the n-th singular value. In Appendix A, it is shown that the σn
exponentially vanish when n > [βρMAX ], where [·] stands for the nearest integer and
ρMAX = max(ρ1, ρ2) because of the asymptotic behavior of the Bessel functions for orders
much larger than arguments. Consequently, the closed-form NDF can be achieved by
2[βρMAX ] + 1 as the number of significant singular values for a stable inversion [24].

The adjoint operator of (1) can also be defined to find the solution to the inverse
problem as L+ =

[
L+1 L+2

]T , where we have the following:

L+j (E) =
∫ π

−π
E(θ) e−jβρj cos (θ−φj) ρj dθ (4)

The PSF is now considered to evaluate the performance of the reconstruction algorithm.
The PSF analysis is used in the inverse source problem to determine how the source
geometry and observation domain affect the resolution. Here, we intend to analyze only
the influence of the source geometry. The final goal is to obtain an analytical estimation of
the achievable resolution and link it to geometrical parameters.

The PSF of our interest is provided by the current distribution in the source domain
for a point source located at φ0i. It is defined mathematically as the impulsive response of
the system provided by the cascade operator L−1L, as follows:

PSF
(
φ0i, φj

)
=
(
L−1L

)
δ
(
φj − φ0i

)
(5)

where L−1 is the regularized inverse operator of L, δ is the Dirac delta function, i and j can
be either 1 or 2.

The PSF is given by the completeness relation truncated to the singular functions
with non-zero singular values because the minimum–norm solution of the inverse source
problem is a projection of the actual source onto the singular function vn with non-zero
singular values. Thus, the PSF is dependent on the number of retained singular values,
i.e., the NDF. Based on the SVD properties, the actual closed-form PSF function (see
Appendix A) is analytically provided by (A9).

Now the approximated PSF is introduced as follows. From the spectral theorem for
compact self-adjoint operators applied to the cascade L+j Li, we can compute the following:

L+j Li(Ji(φi)) =
∫ α

−α
ρi ρj Ji(φi)

[∫ π

−π
ejβ[ρi cos (θ−φi)−ρj cos (θ−φj)] dθ

]
dφi = (6)
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whose kernel is as follows:

K
((

ρi cos φi − ρj cos φj
)
,
(
ρi sin φi − ρj sin φj

))
= ρi ρj

∫ π
−π ejβ[(ρi cos φi−ρj cos φj) cos θ+(ρi sin φi−ρj sin φj) sin θ] dθ =

2π ρi ρj J0

(
β
√(

ρi cos φi − ρj cos φj
)2

+
(
ρi sin φi − ρj sin φj

)2
) (7)

Finally, by substituting Equations (7) to (6), it reads as follows:

L+j Li(Ji(φi)) =
∫ π

−π
Ji(φi)

[
2π ρi ρj J0

(
β

√(
ρi cos φi − ρj cos φj

)2
+
(
ρi sin φi − ρj sin φj

)2
)]

dφi (8)

where J0 is the zeroth-order Bessel function of the first kind.
Now, a general strategy to build a good approximation of the PSF concerns the

approximation of the inverse operator in Equation (5) by the adjoint one [19,25,26]. This
happens when the singular values of the pertinent operator exhibit a nearly constant
behavior before the knee of their curve. As a result, we define the approximated P̃SF
as follows:

P̃SF
(
φi, φj

)
= (L+j Li ) δ

(
φi − φj

)
(9)

Therefore, Equation (8) provides the analytical evaluation of (9) for the geometry
under consideration.

We now provide some numerical simulations to examine the results of the above-
mentioned exact and analytical evaluations of the PSF. In this way, we can also investigate
how adding an inner circumference inside an outer circumference affects the NDF, and
whether it is possible to reconstruct the inner source or not. We addressed the same
analysis to evaluate the NDF for two square sources in Ref. [27]. It has been shown that
increasing the size of the inner square has no noticeable effect on singular value behavior,
and regardless of how small the inner square is, the behavior of singular values in the
outer square would be similar to that of two squares. Thus, it can be confirmed that the
inner source cannot add the NDF by considering a comparison of different sizes of the
inner source.

Let us consider the geometry of Figure 1, for ρ1 = 4λ and different values of ρ2. The
upper bound of the NDF is 51. Figure 2 shows that changing the size of the inner source
can affect the behavior of singular values only slightly; however, as expected by the result
of Appendix A, the NDF does not change. It can be concluded that the contribution of the
inner circumference is negligible, and it is possible to ignore it to achieve the whole NDF.
Furthermore, it is difficult to understand whether the inner source is present or not, and
it may be impossible to reconstruct it. This problem is still challenging in inverse source
problems, and maybe it can be reconstructed by using more prior information about it.

Next, the behavior of the analytical PSF is verified. Since the PSF is a function only
of φ − φ0 it can be arbitrarily selected the point source locations in the source domain:
it is the angularly invariant function; that is all point-like sources can be imaged in the
same way, independent of their positions. Figure 3 shows the actual PSF of the outer
circumference and its influence on the inner circumference for a point-like source located
at φ0 = 0. Generally, the resolution result is evaluated by the Full-Width Half Maximum
(FWHM) criterion. The result confirms that the resolution is equal to λ/2 in the inverse
source problem. In addition, the PSF result of the outer circumference cannot significantly
affect the inner one.
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Figure 3. The Point Spread Function (PSF) of the outer circumference and its effectiveness on the
inner one.

It can be observed that increasing the size of the inner source can reduce the amplitude
of the PSF of the outer source; in addition, the amplitude of its influence on the inner rises,
but the resolution remains unchanged. This means that, when it is known in advance that
the source is composed of two circumferences, it can be expected that, for spacing smaller
than λ, the resolution along the radius is about λ/2.

Finally, a comparison between the approximated and the actual PSF is provided in
Figure 4. The amplitude of both PSF normalized to 1. It is confirmed that, in the main lobe
region, the closed-form approximation is acceptable.
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Figure 4. Comparison of normalized amplitude of the actual PSF and the approximated PSF for
φ0 = 0.

3. The Inverse Scattering Problem

In this section, we address the analysis of the PSF in inverse scattering problem as in
Section 2; additionally, the NDF of an arc of the circumference is provided analytically. Let
us consider a dielectric scatterer, with εs(φ) as relative permittivity, belonging to a domain
referred to as the investigation domain (ID), which is located in a homogenous background,
with the free-space permittivity, ε0, and illuminated by incident plane waves from different
angles. Figure 5 depicts the general circumference geometry of the problem. The direction
of plane wave and direction of observation is denoted by θi and θs, respectively. For each
incident plane wave, the scattered field is observed in the far zone; α and γ are the extremal
angles of the scatterer, respectively, and ρ is the radius of the arc of circumference.
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Hence, for the forward problem, the scattered far-field (Es) under the Born approxima-
tion is provided by the following:

Es(θs, θi) =
∫ γ

α
χ(φ) ejβρ[cos φ (cos θs−cos θi)+sin φ(sin θs−sin θi)] ρ dφ = T (χ(φ)) (10)

where χ(φ) = 1− εs(φ)/ε0 is the contrast function. Now, since T is a linear and compact
operator for the multi-view and single frequency scattering configurations of our present
interest, the SVD can be applied to evaluate the NDF in terms of the pertinent singular
values and the PSF in terms of the corresponding singular functions.

Since it is difficult to find an explicit expression of the SVD of (10), in order to provide
some clues about it, we apply the method proposed in Ref. [28] to estimate the NDF of an
arc source to present the scattering problem. First, we rewrite Equation (10) as follows:

T (χ(φ)) =
∫ γ

α
χ(φ) ejβρ[cos (θs−φ)−cos (θi−φ)] ρ dφ (11)

Then we expand the contrast function under a Fourier series as χ(φ) = ∑
s

Ps
ejsφπ/L
√

2L

and to examine the contribution that each of the contrast harmonics can provide to the
scattered field.

Next, by exploiting the Jacobi-Anger expansion [29] and the orthogonal property of
the exponential functions over the interval [0, 2π], we compute the scattered field by one
of harmonics as follows:

T
(

ejsφπ/L
√

2L

)
= ∑

m
jm Jm(βρ) ejmθs ∑

n
(−j)n Jn(βρ) e−jnθi ej(n−m)φm ρ

√
2L sinc[(sπ + L(n−m))] (12)

consequently resulting in a double Fourier series, where φm = (γ + α)/2 and
L = (γ− α)/2. Now, the expansion coefficients peak at the order π s = L(n−m), be-
cause of the sinc function dependence, and, because of the exponential decay of the Bessel
functions for arguments much larger than the order, the maximum order is max|m| = [βρ].
Since max|n−m| = 2(max|n|+ max|m|), then max|s| = (L/π)2(max|n|+ max|m|) =
(L/π)2[βρ]. Accordingly, the maximum number of Fourier harmonics of the contrast
function that can provide a contribution to the scattered field is 4 L[βρ]

π . This also provides
the upper bound of the NDF of (10).

In an inverse scattering problem, the scattered fields for all plane waves are observed,
and then the task is to reconstruct the contrast function. In order to solve the inverse
scattering problem, the adjoint operator of (10) can be helpful, and it is defined as follows:

T +(Es) =
x π

−π
Es(θs, θi)e−jβρ′ [cos φ′(cos θs−cos θi)+sin φ′(sin θs−sinθi)] ρ′ dθs dθi (13)

From the spectral theorem for compact self-adjoint operators applied to T +T , it
follows that

T +T (χ(φ)) = ρ ρ′
∫ γ

α
χ(φ)

[x π

−π
ejβ[(ρ cos φ−ρ′ cos φ′)(cos θs−cos θi)+(ρ sin φ−ρ′ sin φ′)(sin θs−sinθi)]dθs dθi

]
dφ = (14)

whose kernel is as follows:

K((ρ cos φ− ρ′ cos φ′), (ρ sin φ− ρ′ sin φ′))

=
s π
−π ejβ[(ρ cos φ−ρ′ cos φ′)(cos θs−cos θi)+(ρ sin φ−ρ′ sin φ′)(sin θs−sinθi)] dθs dθi =(

2π J0

(
β

√
(ρ cos φ− ρ′ cos φ′)2 + (ρ sin φ− ρ′ sin φ′)2

))2

(15)
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is provided by the square of the Bessel function of the first kind and zeroth order. Finally,
substituting Equations (15) to (14) results as follows:

T + T (χ(φ)) = ρ ρ′
∫ γ

α
χ(φ)

(
2π J0

(
β

√
(ρ cos φ− ρ′ cos φ′)2 + (ρ sin φ− ρ′ sin φ′)2

))2
dφ (16)

The PSF analysis is used in the inverse scattering problem to determine how the
scatterer geometry and observation domain may influence the resolution. Only the ef-
fect of scatterer geometry on the resolution is considered here. The reconstruction of a
point-like scatterer is provided by the PSF. As pointed out in Section 2, when the PSFs
for the inverse source problem have been introduced, the adjoint operator T + can be
used to approximate the inverse operator T −1 and hence an approximated P̃SF can be
introduced as well, in Section 2, by replacing T −1 and T + with L−1

i and L+j , respectively,
in Equations (5) and (9).

3.1. Two Circumferences

This subsection considers two circumferences to show the difference between this case
and the considered geometry in the inverse source problem. As in Section 2, we consider
different sizes of inner circumference.

First of all, we consider the NDF of this geometry and follow the same approach as in
(1) to define a block operator accounting for more than one scattering object. Following the
same reasoning of Refs. [27,30,31], if the distance between two scatterers is sufficiently large,
the kernel norms and, consequently, the operator norms for the diagonal contributions of
the pertinent T +T operator are expected larger than for the off-diagonal ones. Therefore,
the T +T operator becomes a diagonal block operator, and its eigenvalues are the combi-
nation of each block. This result implies that the whole functional space of the scattered
far fields can be approximately decomposed under two individual orthogonal subspaces.
Thus, the NDF of an arbitrary number M of scattered fields can be given as follows:

NDF ∼=
M

∑
n=1

NDFn (17)

and the total NDF can be obtained approximately by summing the and NDFn of each scatterer.
The implication of the increase of the NDF for the inverse scattering problem com-

pared to the inverse source problem for the same geometry concerns the possibility of
reconstructing a point-like scatterer lying on the inner circumference. As mentioned be-
fore, inserting another circumference source inside the outer circumference source cannot
increase the NDF; on the other hand, the NDF will be increased in the inverse scattering
problem. Furthermore, it is impossible to reconstruct the inner circumference source in the
inverse source problem, whereas the inner circumference object can be reconstructed in the
inverse scattering problem. To this end, some numerical simulations will be presented.

The behavior of normalized singular values of the relevant operator is plotted in
Figure 6. The characteristic of the two circumferences are α1,2 = −π, γ1,2 = π, ρ1 = 4λ,
and the different sizes of ρ2 = λ, 2λ and 3λ, where the index 1 and 2 indicate the
outer and the inner circumference, respectively. It can be seen that the total NDF is
achieved approximately by summing the NDF of two circumferences. The NDF is varied
by changing the radius of the inner circumference compared to the inverse source problem.
For reference, we just choose a sufficiently large number of plane waves to ensure to achieve
all the predicted NDF so that the number of plane waves for this simulation is 60.
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Figure 6. Comparison of the behavior of the normalized singular values of the linearized inverse
scattering for two different circumferences cases.

Figure 7 shows the actual PSF of the outer circumference and its influence on the inner
one for a point scatterer located at φ0 = 0. The actual PSF is numerically computed by
a custom numerical code run in MATLAB environment by discretization of the relevant
operator over a sufficiently fine grid. The FWHM criterion evaluates the achievable
resolution result. The result confirms that the achievable resolution is λ/4. As can be
observed, the amplitude of the main lobe of the outer circumference does not change when
the radius of the inner varies. Furthermore, the PSF of the outer circumference cannot
influence the inner.
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Figure 7. The PSF of the outer circumference and its effectiveness on the one.

The actual PSF of the inner circumference and its influence on the outer circumference
for a point-like scatterer located at φ0 = 0 is plotted in Figure 8. It can be observed that
the amplitude of the main lobe of the inner circumference varies when the radius of the
inner changes. The amplitude of the main lobes of the inner circumference is larger than
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the amplitude of the side lobes of the outer circumference in Figure 7. The PSF of the inner
circumference cannot affect the outer one. Consequently, it is possible to reconstruct the
inner circumference, and a point-like scatterer can be distinguished lying either on it or on
the outer one.
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Next, a comparison between the actual PSF and the approximated one is provided to
appreciate the accuracy of the approximated PSF. Figure 9 confirms that the main lobes
of approximated P̃SF (dotted red curve) and the actual PSF (solid red curve) are nearly
overlapped. It means that the approximation is very accurate at estimating the achievable
resolution that can be achieved.
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Figure 9. Comparison of the normalized amplitude of the actual PSF and approximated PSF for
φ0 = 0.

3.2. Two Arcs of Circumferences

In this subsection, in order to provide a more general example, we address the case
of two arcs of two different circumferences. The geometry of this problem is depicted in
Figure 5 so that ρ1 = 3λ, α1 = π/6, γ1 = 3π/4 and ρ2 = 4λ, α2 = 5π/4 and γ2 = 11π/6.
The aim is twofold: to confirm that the whole NDF is approximately equivalent to the
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summation of the NDF of each scatterer and to appreciate the validity of the approximation
of the PSF for resolution purposes.

Figure 10 shows the behavior of normalized singular values of the relevant operator
with 60 plane waves. The upper bound NDF of the two scatterers is 51. The result proves
that the total NDF is approximately achieved by summing the NDF of two scatterers.
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Figure 10. The normalized singular values of the linearized inverse scattering operator for the
circumference arc case.

The next numerical simulation refers to the influence of the actual PSF of the arc of
circumference 1 on the other one. The considered point positions are φ0 = 4π/3, 3π/2
and 5π/3 and the corresponding PSFs results are shown in Figure 11. In this way, we can
appreciate how imaging performance remains constant when the position of the point
scatterer changes. In fact, if the location of the point scatterer changes, the width of the
main lobe does not change, which means the resolution remains constant. Furthermore,
the PSF of scatterer 2 cannot affect the other one.
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Figure 11. The influence of the PSF of the arc of circumference 1 on the other one, with ρ1 = 3λ and
ρ2 = 4λ.
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A numerical simulation is presented to show the influence of the actual PSF of scatterer
2 on the other. The position of the considered points are φ0 = 4π/3, 3π/2 and 5π/3 and
the corresponding PSFs results are displayed in Figure 12. Again, we observed that the
width of the main lobes does not vary when the position of the point scatterers changes. It
indicates that the PSF is space invariant, which means that the resolution of a point-like
scatterer is independent of its location.
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Figure 12. The influence of the PSF of the arc of circumference 2 on the other one, with ρ1 = 3λ and
ρ2 = 4λ.

The same simulation as in the previous subsection is here provided to compare the
results of the relevant PSF and the P̃SF for different positions of φ0. As demonstrated
in Figure 13, the main lobes of the approximated P̃SF (dotted lines) are approximately
overlapped with the actual PSF (solid lines).

Electronics 2021, 10, 2157 13 of 21 
 

 

5𝜋 3⁄  and the corresponding PSFs results are displayed in Figure 12. Again, we observed 

that the width of the main lobes does not vary when the position of the point scatterers 

changes. It indicates that the PSF is space invariant, which means that the resolution of a 

point-like scatterer is independent of its location. 

 

Figure 12. The influence of the PSF of the arc of circumference 2 on the other one, with 𝜌1 = 3𝜆 

and 𝜌2 = 4𝜆. 

The same simulation as in the previous subsection is here provided to compare the 

results of the relevant PSF and the 𝑃𝑆𝐹̃ for different positions of 𝜙0. As demonstrated in 

Figure 13, the main lobes of the approximated 𝑃𝑆𝐹̃ (dotted lines) are approximately over-

lapped with the actual PSF (solid lines).  

It can be concluded that in the inverse source and inverse scattering problem, when 

the observation domain is between −𝜋 and 𝜋, while the PSF maximum value may de-

pend on the point source/scatterer, the width of its main lobe does not change and is in-

dependent of the position of the point source/scatterer. Since the resolution of a point-like 

source/scatterer is limited by the width of the PSF, it is the same over the whole source/in-

vestigation domain. 

 

Figure 13. Comparison of the actual and approximated normalized PSFs for 𝜙0 = 𝜋 4⁄ , 𝜋 3⁄ , 𝜋 2⁄ . Figure 13. Comparison of the actual and approximated normalized PSFs for φ0 = π/4, π/3, π/2.



Electronics 2021, 10, 2157 14 of 21

It can be concluded that in the inverse source and inverse scattering problem, when
the observation domain is between −π and π, while the PSF maximum value may de-
pend on the point source/scatterer, the width of its main lobe does not change and is
independent of the position of the point source/scatterer. Since the resolution of a point-
like source/scatterer is limited by the width of the PSF, it is the same over the whole
source/investigation domain.

4. Optimal Number of Incident Plane Waves

In the previous section, we performed an NDF analysis of the field scattered by cir-
cumference geometries under plane wave incidence. It was assumed that a sufficiently high
number of waves impinge on the object so that the NDF is achieved. In inverse scattering
problems, the scattered field data can be acquired by changing either the observation
direction or the direction of the impinging plane wave. The knowledge of the NDF of the
linearized scattering operator cannot provide any clue about how to discretize the scattered
field data optimally. Therefore, from the theoretical point of view, two questions arise when
multiple plane waves are used to achieve the NDF: The first one is, how many independent
plane waves are needed? The second one is, which directions of plane waves are the
optimal ones, in the sense that they allow us to achieve the total NDF of the operator?
In the absence of theoretical arguments, we choose to investigate numerically only the
question of the minimum number of impinging plane waves that can be significant in
achieving the total NDF. An answer to this point can be valuable in decreasing the cost of
imaging systems, as for instance, in radar imaging, since it allows us to reduce the number
of transmitters (and receivers) to a minimum.

In principle, increasing the number of independent plane waves can increase the NDF,
namely the number of significant singular values of the operator; after that, it can only
affect their behavior in the decaying region. Generally, finding the exact optimal number
and its direction for each geometry is complicated because they are dependent on the
geometry of the problem, i.e., the number of the scatterers, the distance between them,
their location, size, and shape. It means that it is difficult to introduce a general rule for
every geometry, and it cannot be predicted easily how many independent plane waves are
enough and which directions are the best.

To this end, the reciprocity theorem might be helpful, as the inverse scattering problem
reduces to an inverse source problem for a single plane wave incidence. According to it,
the far-field scattered along a direction θ for a plane wave impinging on the direction θi
is the same when we consider a plane wave impinging on θ and observe the far-field at
the direction θi. Therefore, if we call NDFs the NDF of the corresponding inverse source
problem, it would result from NDF = (NDFs + 1)× NDFs/2 for the pertinent inverse
scattering problem and NDF, and plane waves would be needed, as each individual one
might add pieces of information to the total scattered field. While this reasoning can
provide an upper bound about the NDF and the number and directions of the independent
plane waves, the actual number is lower.

Likewise, in Ref. [31], we have analyzed the same problem for strip geometries in
θ and u variable. It has been shown that two incident plane waves for two strips and
four incident plane waves for the cross-strip are adequate for achieving all NDF of these
scattering geometries. Moreover, optimum directions of the plane waves for each geometry
were introduced. It was proved that the same NDF could be achieved independently on
the observation variable, and the only difference is the behavior of singular values.

The purpose of this section is to investigate the minimum number of independent
plane waves for the considered geometries to achieve the whole NDF, as well as to introduce
the optimal directions of plane waves. To this end, a comparison between different numbers
of plane waves for each geometry is presented. Since, at the moment, it is difficult to
introduce a closed-form rule to define the optimal number and its direction, we provide
them numerically.
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We first consider an arc of a circumference that its radius is equal to ρ = 3λ, α = π/6
and γ = 3π/4. Figure 14 illustrates the behavior of the singular value of the relevant
operator for different numbers of plane waves. For reference, we just choose a sufficiently
large number of plane waves to ensure to achieve all the predicted NDF.
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verse scattering operator for different numbers of impinging plane waves for a single arc of the
circumference ID.

As can be observed in Figure 14, the NDF is added by increasing the number of
plane waves; however, the NDF will not add after two plane waves (purple line), and the
behavior of the singular values can only change within the decay region. Overall, it can be
seen that the NDF can be approximately achieved by considering only two plane waves,
which are 0 and π. It must be noticed that finding the optimal number is dependent on
the size of the circumference, which means that, if its size increases, the optimal number
of the plane wave will increase. However, two plane waves are only adequate for this
geometry. This result agrees with Ref. [31], as this circumference geometry is not far from a
rectilinear one.

The second numerical simulation is the same as the first one to represent the behavior
of the normalized singular values for two arcs of two different circumferences at various
numbers of incident plane waves from different directions, as shown in Figure 15. The
result shows again that the NDF increases by increasing the number of plane waves from
one to two (purple line) plane waves; only the behavior of the singular values varies
beyond two. The direction of two plane waves is π/6, π. It can be observed that when
we consider three plane waves with θi = 0, π/2, π, the total NDF is achieved as well.
Consequently, the optimal direction of the plane waves depends on the scattering geometry
compared with the previous simulation.

The third simulation is devoted to considering one circumference whose radius is
equal to ρ = 4λ. Figure 16 shows the behavior of the singular value of the relevant operator
for different numbers of plane waves. It can be viewed that increasing the number of plane
waves can increase the NDF; however, the NDF will not increase after four plane waves
(red line), and the behavior of the singular values can only change. Overall, the NDF can
be approximately achieved by considering only four plane waves, which are 0, π/2, π,
and 3π/2.
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scattering operator for different numbers of impinging plane waves for a circumference ID.

The fourth numerical simulation concerns the behavior of the normalized singular
values for two different circumferences, which the radius of the outer and inner are equal
to ρ1 = 4λ and ρ1 = 2λ, respectively, as shown in Figure 17. As can be illustrated, the NDF
is added by increasing the number of plane waves; however, the NDF will not add after
four plane waves (green line), and the behavior of the singular values can only change.
Thus, four plane waves are approximately adequate because the exponential decay of
the singular values is met approximately at the same point compared to six and 60 plane
waves, although the only difference is the behavior of their singular values. The directions
of the four plane waves are θi = π/6, 3π/4, 5π/4, 7π/4.
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In conclusion, the numerical simulations confirm that finding the optimal number of
the plane waves and their directions are dependent on the size of the scatterer, the number
of the scatterer, their shapes, and their locations. Therefore, it may be difficult to find a
general rule.

5. A Numerical Application in Inverse Scattering

This section aims at showing the practical relevance of the above theoretical discus-
sions by the numerical reconstruction of an object dielectric located in free space. It consists
of two dielectric semi-circumference strips with ρ1 = 4λ, ρ2 = 2λ and the width 0.4λ, as
illustrated in Figure 18, and the contrast is χ = 1.

Electronics 2021, 10, 2157 17 of 21 
 

 

 

Figure 17. Comparison of the behavior of the normalized singular values of the linearized inverse 

scattering operator for various numbers of impinging plane waves for a double circumference ID. 

5. A Numerical Application in Inverse Scattering 

This section aims at showing the practical relevance of the above theoretical discus-

sions by the numerical reconstruction of an object dielectric located in free space. It con-

sists of two dielectric semi-circumference strips with 𝜌1 = 4𝜆, 𝜌2 = 2𝜆 and the width 

0.4λ, as illustrated in Figure 18, and the contrast is 𝜒 = 1.  

 

Figure 18. The geometry of the dielectric object (blue color) with cracks (red color). 

Then, we assume that two cracks (free space condition, 𝜒 = 0) exist in the outer semi-

circumference, and two cracks are present in the inner semi-circumference. In the outer 

semi-circumference, the width of each crack and the distance between them is 𝜆 4⁄ ; the 

length of each crack and the distance between them is 𝜆 6⁄  in the inner semi-circumfer-

ence. All the simulation parameters are the same as in the previous section. The normal-

ized singular values of the related operator is plotted in Figure 19 to compute the NDF. 

For this simulation, the number of plane waves is 60, and the expected NDF is 81. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y 

X 

Investigation Domain (ID)  

𝝆𝟏 𝝆𝟐 

Figure 18. The geometry of the dielectric object (blue color) with cracks (red color).

Then, we assume that two cracks (free space condition, χ = 0) exist in the outer semi-
circumference, and two cracks are present in the inner semi-circumference. In the outer
semi-circumference, the width of each crack and the distance between them is λ/4; the
length of each crack and the distance between them is λ/6 in the inner semi-circumference.
All the simulation parameters are the same as in the previous section. The normalized
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singular values of the related operator is plotted in Figure 19 to compute the NDF. For this
simulation, the number of plane waves is 60, and the expected NDF is 81.
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It must be noted that the mathematical procedure of the reconstruction algorithm is
significant to solve the problem. Since all actual scattered fields always include noise, the
reconstructed image may also be noisy, and the cracks may not be detected. Therefore, it is
crucial that the inversion algorithm can mitigate the noise effect. To this end, the Truncated
SVD algorithm is adopted to reconstruct the contrast function, and we fix the threshold
value to include the first NDF singular values. Then additive white Gaussian noise is
added to the simulated scattered field, with a noise level such that the Signal-to-Noise
Ratio (SNR) is 10 dB, and results are shown in Figure 20.
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As can be observed, it can be distinguished that two cracks are present along the
outer semi-circumference; oppositely, it is impossible to differentiate between two cracks
in the inner semi-circumference. It is important to note that the two cracks separated by
the distance λ/4 can be resolved well also in the presence of noise on data. Hence, the
resolution analysis is important for the reliable reconstruction of defects in dielectric objects
in inverse scattering problems.

6. Conclusions

We have investigated the role of the NDF and the PSF in the linear electromagnetic
inverse for both source and scattering problems to estimate the achievable resolution. Since
the results may depend on the geometry, we have taken into consideration one different
from Ref. [19], that is, the circumference one. The PSF can be implemented by the numerical
solution of the relevant inverse problem. Since finding the exact evaluation of the PSF is
complicated and can only be performed numerically for most geometries, an approximate
analytical assessment was introduced, and its accuracy was assessed against the actual PSF
for each geometry by numerical simulations. In addition, the closed-form evaluation of the
PSF in inverse source and the analysis of the closed-form NDF in inverse scattering were
provided. Two circumferences were addressed to prove that the inner source is negligible
to achieve the NDF and cannot add the NDF; conversely, the inner circumference can
increase the NDF in inverse scattering.

We have demonstrated that, when the observation domain scans the full angle in
the far zone region, space invariant PSF is achieved, which means that the maximum
resolution of the reconstruction of point-like sources/objects is obtained independently
of their locations within the investigation domain, and the resolution remains unchanged.
Specifically, the achievable resolutions for considered geometries are λ/2 and λ/4 for
the inverse source and scattering problems, respectively, as in Ref. [19]. Furthermore, we
have shown that increasing the number of independent plane waves can add the NDF
until the minimum number of plane waves that are needed to achieve the whole NDF;
thus, the optimal number of independent plane waves and their direction was introduced
numerically. The result illustrated that finding optimal number and their direction is
dependent on the characteristics of the scatterer, such as its size and the number of the
scatterer. In Section 5, the numerical example has shown the relevance of the approach
to microwave tomography of dielectric objects, and when noise is present, the two cracks
separated by the distance λ/4 can be reconstructed well.
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Appendix A

In this appendix, we derive the singular system of the operator (1) to compute the
closed-form of the PSF in inverse source problems. For a circle source, the singular system
is readily provided in the closed-form [29] by the following:{

vn(φ) =
ejnφ

√
2π

, σn = 2πρ Jn(βρ), un(θ) = jn ejnθ

√
2π

}
(A1)

where Jn(.) is the n-th Bessel function of the first kind.
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As is well-known, the singular functions and the singular values of the operator L
satisfy the equationsL vn = σn un, andL+un = σn vn (see (2)). Therefore, the following two
eigenvalue problems arise: L+L vn = σ2

n vn, and L L+un = σ2
n un. We start considering

the latter one and evaluate the following:

L L+
(

ejnθ

√
2π

)
=

2

∑
i=1
L+j Li

(
ejnθ

√
2π

)
=

2

∑
i=1

ρ2
i

∫ π

−π

ejnθ′

√
2π

[∫ π

−π
ejβρi [cos (θ−φi)−cos (θ′−φi)] dφi

]
dθ′ (A2)

By exploiting the Jacobi–Anger expansion [29] and the orthogonal property of the
exponential in θ; over the interval [0, 2π], (A2) becomes the following:

2
∑

i=1
ρ2

i
∫ π
−π

ejnθ′
√

2π
∑
r

jr Jr(βρi)∑
m
(−j)m Jm

(
βρj
) [∫ π

−π ejr(θ−φi) e−jm(θ−φj) dφi

]
dθ′ =

2
∑

i=1
ρ2

i
∫ ejnφi√

2π
∑
r

2π J2
r (βρi) ejr(θ−θ′) dθ′ = (2π)2 2

∑
i=1

ρ2
i J2

n(βρi)
ejnθ
√

2π

(A3)

Therefore, the following is apparent:

un(θ) = jn ejnθ

√
2π

, σ2
n = (2π)2 ∑2

k=1 ρ2
k J2

n(βρk) (A4)

It is possible to show that σ2
n decay exponentially for n > [βρMAX ], where [.] stands

for the nearest integer and ρMAX = max(ρ1, ρ2). Now, we consider the following equation
to compute the singular functions:

L+j un(θ) = σn vj
n (A5)

Then we get the following:

L+j un(θ) = ρj
∫ π
−π

ejnθ
√

2π
e−jβρj cos (θ−φj) dθ =

ρj√
2π

∫ π
−π ejnθ ∑

n
(−j)n Jn

(
βρj
)

e−jn(θ−φj) dθ = 2π ρj(−j)n ejnφj√
2π

Jn
(

βρj
) (A6)

By substituting Equation (A6) to (A5), it follows that we get the following:

σn vj
n = 2π ρj(−j)n ejnφj

√
2π

Jn(βρi) (A7)

Then the singular functions are given by the following:

vj
n
(
φj
)
=

(−j)n Jn
(

βρj
)
ρj√

∑2
k=1 ρ2

k J2
n(βρk)

ejnφj
√

2π
(A8)

Finally, the closed-form PSF is given by the following:

PSF
(
φ0i, φj

)
= ∑

n
vj

n
(
φj
)
vi∗

n (φ0i) = ∑
n

ρi ρj Jn(βρi) Jn
(

βρj
)[

∑k ρ2
k J2

n(βρk)
] ejn(φj−φ0i)

2π
(A9)

which holds both for i = j and i 6= j.
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