Cross-Domain Classification of Physical Activity Intensity: An EDA-Based Approach Validated by Wrist-Measured Acceleration and Physiological Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition Device and Modality
- Photoplethysmography (PPG) sensor (sampling frequency: 64 Hz; resolution 0.9 nW/Digit), which measures Blood Volume Pulse (BVP), from which cardiovascular parameters, namely the HR, HRV, and Inter-Beat Interval (IBI), may be derived;
- three-axis MEMS Accelerometer (sampling frequency: 32 Hz; resolution: 8 bit of the selected range), that measures the continuous gravitational force (g) acting on each of the three spatial directions (X, Y, and Z axes);
- Electrodermal Activity (EDA) sensor (sampling frequency: 4 Hz; resolution: 1 digit ∼900 picoSiemens), that measures skin electrical changes related to Sympathetic Nervous System (SNS) arousal;
- Infrared (IR) Thermopile (sampling frequency: 4 Hz; resolution: 0.02 °C), that measures the SKT values.
2.2. Data Acquisition Protocol
2.3. Data Processing
2.4. Data Segmentation and Features Extraction
2.4.1. Balance of Data
2.5. Classification Algorithms
2.6. Performance Evaluation Metrics
3. Results
3.1. PA Exertion Classification by Cross-Domain Signals
3.2. PA Exertion Classification by EDA Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cooper, R.N. Living with global imbalances: A contrarian view. J. Policy Model. 2006, 28, 615–627. [Google Scholar] [CrossRef]
- Eaton, S.B.; Eaton, S.B. Physical Inactivity, Obesity, and Type 2 Diabetes: An Evolutionary Perspective. Res. Q. Exerc. Sport 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Diet, physical activity and health: Report by the Secretariat. In Proceedings of the 55th World Health Assembly, Geneva, Switzerland, 13–18 May 2002.
- Cecchi, S.; Piersanti, A.; Poli, A.; Spinsante, S. Physical Stimuli and Emotions: EDA Features Analysis from a Wrist-Worn Measurement Sensor. In Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Pisa, Italy, 14–16 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Spinsante, S.; Poli, A.; Mongay Batalla, J.; Krawiec, P.; Dobre, C.; Bǎjenaru, L.; Mavromoustakis, C.X.; Costantinou, C.S.; Molan, G.; Herghelegiu, A.M.; et al. Clinically-validated technologies for assisted living. J. Ambient. Intell. Humaniz. Comput. 2021, 1–22. [Google Scholar] [CrossRef]
- Barrett, S.; Begg, S.; O’Halloran, P.; Kingsley, M. A physical activity coaching intervention can improve and maintain physical activity and health-related outcomes in adult ambulatory hospital patients: The Healthy4U-2 randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Coultas, D.B.; Jackson, B.E.; Russo, R.; Peoples, J.; Singh, K.P.; Sloan, J.; Uhm, M.; Ashmore, J.A.; Blair, S.N.; Bae, S. Home-based physical activity coaching, physical activity, and health care utilization in chronic obstructive pulmonary disease. Chronic obstructive pulmonary disease self-management activation research trial secondary outcomes. Ann. Am. Thorac. Soc. 2018, 15, 470–478. [Google Scholar] [CrossRef]
- Bastos, D.; Ribeiro, J.; Silva, F.; Rodrigues, M.; Silva, A.G.; Queirós, A.; Fernández-Caballero, A.; Rocha, N.P.; Pereira, A. SmartWalk BAN: Using Body Area Networks to Encourage Older Adults to Perform Physical Activity. Electronics 2021, 10, 56. [Google Scholar] [CrossRef]
- Boccalandro, F.; Von Schoettler, H. Chapter 5—Exercise Stress Testing. In Cardiology Secrets, 5th ed.; Levine, G.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 38–45. [Google Scholar] [CrossRef]
- Vanhees, L. The Role of Relative Intensity; WHO-CC—Clinical Health Promotion Centre: Copenhagen, Denmark, 2016. [Google Scholar]
- American Heart Association. Physical Activity and Public Health. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Spruijt-Metz, D.; Wen, C.K.F.; Bell, B.M.; Intille, S.; Huang, J.S.; Baranowski, T. Advances and Controversies in Diet and Physical Activity Measurement in Youth. Am. J. Prev. Med. 2018, 55, e81–e91. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.; Bertini, L.; Campos, W.R.; Sobral, A.P.; Mocaiber, I.; Copetti, A. Machine Learning Algorithms for Activity-Intensity Recognition Using Accelerometer Data. Sensors 2021, 21, 1214. [Google Scholar] [CrossRef] [PubMed]
- Marin, F.; Lepetit, K.; Fradet, L.; Hansen, C.; Ben Mansour, K. Using accelerations of single inertial measurement units to determine the intensity level of light-moderate-vigorous physical activities: Technical and mathematical considerations. J. Biomech. 2020, 107, 109834. [Google Scholar] [CrossRef]
- Morbidoni, C.; Cucchiarelli, A.; Fioretti, S.; Di Nardo, F. A deep learning approach to EMG-based classification of gait phases during level ground walking. Electronics 2019, 8, 894. [Google Scholar] [CrossRef] [Green Version]
- Javeed, M.; Jalal, A.; Kim, K. Wearable Sensors based Exertion Recognition using Statistical Features and Random Forest for Physical Healthcare Monitoring. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 512–517. [Google Scholar] [CrossRef]
- Chowdhury, A.K.; Tjondronegoro, D.; Chandran, V.; Trost, S.G. Physical Activity Recognition Using Posterior-Adapted Class-Based Fusion of Multiaccelerometer Data. IEEE J. Biomed. Health Inform. 2018, 22, 678–685. [Google Scholar] [CrossRef]
- Löllgen, H. Das Anstrengungsempfinden (RPE, Borg-Skala). Dtsch. Z. Sportmed. 2004, 55, 299–300. [Google Scholar]
- Robertson, R.; Goss, F.; Boer, N.; Peoples, J.; Foreman, A.; Dabayebeh, I.; Millich, N.; Balasekaran, G.; Riechman, S.; Gallagher, J.; et al. Children’s OMNI scale of perceived exertion: Mixed gender and race validation. Med. Sci. Sports Exerc. 2000, 32, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiner, M.; Niermann, C.; Jekauc, D.; Woll, A. Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Gallego, F.; Ruiz, J.; Buxens, A.; Altmäe, S.; Artieda, M.; Santiago, C.; González-Freire, M.; Verde, Z.; Arteta, D.; Martínez, A.; et al. Are elite endurance athletes genetically predisposed to lower disease risk? Physiol. Genom. 2010, 41, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, A.K.; Tjondronegoro, D.; Chandran, V.; Zhang, J.; Trost, S.G. Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data. Sensors 2019, 19, 4509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birnbaumer, P.; Dietz, P.; Watson, E.; Mukoma, G.; Müller, A.; Sattler, M.; Jaunig, J.; van Poppel, M.; Hofmann, P. Absolute accelerometer-based intensity prescription compared to physiological variables in pregnant and nonpregnant women. Int. J. Environ. Res. Public Health 2020, 17, 5651. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, A.; Baty, F.; Rausch-Osthof, A.K.; Brutsche, M. Cardiopulmonary and gas-exchange responses during the six-minute walk test in patients with chronic obstructive pulmonary disease. Respiration 2014, 88, 307–314. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.; Seals, D. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Empatica Inc. Empatica E4; Empatica Inc.: Boston, MA, USA. Available online: https://www.empatica.com/en-eu/research/e4/ (accessed on 30 August 2021).
- Barnes, K.; Kilding, A. Commentaries on viewpoint: Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance. J. Appl. Physiol. 2018, 125, 676. [Google Scholar] [CrossRef]
- Borg, G.; Loellgen, H. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 2001; Volume 52. [Google Scholar]
- Ji, X.; Li, H.; Lu, Z.; Wang, Z.; Chai, X. Research on the Electrodermal Activity during Walking and Running. In Proceedings of the 2019 4th International Conference on Control and Robotics Engineering (ICCRE), Nanjing, China, 20–23 April 2019; pp. 179–183. [Google Scholar] [CrossRef]
- Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. (CSUR) 2014, 46, 1–33. [Google Scholar] [CrossRef]
- Chowdhury, A.K.; Tjondronegoro, D.; Zhang, J.; Pratiwi, P.S.; Trost, S.G. Towards non-laboratory prediction of relative physical activity intensities from multimodal wearable sensor data. In Proceedings of the 2017 IEEE Life Sciences Conference (LSC), Sydney, NSW, Australia, 13–15 December 2017; pp. 230–233. [Google Scholar] [CrossRef] [Green Version]
- Altini, M.; Penders, J.; Vullers, R.; Amft, O. Combining Wearable Accelerometer and Physiological Data for Activity and Energy Expenditure Estimation. In Proceedings of the 4th Conference on Wireless Health, Baltimore, MD, USA, 1–3 November 2013; Association for Computing Machinery: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Ellis, K.; Kerr, J.; Godbole, S.; Staudenmayer, J.; Lanckriet, G. Hip and wrist accelerometer algorithms for free-living behavior classification. Med. Sci. Sports Exerc. 2016, 48, 933. [Google Scholar] [CrossRef] [Green Version]
- Fridolfsson, J.; Borjesson, M.; Buck, C.; Ekblom, O.; Ekblom-Bak, E.; Hunsberger, M.; Lissner, L.; Arvidsson, D. Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements. Sensors 2019, 19, 2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iadarola, G.; Poli, A.; Spinsante, S. Analysis of Galvanic Skin Response to Acoustic Stimuli by Wearable Devices. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pernek, I.; Kurillo, G.; Stiglic, G.; Bajcsy, R. Recognizing the intensity of strength training exercises with wearable sensors. J. Biomed. Inform. 2015, 58, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, Q.; Zhang, L.; Li, L. A heterogeneous ensemble approach for activity recognition with integration of change point-based data segmentation. Appl. Sci. 2018, 8, 1695. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, R.; Julian, J. Human Activity Recognition Using Wearable Sensors; Springer: New Delhi, India, 2021; pp. 527–538. [Google Scholar]
- Centinela: A human activity recognition system based on acceleration and vital sign data. Pervasive Mob. Comput. 2012, 8, 717–729. [CrossRef]
- Elhoushi, M.; Georgy, J.; Noureldin, A.; Korenberg, M.J. A survey on approaches of motion mode recognition using sensors. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1662–1686. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Liu, S.; Gao, R.X.; John, D.; Staudenmayer, J.W.; Freedson, P.S. Multisensor Data Fusion for Physical Activity Assessment. IEEE Trans. Biomed. Eng. 2012, 59, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Alzamer, H.; Abuhmed, T.; Hamad, K. A Short Review on the Machine Learning-Guided Oxygen Uptake Prediction for Sport Science Applications. Electronics 2021, 10, 1956. [Google Scholar] [CrossRef]
- Yang, C.C.; Hsu, Y.L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, G.; Sharma, M. A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans. Comput. Biol. Med. 2021, 134, 104450. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Rizwan, M.F.; Farhad, R.; Imam, M.H. Support Vector Machine based Stress Detection System to manage COVID-19 pandemic related stress from ECG signal. AIUB J. Sci. Eng. (AJSE) 2021, 20, 8–16. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.; Krishnan, N. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
Subject | Sex (M/F) | Age (Years) | Weight (kg) | Height (cm) |
---|---|---|---|---|
1 | M | 28 | 72.5 | 175 |
2 | F | 25 | 38.5 | 150 |
3 | F | 29 | 46.0 | 155 |
Signal | Domains | Type of Features | Features |
---|---|---|---|
Mean, Variance, Standard Deviation, | |||
Time | Statistical | Correlation Axes, Interquartile Range, | |
Mean Absolute Deviation, and Root | |||
Mean Square | |||
Frequency | Spectral Energy | ||
Time | Statistical | Mean, Median, Variance, Standard | |
Deviation, Skewness, and Kurtosis | |||
Time | Structural | 3rd order polynomial coefficients | |
(°C) | Time | Statistical | Mean, Median, Variance, Standard |
Deviation, Skewness, and Kurtosis | |||
Structural | third order polynomial coefficients | ||
(µS) | Time | Statistical | Mean, Median, Variance, Standard |
Deviation, Skewness, and Kurtosis |
Classifiers | Class | AUC | Specificity (%) | Sensitivity (%) | F1-Score (%) |
---|---|---|---|---|---|
0 | 1.00 | 98.67 | 98.54 | 98.15 | |
SVM | 1 | 0.99 | 97.79 | 88.41 | 91.69 |
2 | 0.99 | 95.23 | 96.83 | 93.88 | |
0 | 0.99 | 99.29 | 97.46 | 98.01 | |
BT | 1 | 0.99 | 95.90 | 90.27 | 90.95 |
2 | 0.99 | 95.65 | 93.97 | 92.77 |
Classifiers | Class | AUC | Specificity (%) | Sensitivity (%) | F1-Score (%) |
---|---|---|---|---|---|
0 | 0.99 | 65.65 | 94.19 | 71.26 | |
SVM | 1 | 0.98 | 93.55 | 21.30 | 31.66 |
2 | 0.99 | 88.67 | 79.20 | 78.88 | |
0 | 0.99 | 87.17 | 80.09 | 77.64 | |
BT | 1 | 0.99 | 85.79 | 56.55 | 60.88 |
2 | 0.99 | 85.43 | 85.48 | 82.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poli, A.; Gabrielli, V.; Ciabattoni, L.; Spinsante, S. Cross-Domain Classification of Physical Activity Intensity: An EDA-Based Approach Validated by Wrist-Measured Acceleration and Physiological Data. Electronics 2021, 10, 2159. https://doi.org/10.3390/electronics10172159
Poli A, Gabrielli V, Ciabattoni L, Spinsante S. Cross-Domain Classification of Physical Activity Intensity: An EDA-Based Approach Validated by Wrist-Measured Acceleration and Physiological Data. Electronics. 2021; 10(17):2159. https://doi.org/10.3390/electronics10172159
Chicago/Turabian StylePoli, Angelica, Veronica Gabrielli, Lucio Ciabattoni, and Susanna Spinsante. 2021. "Cross-Domain Classification of Physical Activity Intensity: An EDA-Based Approach Validated by Wrist-Measured Acceleration and Physiological Data" Electronics 10, no. 17: 2159. https://doi.org/10.3390/electronics10172159
APA StylePoli, A., Gabrielli, V., Ciabattoni, L., & Spinsante, S. (2021). Cross-Domain Classification of Physical Activity Intensity: An EDA-Based Approach Validated by Wrist-Measured Acceleration and Physiological Data. Electronics, 10(17), 2159. https://doi.org/10.3390/electronics10172159