Modeling and Analysis of Electromagnetic Field and Temperature Field of Permanent-Magnet Synchronous Motor for Automobiles
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Original Contributions of This Paper
2. Motor Structure
3. Loss Calculation
3.1. Iron Loss Calculation
3.2. Copper Loss Calculation
3.3. Model Setup
4. Thermal Field Analysis
4.1. Effect of Electromagnetic Field on Temperature Distribution
4.2. Effect of Temperature Field on Electromagnetic Parameters
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burkhardt, Y.; Spagnolo, A.; Lucas, P.; Zavesky, M.; Brockerhoff, P. Design and analysis of a highly integrated 9-phase drivetrain for EV applications. In Proceedings of the 2014 International Conference on Electrical Machines, Berlin, Germany, 2–5 September 2014; pp. 450–456. [Google Scholar]
- Liu, Q.; Hameyer, K. High-Performance Adaptive Torque Control for an IPMSM with Real-Time MTPA Operation. IEEE Trans. Energy Convers. 2017, 32, 571–581. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, W. Loss calculation and thermal analysis of surface-mounted pm motor and interior pm motor. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar]
- Li, G.; Ojeda, J.; Hoang, E.; Gabsi, M.; Lecrivain, M. Thermal–electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors. IEEE Trans. Veh. Tech. 2012, 61, 140–151. [Google Scholar] [CrossRef]
- Dong, J.; Huang, Y.; Jin, L.; Lin, H.; Yang, H. Thermal optimization of a high-speed permanent magnet motor. IEEE Trans. Magn. 2014, 50, 749–752. [Google Scholar] [CrossRef]
- Huang, Z.; Fang, J.; Liu, X.; Han, B. Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines. IEEE Trans. Ind. Electron. 2016, 63, 2027–2035. [Google Scholar] [CrossRef]
- Du, G.; Wang, H.; Liu, X.; Wang, Y. Multiphysics thermal analysis of a high speed permanent magnet brushless DC motor. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 21–23 August 2011; pp. 1–5. [Google Scholar]
- Luu, P.; Lee, J.; Lee, J.; Park, J. Electromagnetic and thermal analysis of a permanent magnet motor considering the effect of articulated robot link. Energies 2020, 13, 3239. [Google Scholar] [CrossRef]
- Dong, J.; Huang, Y.; Jin, L.; Guo, B.; Lin, H.; Dong, J. Electromagnetic and thermal analysis of open-circuit air cooled high-speed permanent magnet machines with gramme ring windings. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Joo, D.; Cho, J.; Woo, K.; Kim, B.; Kim, D. Electromagnetic field and thermal linked analysis of interior permanent-magnet synchronous motor for agricultural electric vehicle. IEEE Trans. Magn. 2011, 47, 4242–4245. [Google Scholar] [CrossRef]
- Zhang, Y.; McLoone, S.; Cao, W.; Qiu, F.; Gerada, C. Power loss and thermal analysis of a mw high-speed permanent magnet synchronous machine. IEEE Trans. Energy Convers. 2017, 32, 1468–1478. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, R.; Jung, H.; Yeo, H. Electromagnetic and thermal analyses of surface-mounted permanent magnet motor with flux-absorbing structure for enhancing overhang effect. IET Electr. Power Appl. 2020, 14, 2037–2043. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, X.; Chen, Y.; Huang, X.; Ye, Y. Modeling and investigation of thermal characteristics of a water-cooled permanent-magnet linear motor. IEEE Trans. Ind. Appl. 2015, 51, 2086–2096. [Google Scholar] [CrossRef]
- Nair, D.; Arkkio, A.; Haavisto, A. Power loss segregation in electrical machines through calorimetry and inverse thermal modelling. IET Electr. Power Appl. 2020, 14, 1127–1133. [Google Scholar] [CrossRef]
- Son, H.; Lee, K. Distributed multipole models for design and control of PM actuators and sensors. IEEE/ASME Trans. Mechatronics. 2008, 13, 228–238. [Google Scholar] [CrossRef]
- Zeng, L.; Xing, D. Analysis of magnetic field and oil film bearing characteristics of a novel hybrid drive multi-DOF permanent magnet motor. In Proceedings of the 11th IEEE Conference on Industrial Electronics and Applications, Hefei, China, 5–7 June 2016; pp. 239–244. [Google Scholar]
- Pan, D.; Li, L.; Wang, M. Modeling and optimization of air-core monopole linear motor based on multiphysical fields. IEEE Trans. Ind. Electron. 2018, 65, 9814–9824. [Google Scholar] [CrossRef]
- Du, G.; Xu, W.; Zhu, J.; Huang, N. Power loss and thermal analysis for high-power high-speed permanent magnet machines. IEEE Trans. Ind. Electron. 2020, 67, 2722–2733. [Google Scholar] [CrossRef]
- Seo, M.; Ko, Y.; Lee, T.; Kim, Y.; Jung, S. Loss reduction optimization for heat capacity improvement in interior permanent magnet synchronous machine. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Du, A.; Zhang, D.; Sun, M. Study on temperature field of oil cold permanent magnet synchronous motor in hybrid electric vehicle. Autom. Tech. 2019, 4, 34–39. [Google Scholar]
- Wang, J. Temperature Field Analysis and Heat Dissipation Optimization of Permanent Magnet Synchronous Motor for Pure Electric Vehicle. Master’s Thesis, Jilin University, Jilin, China, 2019. [Google Scholar]
- Chen, Q.; Shao, H.; Huang, J.; Sun, H.; Xie, J. Analysis of temperature field and water cooling of high speed permanent magnet synchronous motor for Electric Drive. IEEE Access. 2019, 48, 81–85. [Google Scholar]
- Li, Z.; Chen, Q.; Wang, Q. Analysis of multi-physics coupling field of multi-degree-of-freedom permanent magnet spherical motor. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, C.; Gu, X.; Wang, Z.; Li, X. An improved model predictive torque control for a two-level inverter fed interior permanent magnet synchronous motor. Electronics 2019, 8, 769. [Google Scholar] [CrossRef] [Green Version]
- Baik, J.; Yun, S.; Kim, D.; Kwon, C.; Yoo, J. Remote-state pwm with minimum rms torque ripple and reduced common-mode voltage for three-phase vsi-fed blac motor drives. Electronics 2020, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Huang, X.; Tian, C.; Zhang, P. Multi-physical field optimization analysis of high-speed permanent magnet synchronous motor based on NSGA-II algorithm. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–6. [Google Scholar]
- Chen, S.; Zhang, Q.; He, B.; Hui, D. Thermal analysis of high density permanent magnet synchronous motor based on multi physical domain coupling simulation. J Electr. Eng. Technol. 2017, 12, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, J.; Zhang, C.; Li, L. Calculation and experimental study on temperature rise of a high overload tubular permanent magnet linear motor. IEEE Trans. Plasma Sci. 2013, 41, 1182–1187. [Google Scholar] [CrossRef]
- Bertotti, G. General Properties of power losses in soft ferromagnetic material. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Bertotti, G. Hysteresis in Magnetism, 1st ed.; Academic Press: Cambridge, MA, USA, 1998; pp. 11–21. [Google Scholar]
- Wei, Y.; Meng, D.; Wen, J. Aerodynamics and Heat Transfer in Motor, 1st ed.; China Machine Press: Beijing, China, 1998; pp. 76–77. [Google Scholar]
- Tang, R. Modern Permanent Magnet Machines Theory and Design, 2nd ed.; China Machine Press: Beijing, China, 2017; pp. 18–19. [Google Scholar]
- Zeng, X.; Wei, H.; Wang, X. Parameter Identification Method of Permanent Magnet Synchronous Motor Considering Temperature Influence. J. South China Univ. Tech. (Nat. Sci. Ed.) 2018, 46, 64–71. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Current excitation | Sinusoidal | Phase number | 3 |
Lamination factor | 0.95 | Pole pairs | 4 |
Maximum current (A) | 350 | Silicon steel | B35AV1900 |
Rated Speed (rpm) | 1000 | Cooling method | Water-cooled |
Rated Torque (Nm) | 100 | Magnet | N35UH_100 |
Parameters | Value | Parameters | Value |
---|---|---|---|
Rotor speed (rpm) | 1000 | Outlet pressure (Pa) | 0 |
Inlet velocity (m/s) | 0.453 | Volumetric heat generation rate (w/m3) | 1,244,805 |
Inlet temperature (K) | 319 | Turbulent intensity (%) | 5 |
Windings | Ratio (%) | Windings | Ratio (%) |
---|---|---|---|
AA | 6.28 | AB | 29.1 |
BB | 9.35 | AC | 2.50 |
CC | 5.10 | BC | 14.9 |
Part | Simulation Temperature (°C) | Test Temperature (°C) |
---|---|---|
Shell | 50 | 46.4 |
Glue | 59.5 | 63.4 |
Stator | 54.4 | 53.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, M.; Hu, J.; Xiao, F.; Yang, Y.; Deng, C. Modeling and Analysis of Electromagnetic Field and Temperature Field of Permanent-Magnet Synchronous Motor for Automobiles. Electronics 2021, 10, 2173. https://doi.org/10.3390/electronics10172173
Jia M, Hu J, Xiao F, Yang Y, Deng C. Modeling and Analysis of Electromagnetic Field and Temperature Field of Permanent-Magnet Synchronous Motor for Automobiles. Electronics. 2021; 10(17):2173. https://doi.org/10.3390/electronics10172173
Chicago/Turabian StyleJia, Meixia, Jianjun Hu, Feng Xiao, Ying Yang, and Chenghao Deng. 2021. "Modeling and Analysis of Electromagnetic Field and Temperature Field of Permanent-Magnet Synchronous Motor for Automobiles" Electronics 10, no. 17: 2173. https://doi.org/10.3390/electronics10172173
APA StyleJia, M., Hu, J., Xiao, F., Yang, Y., & Deng, C. (2021). Modeling and Analysis of Electromagnetic Field and Temperature Field of Permanent-Magnet Synchronous Motor for Automobiles. Electronics, 10(17), 2173. https://doi.org/10.3390/electronics10172173