Study on Electric Field Modulation and Avalanche Enhancement of SiC/GaN IMPATT Diode
Abstract
:1. Introduction
2. Simulation Models and Method
3. Simulation of the SiC/GaN IMPATT Diode and Discussion
3.1. DC Simulation Results and Discussions
3.2. Large-Signal Simulation Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banerjee, M.S. THz solid-state source based on IMPATT devices. Terahertz Biomed. Healthc. Technol. 2020, 116, 1–41. [Google Scholar]
- Mukherjee, M.; Mazumder, N.; Roy, S.K.; Goswami, K. GaN IMPATT diode: A photo-sensitive high power terahertz source. Semicond. Sci. Technol. 2007, 22, 1258–1267. [Google Scholar] [CrossRef]
- Chen, K.J.; Häberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Millan, J.; Godignon, P.; Perpiñà, X.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Huish, P.W. A comparison between 20:1 and 5:1 doping ratios for high efficiency X-band GaAs IMPATT diodes. In Proceedings of the 7th European Microwave Conference, Copenhagen, Denmark, 5–8 September 1977; pp. 487–491. [Google Scholar]
- Read, W.T. A proposed high-frequency, negative-resistance diode. J. Bell Syst. Tech. 2013, 37, 401–446. [Google Scholar] [CrossRef]
- Ke, W.C.; Lee, S.J.; Chen, S.L.; Kao, C.Y.; Houng, W.C. Effects of growth conditions on the acceptor activation of Mg-doped p-GaN. Mater. Chem. Phys. 2012, 133, 1029–1033. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, L.A.; Xu, S.R.; Hao, Y. Anisotropy effects on the performance of wurtzite GaN impact-ionization-avalanche-transit-time diodes. Appl. Phys. Exp. 2016, 9, 111004. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Zhang, X. GaN/AlxGa1−xN/GaN heterostructure IMPATT diode for D-band applications. Appl. Phys. A 2019, 125, 205. [Google Scholar] [CrossRef]
- Fu, K.; Fu, H.Q.; Huang, X.Q.; Yang, T.H. Reverse leakage analysis for as-grown and regrown vertical GaN-on-GaN schottky barrier diodes. IEEE J. Electron Devices Soc. 2020, 8, 74–83. [Google Scholar] [CrossRef]
- Liu, J.; Yang, M.C.; Liu, C.; Liu, W.H.; Han, C.Y.; Zhang, Y.; Geng, L.; Hao, Y. Three orders of reverse leakage reduction by using supercritical CO2 nitriding process on GaN quasi-vertical schottky barrier diode. IEEE Trans. Electron Devices 2021, 68, 197–201. [Google Scholar] [CrossRef]
- Dai, Y.; Lu, Z.; Ye, Q. Study of InGaN/GaN Homotype Heterojunction IMPATT Diodes. IEEE Trans. Electron Devices 2021, 99, 1–7. [Google Scholar]
- Hba, B.; Bc, C.; Emf, D. Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors. Optik 2019, 207, 1–16. [Google Scholar]
- Chen, J.T.; Bergsten, J.; Lu, J. A GaN–SiC hybrid material for high-frequency and power electronics. Appl. Phys. Lett. 2018, 113, 041605. [Google Scholar] [CrossRef]
- Majewski, J.A.; Städele, M.; Vogl, P. Stability and Band Offsets of SiC/GaN, SiC/AlN, and AlN/GaN Heterostructures. MRS Proc. 1996, 449, 917–922. [Google Scholar] [CrossRef]
- Dai, Y.; Ye, Q.; Dang, J. Study of p-SiC/n-GaN Hetero-Structural Double-Drift Region IMPATT Diode. Micromachines 2021, 12, 919. [Google Scholar] [CrossRef]
- Bertazzi, F.; Moresco, M.; Bellotti, E. Theory of high field carrier transport and impact ionization in wurtzite GaN. Part I: A full band Monte Carlo model. J. Appl. Phys. 2009, 106, 63718. [Google Scholar] [CrossRef]
- Kamakura, Y.; Fujita, R.; Konaga, K. Full band Monte Carlo simulation of impact ionization in wide bandgap semiconductors based on ab initio calculation. In Proceedings of the 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, 6–8 September 2016; IEEE: Nuremberg, Germany, 2016; pp. 47–52. [Google Scholar]
- Kuznetsov, N.I.; Gubenco, A.E.; Nikolaev, A.E. Electrical characteristics of GaN/6H-SiC n-p heterojunctions. Mater. Sci. Eng. B 1997, 46, 74–78. [Google Scholar] [CrossRef]
- Moscatelli, F.; Scorzoni, A.; Poggi, A.; Cardinali, G.C.; Nipoti, R. Al/Ti Ohmic Contacts to p-Type Ion-Implanted 6H-SiC: Monoand Two-Dimensional Analysis of TLM Data. Trans. Tech. Publ. 2003, 433–436, 673–676. [Google Scholar] [CrossRef]
- Rizzi, A.; Lantier, R.; Lüth, H. Boundary Conditions and the Macroscopic Field at SiC/AlN and SiC/GaN Heterostructures. Phys. Status Solidi A-Appl. Mat. 2000, 177, 165–171. [Google Scholar] [CrossRef]
- Reklaitis, A.; Reggiani, L. Monte Carlo study of hot-carrier transport in bulk wurtzite GaN and modeling of a near-terahertz impact avalanche transit time diode. J. Appl. Phys. 2004, 95, 7925–7935. [Google Scholar] [CrossRef]
- Farahmand, M.; Garetto, C.; Bellotti, E.; Brennan, K.F.; Goano, M.; Ghillino, E.; Ghione, G.; Albrecht, J.D.; Ruden, P.P. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries. IEEE Trans. Electron Devices 2001, 48, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.A.; Hao, Y.; Yao, Q.Y.; Zhang, J.C. Improved negative differential mobility model of GaN and AlGaN for a terahertz Gunn diode. IEEE Trans. Electron Devices 2011, 58, 1076–1083. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, L.A.; Chen, Q.; Wang, Y.; Hao, Y. Enhancement of the performance of GaN IMPATT diodes by negative differential mobility. AIP Adv. 2016, 6, 055301. [Google Scholar] [CrossRef] [Green Version]
- Luy, J.; Kuehnf, R. Tunneling-assisted IMPATT operation. IEEE Trans. Electron Devices 2002, 36, 589–595. [Google Scholar] [CrossRef]
- Elta, M.E.; Haddad, G.I. High-Frequency Limitations of IMPATT, MITATT, and TUNNETT Mode Devices. IEEE Trans. Microw. Theory Tech. 1979, 27, 442–449. [Google Scholar] [CrossRef]
- Kane, E.O. Theory of Tunneling. J. Appl. Phys. 1961, 32, 83–91. [Google Scholar] [CrossRef]
- Elta, M.E.; Haddad, G.I. Mixed tunneling and avalanche mechanisms in p-n junctions and their effects on microwave transit-time devices. IEEE Trans. Electron Devices 1978, 25, 694–702. [Google Scholar] [CrossRef]
- Misawa, T. Saturation current and large-signal operation of a read diode. Solid-State Electron. 1970, 13, 1363–1368. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006; pp. 466–509. [Google Scholar]
- Culshaw, B.; Giblin, R.A.; Blakey, P.A. Avalanche diode oscillators. I. Basic concepts. Int. J. Electron. 1974, 37, 577–632. [Google Scholar] [CrossRef]
Structure | SiC/GaN SDR IMPATT | GaN SDR IMPATT | ||||||
---|---|---|---|---|---|---|---|---|
Materials | SiC | GaN | GaN | GaN | GaN | GaN | GaN | GaN |
Doping type | p | n | n | n | p | n | n | n |
Thickness/μm | 0.1 | 0.2 | 0.3 | 0.1 | 0.1 | 0.2 | 0.3 | 0.1 |
Concentration/cm3 | 1 × 1019 | 1 × 1018 | 5 × 1016 | 1 × 1019 | 1 × 1019 | 1 × 1018 | 5 × 1016 | 1 × 1019 |
Material | Parameters | Value | Parameters | Value | Parameters | Value |
---|---|---|---|---|---|---|
SiC | an/cm | 1.66 × 106 | ap/cm | 5.18 × 106 | νsatn/(cm/s) | 2 × 107 |
bn/(V/cm) | 1.27 × 107 | bp/(V/cm) | 1.40 × 107 | νsatp/(cm/s) | 1 × 106 | |
GaN | an/cm | 2.0496 × 106 | ap/cm | 2.0415 × 106 | δ | 7.2044 |
bn/(V/cm) | 1.27 × 107 | bp/(V/cm) | 9.141 × 106 | γ | 0.7857 | |
mn | 1.0 | mp | 1.0 | α | 6.1973 | |
A | 1.0 × 108 | B | 1.9 × 107 | λ | 2.5 | |
νsatn/(cm/s) | 1.9064 × 107 | νsatp/(cm/s) | 1.0 × 106 | EC/(kV/cm) | 220.8936 |
Structure | Optimum Frequency (GHz) | Efficiency (%) | Power (MW/cm2) | Vrf (V) | Irf (A) | M = Vrf/Vdc | Phase Delay (°) |
---|---|---|---|---|---|---|---|
SiC/GaN SDR | 180 | 27.8 | 2.67 | 51.6 | 0.82 | 0.52 | 97.28 |
GaN SDR | 160 | 22.1 | 2.14 | 50.1 | 0.66 | 0.51 | 97.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Dang, J.; Ye, Q.; Lu, Z.; Pu, S.; Lei, X.; Zhao, S.; Zhang, Y.; Liao, C.; Zhang, H.; et al. Study on Electric Field Modulation and Avalanche Enhancement of SiC/GaN IMPATT Diode. Electronics 2021, 10, 2180. https://doi.org/10.3390/electronics10172180
Dai Y, Dang J, Ye Q, Lu Z, Pu S, Lei X, Zhao S, Zhang Y, Liao C, Zhang H, et al. Study on Electric Field Modulation and Avalanche Enhancement of SiC/GaN IMPATT Diode. Electronics. 2021; 10(17):2180. https://doi.org/10.3390/electronics10172180
Chicago/Turabian StyleDai, Yang, Jiangtao Dang, Qingsong Ye, Zhaoyang Lu, Shi Pu, Xiaoyi Lei, Shenglei Zhao, Yunyao Zhang, Chenguang Liao, Han Zhang, and et al. 2021. "Study on Electric Field Modulation and Avalanche Enhancement of SiC/GaN IMPATT Diode" Electronics 10, no. 17: 2180. https://doi.org/10.3390/electronics10172180
APA StyleDai, Y., Dang, J., Ye, Q., Lu, Z., Pu, S., Lei, X., Zhao, S., Zhang, Y., Liao, C., Zhang, H., & Zhao, W. (2021). Study on Electric Field Modulation and Avalanche Enhancement of SiC/GaN IMPATT Diode. Electronics, 10(17), 2180. https://doi.org/10.3390/electronics10172180