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Abstract: This paper presents the measurement of aggregated conducted emission in the frequency
range of 9 kHz to 150 kHz produced by multiple compact fluorescent lamps (CFL) and how it equates
to a multiple power converter system. Discrepancies in peak emission measurement results related
to this application are illustrated to understand the underlying issue related to volatility of frequency
components. Furthermore, this knowledge analyzes the relation of electromagnetic disturbances with
respect to different topological network connections. The final presented results constitute theoretical
description and statistical information about the characteristics of conducted emission measured in
this multi-converter system.

Keywords: CFL; conducted emission; DM; EMI; grid topology; power converter

1. Introduction

Nowadays, power converters are used in the majority of household appliances due
to the benefits with respect to volume, weight, performance, and energy efficiency. The
power converters used in residential appliances generally have switching frequencies
from a few kHz to tens of kHz, these appliances can generate a substantial amount of
electromagnetic interference (EMI) in that frequency range. In particular, power converter
technology has been widely implemented in lighting application since the introduction of
Regulation (EC) Number 244/2009 and 245/2009, which were introduced to phase out the
incandescent lamps [1,2]. Consequently, the usage of fluorescent lamps (FL) being used
in many households and its usage is likely to increase in the future [3]. For instance, in
Organisation for Economic Co-operation and Development (OECD) countries, the demand
for FLs has risen significantly over the last decades and continues to rise from an estimated
1.2 billion in 2020 to 1.6 billion in 2027 [4]. Moreover, there are local regulatory guidelines
that specify illuminance in workspace. For instance, a standard indoor workspace requires
300 to 500 lumen per square-meter illumination to meet the desired requirement [5,6].
Hence, a higher number of lamps per floor area is used. With large number of lamps
connected in electrical grid, their combined impact to the electrical grid is not negligible.
Meanwhile, the effects of power quality and harmonic have been the subject of research
for many years, with a summary and discussion of ongoing areas of research available
in [7–11]. Those research studies are mainly focus on emphasize dedicated to voltage and
current distortion compliance evaluation. As such, there is little evaluation on the grid
configuration for measurements for household appliances such as the CFL lamps.

The EU directive states that the equipment intended to be connected to network
should prevent networks from suffering degradation under normal condition [12], despite
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the evaluation of cumulative effect have been shown in [11], where it was mention that
there are no details concerning the type of network used for the EMC evaluation process.
Network configuration can play an important role in the assessment of electromagnetic
interference (EMI) as the equipment emissions aside from the sources of EMI itself. For
example, the conducted EMI injected into the supply network, can affect the network
impedance due to the interaction among the loads [13–15]. This happens whether the
type of appliance that produces EMI signals with small frequency difference or large
frequency difference can decrease or increase the total conducted EMI in the network,
whose these spurious conducted EMI contents have also been identified as a cause of
unreliable measurement outcome [11,16–19]. Moreover, this situation can be complicated
dealing with highly volatile and random-modulated EMI contents produced by multiple
power converters. Therefore, without a clear understanding of the interactions between
grid configuration and underlying EMI contents, it is difficult to properly justify whether
the type of grid configuration consideration can be completely omitted from a standard
EMC assessment.

In this paper, comparative analysis concerning aggregated EMI generated by a series
of CFL lamps in several network topologies are compared and studied. The number of
lamps was varied to investigate the micro-effect in terms of aggregated EMI in different
topologies. The goal of this work is to understand the aggregated EMI originating from
multiple similar sources that are interconnected in different topologies. The emissions are
systematically analysed in order to highlight the measurement challenges and their impact
on the EMC assessment. Thus, to be able to better understand issue concerning EMC
measures related to this application. This paper is organized in this order. In Section 2, the
illustration of high volatility EMI signals process and the mathematical characterization are
introduced. In Section 3, the measurement setup is discussed. In Section 4, measurement
results are presented and discussed to verify the measurement issue. Finally, conclusion in
Section 5.

2. Processing Highly Volatile Sinusoidal Components in EMI Receiver

EMI exists in the form of unsteady, impulsive noise which can be attributed as nar-
rowband or broadband signal. They are difficult to be measured due to unpredictable
leakage path in an electrical environment, but possible when different detectors can be
used to synthesize the time-domain signals. These detectors are called the peak, quasi-peak,
average and RMS (root mean square) detector which feature the fundamental element in a
modern real-time EMI receiver. An EMI receiver is basically a super heterodyne receiver
with frequency-selective amplifier [20], it can be divided into four parts: preselection stage,
mixer, intermediate frequency (IF) bandpass filter and amplifier stage, and detector stage
as shown in Figure 1.
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Figure 1. Model of an EMI receiver.

Currently, the working principle of EMI receiver can be emulated in computer-based
programming software such as Matlab® and Python®, this is made possible with the
fast Fourier transform (FFT) and short-time Fourier transform (STFT) functions [20,21].
For instance, a low-pass filter can be programmed to present the preselection stage, a
voltage control oscillator (VCO) function is used as mixer to shift frequency to intermediate
frequency, the selective/bandpass IF filter is a Gauss-like function pattern that extracts
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fragment of the signals into multiple frequency windows. Precise descriptions of such filters
is given in [22]. The last stage is the envelope detector for evaluating the filtered signals.

According to the international electrotechnical terminology, a narrowband disturbance
is “an electromagnetic disturbance, or component thereof, which has a bandwidth less than
or equal to that of a particular measuring apparatus, receiver or susceptible device”. On
the other hand, a broadband disturbance is defined as “an electromagnetic disturbance
which has a bandwidth greater than that of a particular measuring apparatus, receiver or
susceptible device”. Hence, the signal classification whether a broadband or narrowband
type is determined by the frequency spectrum of the signal under study, it is related to the
intermediate frequency bandwidth (IFBW) of the instrument used for measurement. For
instance, shown in Figure 2, a signal spectrum that is bound within the passband of the IF
filter, it is a narrowband signal otherwise it is the broadband signal. In response to this, the
IFBW selection is one essential factor for emulating the EMI receiver accurately. Details
about standardized EMC measurement has been elaborated in [12,23].
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Figure 2. Generic definition of narrowband and broadband signals with spectrum measurement via
an EMI receiver.

Figure 3b shows the representation of high frequency output signal of a compact
fluorescent lamp in time-domain, it consists of different frequency in each oscillating cycle
inversely proportional to its amplitude, and Figure 3d is the measured conducted emission
in frequency-domain. Mathematically, this signal intensity, I for one sinusoidal component
in time domain can be represented by:

I(t) =
∞

∑
n=1

Anet/τ [sin(2π( fn − t)t + θ)] (1)

where τ = 1
2π fn

. Anet/τ is the amplitude of each wave cycle corresponding to its frequency,
fn. In a multiple CFL lamps setup, aggregation of these signals tends to be more complex
given their amplitudes are not the same periodically [24]. Let assume their phase different,
θ is zero and both A1 and A2 are same at unity. The instantaneous value can be obtained
via expression:

I(t; { f1, f2}) = A1e
t
τ · sin(2π( f1 − t)t) + A2e

t
τ · sin(2π( f2 − t)t)
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According to superposition theory, aggregating two or more sinusoidal components
can result in envelope formation similar to the amplitude modulation (AM) phenomenon

given that max
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∣∣∣ [24]. The value of the envelope can be obtained using:
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where
[

ne−t/τ

n−1

]
is the resultant amplitude with respect to the number of signals, n. Now,

signal in the form of envelope is fed into EMI receiver input. After mixer stage, the selected
signal is swept by IF filter [25,26]. Hence, the instantaneous time domain output signal of
the IF filter seen by an EMI receiver can be formulated as:

I f (t) =
fk+

f IF
2

∑
fk−

f IF
2

H
(

ej2π fk
) n

∑
2� i� n
1� j < i

[
2et/τ

n− 1

]
·[sin(2π( f IF − fk + fA − t)t + θ) cos(2π( f IF − fk + fB − t)t) + θ] (4)

where fA =
( fi+ f j

2

)
and fB =

( fi− f j
2

)
are the maximum and minimum beating frequencies

of oscillatory envelope, fk is the selected filter frequency, fIF is the bandwidth of the IF
filter, H

(
ej2π f

)
is the transfer function of the IF filter at envelope input frequency. From

expression (4), it indicates that the output is the product of envelope and frequency response
of the IF windows function filter. The frequency responses of IF bandpass and window
function filters can be found in [25]. Further details about detector models have been
discussed in [27–29]. Hence, is not covered in this paper.
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Figure 3. (a) Measured high frequency output signal of fluorescent lamp in time-domain. (b) Representation for high
frequency output signal of fluorescent lamp in time-domain. (c) Envelope formation in time domain by aggregating two
random signals depicted in (b). (d) Power spectrum density (PSD) output in frequency-domain.

EMI in CFL lamps, however, consist of highly volatile and transient signals. In order to
illustrate the exact spectrum of these sinusoidal components captured by an EMI receiver, a
spectrogram is generated in Matlab® modelled with a Kaiser window function, the IF filter
is modelled according to its impulse bandwidth, noise-bandwidth, and the filter masks, as
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defined in CISPR 16-1-1. This spectrogram shows a discretization in frequency and time.
The resolution in frequency is described by the frequency bin width ∆f shown in Figure 4.
However, with sufficient number of overlapping frequency bins, the amplitude error can be
negligible hence is not considered in this illustration [28]. The STFT processes input signal
with fluctuating individual frequency in the range 40 kHz to 50 kHz, the discretization in
the time domain has sampling frequency of 1 MHz, a 0.8 overlapping factor was used to
achieve a sufficiently dense discretization for this simulation. For the aggregation, with
convoluted Gaussian-like windows discussed above, the IFBW was set to 200 Hz, which
correspond to parameters required in [22,29].
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Figure 4. Operation diagram for IF bandpass filtering of narrowband and broadband signals:
Scenario-1: no signal overlap. Scenario-2: signals overlapped.

In Figure 4, the picture shows 4 signals swept by many gapless IF Gaussian windows.
The higher percentage of these windows overlapping, the higher the accuracy of single
impulses measurement during the dwell time. There are two scenarios depicted, a nar-
rowband signal in Scenario-1 consists of four absolute frequency components with slightly
different frequencies bound within an IFBW, an envelope is formed due to their interaction,
the output will be one aggregated discrete spectrum as the result from superposition of
multiple sinusoidal components [11]. Therefore, the peak total emission increases propor-
tionally with the number of signals. In Scenario-2, the signals are sinusoidal components
with randomly changing frequencies within a large bandwidth, the frequency variation is
very large and spontaneous, there are regions (diagonal lines) where superposition occurs
among these sinusoidal components randomly. As a result, measuring these highly volatile
signals can produce inconsistent peak total emission with respect to the number of signals.

Figure 5 shows the 3D spectrogram of aggregated signal corresponds to frequency
response of the Kaiser IF filter convolved (overlap) with discrete frequency bins. Appar-
ently, the mean total peak emission is not same in both cases despite the number of signals
is equal. As we can see in Figure 5a, aggregating 5 sinusoidal components with small
frequency variation results in constant peak emission. On the other hand, as shown in
Figure 5b, high volatility sinusoidal components with large frequency variation sweep
across many frequencies bin in a wide bandwidth, the peak value of envelope changes
rapidly at every instant of time. As a result, the instantaneous peak emission scatters along
the time-axis, which is indicated by red marks, the energy is spread into wide spectrum
band compared to narrow spectrum in Figure 5a despite equal power delivered by these
signals. By these examples, it is obvious to note that increasing the number of signals does
not necessarily increase its peak total emission in a network.
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A standard time domain EMI receiver model works diligently dealing with small
frequency variation signals, however, rapid frequency changes in signal larger than the
IFBW during measurement can be a reason why the level of measured peak total emission
is disproportional to the number of injected signal [18,30]. Analogously, a paper published
by Piotr et al. has presented that a standard IFBW for CISPR A is usually too narrow
for proper evaluation of random modulated signal, which frequency varies in a wider
range. For a higher frequency range (CISPR-B) the measured difference between randomly
modulated (RM) signal and deterministic modulated signal is insignificant [31].

In regard to that, preliminary measurements concern aggregated signals were con-
ducted using the National Instrument® FPGA control coupled to an EMI receiver in order
to verify that the described issue is valid, the schematic of test setup diagram is shown in
Figure 6 and results are summarized in Figure 7. The box-and-whisker plots presented
show the distribution of one-thousand peak values measurement for each change of the
number of lamps. For ease of measurement output comparable to previous related articles
such as [11,19], each measurement has been made with the average (AV) detector in the
EMI receiver and data are normalized to time step of 1 s in our analysis. Our measurement
results indicate that mean emission values for aggregating similar frequency or slightly
different frequency of sinusoidal components increase with the number of signals. In
the presented case it is about 110 mV or 100.8 dBuV increase between 1 and 5 signals.
Meanwhile, it is obvious that the mean emission values decrease in the case for high volatil-
ity sinusoidal components with large frequency variation, the largest drop of signals is
between 1 and 5 signals. Subsequently, the mean emission values decrease until 15 signals.
Therefore, these results have clearly indicated discrepancy in measurement for mean peak
emission although the number of signals is similar. Due to such measurement outcome,
it might be interesting on how the level of the spectrum is impacted based on different
grid topology with respect to the number of signals. In the following section, we look
into investigation whether different topology will also observe similar underlying trend in
measurement outcome.
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3. Measurement Setup

The measurement considered four standard CFLs rated 230 V, 50 Hz. The four CFL
lamps with a wired network are the equipment-under-test (EUT). The lamp used is the
Philips 20 W CFL at PF = 0.6. In contrast to most power converters where their switching
frequency is fixed which is driven by high precision crystal oscillator with negligible
frequency tolerances. However, the output for the gas discharge type CFL lamp operates at
unfixed resonant switching frequency [32,33], the observed operating switching frequency
range is between 37 kHz to 47 kHz for this lamp, a line impedance stabilization network
(LISN) is used for isolating the test setup from the interference outside of the setup and
provide constant impedance during the measurement. The differential mode (DM) signals
were measured using a Gauss™ TDEMI receiver that is connected to an in-situ EMI
monitoring device (MD) developed by [29,34]. Each bulb is separated by 2 m to mimic the
standard indoor ceiling lighting point distance. The experiment was conducted with no
cable overlap to avoid any cross-talk effect as shown in Figure 8. The lamps were being
turned on follows the number sequence indicated in Figure 9.
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Figure 8. Measurement setup.

Since this research is carried out with the view to assess the aggregated EMI in CFL lamps
interconnected in different topological networks, the configurations are illustrated below.
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4. Experimental Results and Discussion

Experiments for standardized EMI measurements have been conducted in laboratory
setup compliant with CISPR-16-1-1 and EN 55015 [20]. The measurement for the EUT under
steady state have been recorded and were later processed using Matlab®. The voltage (V)
and current (I) values each in a period of 1000 s with dwell time 100 milliseconds and
IFBW = 200 Hz were being recorded. The EMI receiver provided the spectrogram and PSD
for both quasi peak (QP) and AV detector. Since the operation of lamps operates at non-
constant switching frequency. Hence, this characteristic affects the impedance hence the
voltage stability of the network that it is connected to because the impedance is the function
of frequency, 2π f which is determined by the real value resistance, R and capacitive, C in
its parallel-resonant circuit [32,33]. These resonant converters in these CFL lamps connected
in same network can cause the impedance of the grid to continuously fluctuate.

Figure 10 illustrates the measurement results for the DM values in terms of dBµV
and dBµA which are derived from the peak values at about 40 kHz comparable to results
shown in Figure 5b. Similarly, the box-and-whisker plots presented show the distribution
of one-thousand peak values measurement for each changes of the number of lamps. Each
measurement has been made according to aforementioned general practice via the AV
detector and data are normalized to time step of 1 s for analysis [11,19,31].



Electronics 2021, 10, 2258 9 of 12

Electronics 2021, 10, x FOR PEER REVIEW 9 of 12 
 

 

of one-thousand peak values measurement for each changes of the number of lamps. Each 
measurement has been made according to aforementioned general practice via the AV 
detector and data are normalized to time step of 1 s for analysis [11,19,31]. 

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 10. Box-and-whisky plots of AV detector for various topology. (a) Type-A connection. (b) Type-B connection. (c) 
Type-C connection. (d) Type-D connection. (e) Type-E connection. 

The box-and-whisker results shown in Figure 10a–e correspond to the configurations 
depicted in Figure 9a–e. It can be seen the results obtained for both mean (median) VDM 

49

51

53

55

57

59

82
83
84
85
86
87
88
89
90
91

1 2 3 4

C
ur

re
nt

 [d
Bu

A]

Vo
lta

ge
 (d

Bu
V)

 

Number of Lamps (n)

Vdm Idm

49

51

53

55

57

59

82
83
84
85
86
87
88
89
90
91

1 2 3 4

C
ur

re
nt

 (d
Bu

A)

Vo
lta

ge
 (d

Bu
V)

Number of Lamps (n)

Vdm Idm

49

51

53

55

57

59

82
83
84
85
86
87
88
89
90
91

1 2 3 4

C
ur

re
nt

 (d
Bu

A)

Vo
lta

ge
 (d

Bu
V)

 

Number of Lamps (n)

Vdm Idm

49

51

53

55

57

59

82
83
84
85
86
87
88
89
90
91

1 2 3 4

C
ur

re
nt

 (d
Bu

A)

Vo
lta

ge
 (d

Bu
V)

 

Number of Lamps (n)

Vdm Idm

49

51

53

55

57

59

82
83
84
85
86
87
88
89
90
91

1 2 3 4

C
ur

re
nt

 (d
Bu

A)

Vo
lta

ge
 (d

Bu
V)

Number of Lamps (n)

Vdm Idm

Figure 10. Box-and-whisky plots of AV detector for various topology. (a) Type-A connection. (b) Type-B connection.
(c) Type-C connection. (d) Type-D connection. (e) Type-E connection.

The box-and-whisker results shown in Figure 10a–e correspond to the configurations
depicted in Figure 9a–e. It can be seen the results obtained for both mean (median) VDM and
IDM are having a declining trend with respect to higher number of CFL lamps. Generally,
almost all the VDM values obtained have a maximum gap about 4.5 dBµV between one and
four CFL lamps, their detrimental step between consecutive numbers of loads becomes
narrower with respect to the increase of lamps connected. For instance, in Figure 10a, the
mean value for one lamp is 89.4 dBµV, for two lamps it is 87.1 dBµV, for three lamps it is
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85.1 dBµV and four lamps it is 85 dBµV. Similar trend is seen in the IDM, but the magnitude
of IDM is slightly different for each configuration. The highest drop of IDM is measured
for Figure 10e which drops from 57.6 dBµA to 52 dBµA corresponds to increasing number
of lamps. On the other hand, the lowest IDM value with the highest number of lamps
connected is seen in the Figure 10c which is 50.2 dBµA. Furthermore, the mean peak DM
values of these configurations are summarized in Figure 11 to compare their magnitude
levels, it is obvious that different topology produces different EMI level with respects to the
number of lamps. In these presented cases, it can be seen majority of measured aggregated
mean EMI values with increasing number of lamps, their peak amplitudes of the VDM
and IDM decrease instead of increase although some collected data might have adverse
outcome due to inconsistent error in the outlier. Therefore, it is clear that for the presented
grid configurations that contain multiple FL lamps, their contribution to the mean total
peak emission particularly the DM voltage and DM current decrease due to the nature of
these high-volatility sinusoidal components with large frequency step variation.
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5. Conclusions

This paper has presented ostensible measurement outcome concerning highly volatile
sinusoidal components. Furthermore, the concept is described and put to evaluate various
grid topologies affecting the DM conducted emission emanating from CFL lamps. Results
obtained have shown that the average aggregated DM conducted EMI decreases with the
increase of FL lamps in grid. Further investigation of the effect of different topological
network to the network impedance will be conducted.
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