W-band MIMO GB-SAR for Bridge Testing/Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Radar Protype
2.2. Data Processing
3. Results
3.1. Controlled Scenario
3.2. Vespucci Bridge, Florence, Italy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pieraccini, M.; Miccinesi, L. Ground-Based Radar Interferometry: A Bibliographic Review. Remote Sens. 2019, 11, 1029. [Google Scholar] [CrossRef] [Green Version]
- Pieraccini, M. Monitoring of civil infrastructures by interferometric radar: A review. Sci. World J. 2013, 2013, 786961. [Google Scholar] [CrossRef] [PubMed]
- Luzi, G.; Crosetto, M.; Fernández, E. Radar interferometry for monitoring the vibration characteristics of buildings and civil structures: Recent case studies in Spain. Sensors 2017, 17, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Z.; Zhang, X.; Li, Y.; Jiang, J. A comparative study on radar interferometry for vibrations monitoring on different types of bridges. IEEE Access 2018, 6, 29677–29684. [Google Scholar] [CrossRef]
- Dei, D.; Mecatti, D.; Pieraccini, M. Static testing of a bridge using an interferometric radar: The case study of ‘ponte degli alpini,’ Belluno, Italy. Sci. World J. 2013, 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Mills, J. A new approach to selecting coherent pixels for ground-based SAR deformation monitoring. ISPRS J. Photogramm. Remote. Sens. 2018, 144, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Pieraccini, M.; Miccinesi, L. An Interferometric MIMO Radar for Bridge Monitoring. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1383–1387. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L.; Rojhani, N. Monitoring of Vespucci bridge in Florence, Italy using a fast real aperture radar and a MIMO radar. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1982–1985. [Google Scholar] [CrossRef]
- Tarchi, D.; Oliveri, F.; Sammartino, P.F. MIMO Radar and Ground-Based SAR Imaging Systems: Equivalent Approaches for Remote Sensing. IEEE Trans. Geosci. Remote. Sens. 2013, 51, 425–435. [Google Scholar] [CrossRef]
- Hu, C.; Wang, J.; Tian, W.; Zeng, T.; Wang, R. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays. Sensors 2017, 17, 598. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Liu, J.; Long, K.; Liu, Y.; Zhu, R.; Wan, Q. Millimeter-wave spotlight circular synthetic aperture radar (scsar) imaging for Foreign Object Debris on airport runway. In Proceedings of the 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 19–23 October 2014; pp. 1968–1972. [Google Scholar]
- Steiner, M.; Grebner, T.; Waldschmidt, C. Millimeter-Wave SAR-Imaging With Radar Networks Based on Radar Self-Localization. IEEE Trans. Microw. Theory Tech. 2020, 68, 4652–4661. [Google Scholar] [CrossRef]
- Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Trans. Microw. Theory Tech. 2012, 60, 845–860. [Google Scholar] [CrossRef]
- Feger, R.; Haderer, A.; Stelzer, A. Experimental verification of a 77-GHz synthetic aperture radar system for automotive applications. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM); Institute of Electrical and Electronics Engineers (IEEE), Nagoya, Japan, 19–21 March 2017; pp. 111–114. [Google Scholar]
- Daria, D.; Amoroso, G.; Bicci, A.; Coppi, F.; Cecchetti, M.; Rossi, M.; Falcone, P. Advanced tomographic tool for HYDRA radar system. In Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; pp. 1–3. [Google Scholar]
- Cecchetti, M.; Rossi, M.; Coppi, F. Performance evaluation of a new MMW Arc SAR system for underground deformation monitoring. In Active and Passive Microwave Remote Sensing for Environmental Monitoring II; SPIE: Bellingham, WA, USA, 2018; Volume 10788, p. 1078801. [Google Scholar]
- Gale, S.; Farrington, L.; Bergstrom, P.; Suikkanen, M.; Boldrini, N.; Rubino, M.; Coli, N.; Naude, S.; Stopka, C.; Preston, C. Monitoring applications for safe mining practices: Case studies of sub-bench scale failures in hard rock and coal open cut mines. In Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Perth, Australia, 12–14 May 2020; 2020; pp. 1563–1576. [Google Scholar]
- Giannino, F.; Manacorda, G.; Simi, A.; Cecchetti, M.; Vacca, D. Radar for structural monitoring and assets mapping. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Institute of Electrical and Electronics Engineers (IEEE), Firenze, Italia, 21–25 September 2020; 2020; pp. 1–3. [Google Scholar]
- Romeo, S.; Cosentino, A.; Giani, F.; Mastrantoni, G.; Mazzanti, P. Combining Ground Based Remote Sensing Tools for Rockfalls Assessment and Monitoring: The Poggio Baldi Landslide Natural Laboratory. Sensors 2021, 21, 2632. [Google Scholar] [CrossRef] [PubMed]
- Miccinesi, L.; Michelini, A.; Pieraccini, M. Blurring/Clutter Mitigation in Quarry Monitoring by Ground-Based Synthetic Aperture Radar. IEEE Trans. Geosci. Remote. Sens. 2021, 1–8, Early Access. [Google Scholar] [CrossRef]
- Texas Instruments. AWR1843BOOST and IWR1843BOOST Single-Chip mmWave Sensing Solution User’s Guide (Rev. B). Available online: https://www.ti.com/tool/AWR1843BOOST (accessed on 1 September 2021).
- Texas Instruments. Mmwave-Studio. Available online: https://www.ti.com/tool/MMWAVE-STUDIO (accessed on 1 September 2021).
- Texas Instruments. Programming Chirp Parametersin TI Radar Devices. Available online: https://www.ti.com/lit/an/swra553a/swra553a.pdf?ts=1631521293806&ref_url=https%253A%252F%252Fwww.ti.com%252Fsitesearch%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-US%2526searchTerm%253DProgramming%2BChirp%2BParameters%2Bin%2BTI%2BRadar%2BDevices%2526nr%253D540 (accessed on 1 September 2021).
- Ciattaglia, G.; de Santis, A.; Disha, D.; Spinsante, S.; Castellini, P.; Gambi, E. Performance Evaluation of Vibrational Measurements through mmWave Automotive Radars. Remote. Sens. 2021, 13, 98. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L.; Morini, F. An Interferometric W-BAND Radar for Large Structures Monitoring. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4207–4210. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L. ArcSAR: Theory, Simulations, and Experimental Verification. IEEE Trans. Microw. Theory Tech. 2016, 65, 293–301. [Google Scholar] [CrossRef]
- Pieraccini, M.; Fratini, M.; Parrini, F.; Atzeni, C.; Bartoli, G. Interferometric radar vs. accelerometer for dynamic monitoring of large structures: An experimental comparison. NDT E Int. 2008, 41, 258–264. [Google Scholar] [CrossRef]
- Castagnetti, C.; Bassoli, E.; Vincenzi, L.; Mancini, F. Dynamic assessment of masonry towers based on terrestrial radar interferometer and accelerometers. Sensors 2019, 19, 1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote. Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Peng, J.; Wang, J.; Zhao, B.; Zhang, B. A method for GB-InSAR temporal analysis considering the atmospheric correlation in time series. Nat. Hazards 2020, 104, 1465–1480. [Google Scholar] [CrossRef]
- Karunathilake, A.; Sato, M. Atmospheric Phase Compensation in Extreme Weather Conditions for Ground-Based SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 3806–3815. [Google Scholar] [CrossRef]
Parameter | Description | |
---|---|---|
Numbers of ADC samples | 256 | |
Slope | 4.007 MHz/μs | |
Starting frequency | 77 GHz | |
Bandwidth | 103 MHz | |
Chirp periodicity | 6.3 μs | |
Scan time | ~8 s | |
Actuator speed | 8 mm/s |
Parameter | Description | |
---|---|---|
Numbers of ADC samples | 1024 | |
Slope | 4.007 MHz/μs | |
Starting frequency | 77 GHz | |
Bandwidth | 103 MHz | |
Chirp periodicity | 6.3 μs | |
Scan time | ~8 s | |
Actuator speed | 8 mm/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miccinesi, L.; Consumi, T.; Beni, A.; Pieraccini, M. W-band MIMO GB-SAR for Bridge Testing/Monitoring. Electronics 2021, 10, 2261. https://doi.org/10.3390/electronics10182261
Miccinesi L, Consumi T, Beni A, Pieraccini M. W-band MIMO GB-SAR for Bridge Testing/Monitoring. Electronics. 2021; 10(18):2261. https://doi.org/10.3390/electronics10182261
Chicago/Turabian StyleMiccinesi, Lapo, Tommaso Consumi, Alessandra Beni, and Massimiliano Pieraccini. 2021. "W-band MIMO GB-SAR for Bridge Testing/Monitoring" Electronics 10, no. 18: 2261. https://doi.org/10.3390/electronics10182261
APA StyleMiccinesi, L., Consumi, T., Beni, A., & Pieraccini, M. (2021). W-band MIMO GB-SAR for Bridge Testing/Monitoring. Electronics, 10(18), 2261. https://doi.org/10.3390/electronics10182261