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Abstract: Bone cancer is rare in adults, the most affected persons by this disease are young people and
children. The common treatments for bone cancer are surgery, chemotherapy, and targeted therapies;
however, all of them have side-effects that decrease the patient’s quality of life. Thermotherapy is one
of the most promising treatments for bone cancer; its main goal is to increase the tumor temperature
to kill cancerous cells. Although some micro-coaxial antennas have been used to treat bone tumors,
most of them are designed to treat soft tissue. Therefore, the purpose of this work is to analyze the
thermal behavior of four micro-coaxial antennas specifically designed to generate thermal ablation in
bone tissue to treat bone tumors, at 2.45 GHz. The proposed antennas were the metal-tip monopole
(MTM), the choked metal-tip monopole (CMTM), the double slot (DS) and the choked double slot
(CDS). The design and optimization of the antennas by using the Finite Element Method (FEM)
allow to predict the optimal antenna dimensions and their performance when they are in contact
with the affected biological tissues (bone, muscle, and fat). In the FEM model, a maximum power
transmission was selected as the main parameter to choose the optimum antenna design, i.e., a
Standing Wave Ratio (SWR) value around 1.2–1.5. The four optimized antennas were constructed
and experimentally evaluated. The evaluation was carried out in multilayer phantoms (fat, muscle,
cortical, and cancellous bone) and ex vivo porcine tissue at different insertion depths of the antennas.
To fully evaluate the antennas performance, the standing wave ratio (SWR), power loss, temperature
profiles, and thermal distributions were analyzed. In the experimentation, the four antennas were
able to reach ablation temperatures (>60 ◦C) and the highest reached SWR was 1.7; the MTM (power
loss around 16%) and the CDS (power loss around 6.4%) antennas presented the lowest SWR values
depending on the antenna insertion depth, either in multilayer tissue phantom or in ex vivo tissue.
These proposed antennas allow to obtain ablation temperatures with an input power of 5 W after
5 min of treatment; these values are lower than the ones reported in the literature.

Keywords: thermal ablation; micro-coaxial antennas; bone tumors

1. Introduction

In order to correctly focus this research, the following state of the art and basis biblio-
graphical research focused not only on the antenna design, thermal effects in biological
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tissues, development of phantoms, and ablation to treat bone tumors, but also the medical
application, among others, was consulted. In this sense, in the next paragraphs, we offer a
brief review of the medical and biological basis of this article, as long as the results of this
research have a medical application that can be used to save human lives. Bone cancer is
defined as an uncontrolled process of the growth and the extension of bone cells which
have suffered some fundamental and irreversible changes, forming a mass or lump of
tissue [1]. The American Cancer Society estimates for 2021 about 3600 new cases of bone
cancer and about 1720 expected deaths. The conventional treatments for bone cancer are
surgery, radiotherapy, and chemotherapy [2]. The main goal of surgery is to remove the
entire tumor, sometimes the limb needs to be removed to eliminate the tumor (amputation).
An amputation may be necessary if the tumor extraction also means the extraction of key
nerves, arteries, or muscles that would leave the limb without functionality. Chemotherapy
refers to the use of drugs to treat cancer; in this treatment, the drugs circulate through the
bloodstream until they reach and destroy the cancer cells throughout the body. On the
other hand, radiotherapy uses high energy rays to kill the tumors. Chemotherapy and
radiotherapy can also affect the surrounded healthy tissue; this can cause side effects such
as nausea, ulcers, and even necrosis in healthy tissue [3]. Accordingly, minimally invasive
treatments need to be proposed, in order to remove tumors and to reduce the collateral
damage to healthy tissue.

Minimally invasive heat treatments are currently being investigated as an alternative
to conventional bone cancer treatments [4–6]. Cellular homeostasis can be maintained at
approximately 40 ◦C; when the temperature rises to 42–45 ◦C, the cells become vulnerable
to damage caused by chemotherapy and radiotherapy; between 60 ◦C and 100 ◦C cell
death occurs almost instantaneously by coagulation of intracellular proteins [6]. The main
goal of thermal ablation is to eliminate the tumor entirely by using heat to destroy the
tumor cells without damaging adjacent vital structures [7]. The potential benefits of
ablation procedures include the ability to reduce morbidity compared to surgeries, no need
of general anesthesia, and short recovery times [8]. The propagation of the microwave
ablation (MWA) in the tissue is radiative, so the electromagnetic energy absorption in the
tissue is due to the dielectric losses [9]. The tissue dielectric properties are governed by
structural components such as cellular membranes, proteins, and water content [10,11]. The
interstitial antennas induce rotation of water molecules due to the dipole action. Therefore,
the water molecules oscillate at the work frequency of the electromagnetic field. When
the microwave system is turned on, the polar molecules in tissue begin to rotate and
to heat immediately and simultaneously. This rapid increase of temperature in tissue
results in the coagulation necrosis of tissue when temperatures are higher than 50 ◦C [11].
Microwaves (MW) have been applied in the clinical treatments of bone tumors and other
carcinogenic tissues in recent years. Literature shows that microwave ablation has been
used as a complementary method for the treatment of different varieties of musculoskeletal
tumors and in most cases, the results were satisfactory [12]. Most of the antennas were
designed at a work frequency of 2.45 GHz and reached temperatures above 60 ◦C [13–15];
however, the input powers needed in the experiments were greater than 60 W for treatment
times between 20–30 min [16,17]. It is important to address that the antennas that have
been used to treat bone tumors, had been designed to treat soft tissue, for this reason, the
treatment time and the input power required to reach ablation temperatures tend to be high.
Antennas specifically designed to treat bone tissue can result in a highly efficient system,
i.e., most of the input power will be delivered to the treated tissue. Therefore, the input
power and the treatment time can be reduced. Double slot and monopole antennas have
been studied to generate thermal ablation due to their easy design and construction [18,19].
Monopole antennas present a lower coupling in soft tissue in comparison with double
slot antennas; however, an alternative to the monopole antenna is the metal-tip monopole
antenna that allows a larger contact area with tissue, as consequence, a better coupling with
the tissue [19]. For this reason, these four types of antennas were proposed: a double slot
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antenna, a metal-tip monopole antenna, a double slot with choke antenna, and a metal-tip
monopole with choke antenna.

Minimally invasive cancer treatments using microwave ablation have been investi-
gated in recent years at the Center for Research and Advanced Studies of the National
Polytechnic Institute (CINVESTAV). A one-slot coaxial applicator, for cancer treatment in
soft tissue, by using tissue phantoms and ex-vivo swine tissue was designed, constructed,
and validated by Cepeda et al. (2010) [20]. Furthermore, a two-slot applicator to treat
soft tissue was proposed by Ortega-Palacios et al. (2012); a computational model and
breast phantom experimentation were performed [21]. Moreover, a two-slot applicator
was optimized and adjusted by an algorithm and FEM models to get the best SWR into
breast cancer cells by Lopez-Luna et al. (2015). In vitro tests showed that the viability of
breast cancer cells can be reduced by up to 70% when exposed to high-power electromag-
netic fields with short treatment periods and cell viability reductions of up to 30% were
obtained [22]. Afterwards an applicator thinner than the previous design (diameter of
1.5 mm) tested in murine models was designed by Lara et al. (2016). This applicator was
designed to perform less invasive treatments, achieving a better coupling to the medium
and reaching temperatures above 55 ◦C [23]. At Manzanárez et al. (2016) an applicator for
a multilayer phantom by parametric sweeps in FEM was designed and optimized. The
phantom consists of three tissues (glandular, adipose, and tumor tissue). The designed
antenna was optimized for the glandular tissue because most breast cancer originates in
the duct-forming cells [24]. A double “short-distance” slot applicator was proposed and
validated by Ortega-Palacios et al. (2018) performing experimentation in vivo swine breast
tissue [25]. In 2020, a comparison of three different slot applicators, designed to treat soft
tissue, were done by using a breast tumor phantom [17]. As previously described, most of
the antennas reported in literature had been designed to treat soft tissue. However, recently
researchers at the National Institute of Rehabilitation Luis Guillermo Ibarra (INR-LGII)
started to study the effect of using thermal ablation to treat bone tissue [5,26–28]. In [29],
Trujillo-Romero et al. propose a single slot antenna specially designed to treat bone tumors;
moreover in [30] a double slot antenna to treat bone tumors was propose; the antenna was
modeled, constructed and evaluated in ex vivo porcine bones; the results obtained show
a maximum SWR value equal to 1.8 using 10 W as input power per 10 min of treatment
reaching ablation temperatures (60–100 ◦C). In both cases, the antennas showed effectivity
to treat bone tissue. The information recollected in the bibliographical research helps us to
find out the unquestionable necessity to design antennas to treat bone tumors specifically,
in order to improve the thermal effect and the antenna efficiency. The research was focused
not only on the medical application but also in the antenna design, thermal effects in biolog-
ical tissues, development of phantoms, etc. To carry out the appropriate research, the digital
library database access of the Center for Research and Advanced Studies (CINVESTAV)
to different databases, i.e., IEEE/IET Electronic Library, ScienceDirect, and SpringerLink,
was used.

Theoretical modelling has been playing significant roles in the design and optimiza-
tion of antennas by serving as a quick, convenient, and inexpensive tool to evaluate the
performance and efficiency of designed antennas [31–33]. Numerical techniques like the
finite element method (FEM), are widely used to discretize the partial differential equa-
tions (PDEs) in time and space in order to obtain temperature distributions in tissue. In
this study, we investigate the characteristics and features of the proposed antennas for
microwave ablation therapy, in order to compare their efficiencies by using numerical and
experimental techniques.

In this study, four new micro-coaxial antennas, specifically designed for thermal
ablation in bone tissue to treat bone tumors are proposed. These antennas allow a better
matching with tissues and so lower power inputs and time treatment are required. The
proposed antennas were a metal-tip monopole (MTM), a choked metal-tip monopole
(CMTM), a double slot (DS), and a choked double slot (CDS). The antennas were designed
and optimized through computational parametric models by using a software based on
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the Finite Element Method (FEM). A parametric study was implemented to determine the
antenna dimensions that generate a better coupling with the bone tissue. Approximately,
400 simulations were analyzed to know the optimal dimensions of each antenna. This
process allowed to predict the performance of the antennas when they were used on
irradiated biological tissue (cortical bone, cancellous bone, muscle, and fat). Based on
the results of the parametric study, the antennas that showed a better performance and
tissue coupling (SWR lower than 1.5 and ablation temperatures) were manufactured. In
order to test the manufactured antennas, multilayer phantoms composed of cancellous
and cortical bone, muscle, and fat were developed. The phantoms emulate the dielectric
tissue properties reported in the literature. The antennas were tested either in multilayer
phantoms or ex vivo porcine tissue. Both, computational models as well as experiments
in phantoms and ex vivo tissue are of great importance to validate thermal treatments
by using MW, considering the potential, scope, and limitations as well as patient safety
for their future implementation in real clinical treatments. In all the analyzed cases, the
antennas were fed with 5 W and 10 W applied per 5 min. A comparison between the
experimentation and the results of the computational models based on the Finite Element
Method was carried out.

2. Materials and Methods
2.1. Antenna Design

MW antenna design performs a key role in getting efficient MW transmission of
power and thus effective tumor ablation. An ideal antenna can achieve the required
ablation (size and shape) with high power transmission efficiency and low invasiveness to
patients. Hence, these three design criteria are used to evaluate antenna design. The energy
transmission efficiency of the applicator means the amount of energy that is transferred
to the tissues compared to the total energy. High efficiency is desired by lower energy
loss (energy reflected to the power generator) within the antenna, impedance mismatch
usually causes energy reflection. The performance of MW antennas designed during MWA
procedures is based on two critical factors: the reflection coefficient (S11) and the specific
absorption rate (SAR). S11 represents the amount of electromagnetic power reflected to
the feed source relative to the total input power. Reflection coefficient helps to evaluate
the antenna power transmission efficiency [34]. On the other hand, SAR represents the
electromagnetic energy absorbed per unit mass of tissues, so tumor ablation procedure
always requires a strongly focused SAR pattern at the tip of the antenna. SAR pattern is
employed as a performance index of MW antenna design in the tumor ablation because
electromagnetic energy is converted into thermal energy that heats the tissues [35,36].
Several antenna designs have been proposed to achieve high energy transmission as
well as enough energy focusing. The most described coaxial-based MW antennas for
thermotherapy applications are dipole, monopole, and slot antennas due to their simple
design and easy manufacturing compared to other micro-coaxial antennas. These antennas
are highly efficient; they present a coupling over 95% of input power into the tissue;
moreover, they have good broadside radiation patterns [37–39].

Four micro-coaxial antennas were included in this study to analyze the feasibility
of their use to treat bone tissue. Previously, some micro-coaxial antennas were designed,
constructed, and tested [29]. Although these antennas had a correct performance to treat
bone tissue, we found out that their diameters were not the correct ones, i.e., the antennas
were so thin (diameter of 1.2 mm) that they easily lost their shape during the experimental
process. Therefore, new double slot, double slot with choke, metal—tip monopole, and
metal—tip monopole with choke antennas were proposed.

The tradeoffs between antenna size, impedance matching, and reflection coefficient
are key factors in the design and optimization of the antenna. The transmission line theory
explains the relationship between the impedances. The outer conductor, the surrounded
dielectric of the catheter, and the conductive tissue can be thought of as a lossy transmis-
sion line [8,31,33]. Then, by knowing the input impedance of the transmission line, the
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impedance of the segments above and below the slot/choke can be determined. The input
impedance is described by Equation (1):

Zin = jZ0 tan(βh + jΘh) (1)

where Z0 is the segment characteristic impedance, β is the wave number, and h is the
segment length with the terminal function Θh = 0 for either an open-ended segment or a
short-circuited segment. A symmetric segment length with respect to λe f f yields excellent
matching to the 50 Ω feed line and good power transfer. The effective wavelength, that is
described by Equation (2), was used to calculate the correct location and dimension of the
slots, the monopole, and the choke of the antennas [30]:

λe f f =
c

f
√

εr
(2)

where c is the speed of light in free space (m/s), f is the work frequency (2.45 GHz), and
εr is the permittivity of cancellous bone (18.54) at 2.45 GHz [40]. Cancellous bone was
chosen because bone tumors grow up specially at the extremities of long bones, which are
composed mainly by this kind of bone.

2.1.1. Metal—Tip Monopole (MTM) and Choked Metal—Tip Monopole (CMTM) Antennas

The monopole antenna consists of an internal conductor of the coaxial cable extended
far away from the external conductor, with or without the dielectric material extended
together with the internal conductor. Even though different type of monopole antennas
exists, a metal-tip monopole (MTM) was chosen because the metal at the distal tip of the
antenna gives a better electrical contact with the tissue. The choke is a coverage around
the antenna that allows thermal isolation, and its main function is to avoid the setback of
the current along the axial length of each antenna; therefore, it gives a balanced outcome
of the thermal distribution [41–43]. Figure 1b,c show a scheme of both antennas. For
both antennas (MTM and CMTM) excellent power deposition occurs if the length of the
elongated conductor is λeff/4, where λeff is the effective wavelength in bone. With a length
of about λeff/4, the choke produces an infinite impedance at its open end to limit the
currents in the outer conductor to the region between the choke and the line end [44,45].
Therefore, the computational and experimental analysis of these variations has shown that
the MTM antenna can yield the greatest power deposition at the antenna tip.

2.1.2. Double Slot (DS) and Choked Double Slot (CDS) Antennas

These are the most common type of microwave antennas, especially because of the
easiness of their construction. In this case, the inner and the outer conductor (See Figure 1a)
are soldered at the distal tip of the antenna. A small slot (less than one-tenth) of the effective
wavelength is cut around the outer conductor near the solder point to allow propagation
of the electromagnetic wave in the tissues [45]. The slots must be located near to the
short-circuit at the distal tip to allow the wave propagation through the tissue. The slots
are air grooves that allow a major concentration of heat near their location, i.e., they work
as a guide to the electromagnetic radiation. The choke has the same goal as previously
described. Figure 1d,e shows the geometrical design of both antennas.

2.2. Finite Element Model

The symmetry that exists around an axis when all the semi-planes exhibit the same
characteristics allow us to work with axisymmetric geometries. The lower computational
cost required to solve problems by using axisymmetric geometries compared to that
required to solve 3D problems is one of the main advantages; therefore, an axisymmetric
geometry was proposed to perform this study. In the axial-symmetric mode, there is no
change in the azimuthal direction i.e., the ϕ direction.
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Figure 1. Axi-symmetric geometry of the micro-coaxial antennas. (a) micro—coaxial cable transversal view and its diameters.
(b) Metal—tip monopole (MTM) antenna, (c) Choked metal—tip monopole (CMTM) antenna, (d) Double slot (DS) antenna
and (e) choked double slot (CDS) antenna, (f) Antenna inserted in a multilayer tissue model to evaluate its performance.

Therefore, these waves have a magnetic field only with a ϕ component and an electric
field in the r–z plane. The fields can be written as described in Equations (3) and (4):

H(r, z, t) = Hϕ(r, z)ejωt, (3)

E(r, z, t) = (Er(r, z) + Ez(r, z))ejωt, (4)

In order to evaluate the antennas performance, models based in the finite element
method were developed. The models were generated by considering that the electromag-
netic wave propagated through the coaxial cable is defined by transversal electromagnetic
fields (TEM). Time—harmonic fields were considered, then the wave propagation can be
described by Equations (5)–(7):

E = er
C
r

ej(ωt−kz), (5)

H = eϕ
C
rR

ej(ωt−kz) (6)

Pav = ezπ
C2

R
ln
(

rinner
router

)
, (7)

where z is the direction of propagation, and r, ϕ, and z are the cylindrical coordinates of the
coaxial cable. Pav is the averaged power flow, R is the cable impedance; while router and
rinner are the radius for outer and inner conductor, respectively, ω is the angular frequency
and k is the propagation constant, which is linked to the wavelength at the medium (λ), as
described by Equation (8):

k =
2π

λ
. (8)
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In tissue, the electric field has a finite axial component since the magnetic field is
completely in the azimuthal direction. The wave equation then becomes scalar Hϕ, as it is
shown in Equation (9):

∇×
((

εr −
jσ

ωε0

)−1
∇× Hϕ

)
− µrk2

0Hϕ = 0, (9)

where εr and µr are the relative permittivity and permeability, respectively. The boundary
conditions for the metallic surfaces are described by Equation (10):

n× E = 0. (10)

The feed point was modeled as a port boundary condition with an input power level
set to 5 W. In this problem, a low reflecting boundary condition was set on the surfaces;
therefore, the boundary does not disturb the electromagnetic field distribution. The input
field is described by Equation (11):

n×
√

εE−
√

µHϕ = −2
√

µHϕ0, (11)

where

Hϕ0 =

√
PavZ

πrln
(

router
rinner

)
r

, (12)

for an input power of Pav deduced from the time-average power flow. The antenna
radiates into the tissue where a damped wave propagates. Due to a finite region that was
discretized, the geometry must be truncated at some distance from the antenna by using a
similar absorbing boundary condition without excitation. The boundary conditions can be
applied to all exterior boundaries. A symmetry boundary condition for boundaries at r = 0
were applied.

Electromagnetic and thermal simulations were solved by the finite element method by
using COMSOL-Multiphysics (COMSOL Inc., Burlington, MA, USA). The electromagnetic
(EM) simulations were carried out in the frequency domain (2.45 GHz), while the thermal
simulations were calculated in the time dependent domain. In order to reduce the compu-
tation time and due to the antenna symmetry, 2D axisymmetric models were implemented
(See Figure 1f). In these models, cortical bone was not considered because the bone tumors
usually grow up around the cancellous bone.

To determine the directional properties and to detect the side lobs of the designed
antennas; directivity calculations were performed by using COMSOL-Multiphysics. These
calculations allow to know the ratio between the radiation intensity in a given direction of
the antenna and the radiation intensity averaged in all directions. The directivity measure-
ment allows us to define the heating pattern generated during heat treatment in bone cancer.
For this study, the E plane of the antennas was obtained, since the greatest contribution to
tissue thermal damage is due to the electric field in the bone.

2.2.1. Microwave Propagation in Tissue

The absorption and propagation of the microwaves in the tissue are governed by
Maxwell’s equations. The electromagnetic fields radiated in tissue by an antenna can be
estimated by solving the Maxwell’s equations; however, tissue electromagnetic properties
(permittivity and conductivity) and initial and boundary conditions must be known [37].
Therefore, it is extremely important to know the dielectric tissue properties and how
they change during the ablation procedure, to develop accurate models and predict the
antenna performance.
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2.2.2. Electromagnetic Models

The EM simulations were used to calculate the specific absorption rate (SAR), which
represents the electromagnetic field deposited by unit of mass in the tissue (W/kg).
Equation (13) defines the SAR generated by each antenna [46]:

SAR =
σ

2ρ
|E|2 , (13)

where σ (S/m) is the conductivity, ρ (kg/m3) is the tissue density, and E is the electric
field generated by each antenna. The slots were defined as air, the antenna boundaries
(all the antennas), as well as the choke as perfect electric conductors, while the excitation
boundaries were defined as a coaxial port, fed by 5 W and 10 W of input power. The tissue
boundaries were set as a scattering boundary condition to ensure that the EM wave will
pass without reflections.

2.2.3. Thermal Models

To implement the thermal models, the Bioheat equation (Equation (14)) was used [46].
This equation models the heat transfer in tissue, as well as the impact of perfusion as an
isotropic heat sink. Bioheat equation is described as:

ρc
∂T
∂t

= ∇·(k∇T) + ρQ + ρSAR− ρbCbρW(T − Tb), (14)

where c (J/kg/K) represents the heat capacity, ρ (Kg/m3) density, k (W/m/K) thermal
conductivity, ρb (kg/m3) blood density, Cb (J/kg/K) heat capacity of blood, W (kg/m3/s)
blood perfusion, Tb (K) blood temperature, Q (W/m3) rate of heat generated by metabolism
and SAR (W/kg) the specific absorption rate. The SAR previously calculated by the
electromagnetic models was used as a source for the thermal simulations. In all the
models, the blood perfusion and the heat generated by metabolism were neglected. A
time dependent study was implemented to evaluate the thermal distribution after 5 min of
application. The initial tissue temperature was set at 37 ◦C. Table 1 shows the dielectric
and thermal properties of each tissue and the materials that were considered in the models.

Table 1. Dielectric and thermal properties, for the tissues and antennas, used in the modeling.

Parameter Value

Blood density 1050 (kg/m3)
Specific heat 3639 (J/kg·K)

Blood perfusion rate 5.26× 10−4 (1/s)
Blood temperature 37 ◦C

Relative permittivity for cancellous bone 18.5 (—)
Electrical conductivity for cancellous bone 0.805 (S/m)
Thermal conductivity for cancellous bone 0.31 [W/(m·K)]

Relative permittivity for muscle 52.7 (—)
Electrical conductivity for muscle 1.74 (S/m)

Relative permittivity for fat 10.8 (—)
Electrical conductivity for fat 0.268 (S/m)

Relative permittivity for the catheter 2.6 (—)
Relative permittivity for the dielectric 2.03 (—)

2.2.4. Antenna Optimization: Parametric Study

In order to optimize each one of the proposed antennas, a parametric study was
implemented. Table 2 describes the parameters included in this study, as well as their
values. It is important to address that for each antenna different parameters were analyzed.
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Table 2. Parameters used for the implementation of the parametric study to optimize each antenna.

Parameters Values Antenna Type

Antenna Characteristics MTM CMTM DS CDS

Inner conductor length
(

λe f f
16 , λe f f

8 , λe f f
4 , λe f f

2 , λe f f ) m 3 3

Choke length
(

λe f f
4 , λe f f

3 , λe f f
2 , λe f f ) m 3 3

Distance to the choke
(

0, λe f f
8 , λe f f

4 , λe f f
3 , λe f f

2 , λe f f ) m 3 3

Choke thickness (0.3, 0.5, 0.7,1, 1.5) m 3 3

Slot length
(

λe f f
16 , λe f f

14 , λe f f
12 , λe f f

10 ) m 3 3

Distance between slots
(

λe f f
16 , λe f f

20 , λe f f
30 , λe f f

40 ) m 3 3

Slot location
(

λe f f
8 , λe f f

4 , λe f f
3 , λe f f

2 ) m 3 3

Power 5 W 3 3 3 3

Deep insertion (0–20) mm 3 3 3 3

Time 5 min 3 3 3 3

2.2.5. Convergence Analysis

The goal of mesh adaptation is to use as few elements as possible to obtain an accurate
solution. In general, it is desirable to use a coarser mesh in the regions that are not very
important and a more refined mesh in the regions of interest. To adapt a mesh, it is
necessary to provide the desired element size; finding the correct size of the elements is not
an easy task. For these models, finite element mesh refinements were generated in order to
carry out a convergence study. The parameters evaluated were the simulation time and
the SWR values versus number of elements. A finer mesh size can require a significant
computational cost, in addition the results can be overestimated. On the other hand, a
coarser mesh size will cause the underestimation of the results. The values of the tested
element size were

λe f f
10 ,

λe f f
8 ,

λe f f
4 ,

λe f f
2 (submultiples of λeff).

2.3. Antenna Construction

Based on the results from the optimization, the antennas with the best characteristics
(SWR, temperature, etc.) were constructed. Semirigid micro-coaxial cable UT-085, Amphe-
nol RF connectors, a 6 mm copper bar, tin-lead solder, and a homemade lathe with 0.01 mm
of resolution were the materials and equipment used to construct the antennas [5,22–24,29].

2.4. Phantoms Development

In order to evaluate the performance of the micro-coaxial antennas, several tissue
emulators (phantoms) were developed. A phantom is a mixture of different components
proposed in order to emulate the tissue properties [42]. For MWA applications, it is
necessary to reach relative permittivity and electrical conductivity like those from the
emulated tissue. The proposed phantoms are an ideal representation of human tissues, i.e.,
they are considered as homogenous. A multilayer phantom with fat, muscle, cortical and
cancellous bone was developed. In this case, the skin layer was not considered due to the
energy focalization, i.e., the skin is not affected by the heat generation. Table 3 describes
the dielectric tissue properties at 2.45 GHz used to develop each phantom.

Phantom Characterization

In order to emulate the dielectric tissue properties, each phantom tissue sample was
characterized. The experimental set-up consisted in the HP 85070C Dielectric Probe Kit
(Hewlett Packard, Palo Alto, CA, USA) connected to a network analyzer (E5071B ENA,
Agilent Technologies, Santa Clara, CA, USA). A GPI to USB converter (82357A, Agilent
Technologies, Santa Clara, CA, USA) was used to connect it to a personal computer where
the software Agilent Connection and Dielectric software (Agilent Technologies, Santa Clara,
CA, USA) were installed. The dielectric probe is based on the open-ended coaxial line. The
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dielectric phantom tissue properties were determined by the measurement of the reflection
coefficient at the probe interface. The phantom tissue characterization was done from 2 GHz
to 3 GHz. It is important to address that the phantom is assumed to be non-magnetic,
isotropic, and homogeneous. The permittivity of each phantom tissue was measured by
placing the dielectric probe over and inside the sample. Several measurements were done
in order to evaluate the homogeneity of the samples; mean values and standard deviations
were calculated. The Dielectric Probe Kit measures in a direct way the permittivity (ε) of
the sample; however, the electrical conductivity (σ) was calculated by using the dielectric
loss factor (ε”) which is also provided by the Dielectric Probe Kit. Equation (15) was used
to calculate the electrical conductivity by using the dielectric loss factor [47].

σ = ε′′ ε0ω, (15)

where σ is the electrical conductivity, ε” is the dielectric loss factor, ε0 is the permittivity of
free space, and ω = 2πf is the angular frequency (rad/s). Finally, once the phantoms that
emulate the tissue properties were ready, a multilayer phantom was done. These multilayer
phantoms emulated fat, muscle, and bone tissue. The layer of fat had a thickness of 1 cm,
1.5 cm for the muscle, and 3 cm of bone tissue (cortical and cancellous) phantom. The 3 cm
of bone tissue phantom thickness was proposed to be able to insert the antenna over it.

Table 3. Dielectric tissue properties at 2.45 GHz to be emulated in the tissue phantoms [48].

Tissue Relative Permittivity (—) Electrical Conductivity (S/m)

Cortical bone 11.4 0.39
Spongy bone 18.5 0.80

Muscle 52.7 1.74
Fat 10.8 0.26

2.5. Antenna Characterization
2.5.1. Standing Wave Ratio (SWR)

The SWR measure the impedance coupling between a load and the transmission line
that supplies it. The ideal SWR value is 1, this means that all the input power has been
transmitted to the tissue. A higher SWR value (greater than 1) indicates a greater power
loss in the antenna and, therefore, greater power backs to the microwave system. In this
case, the SWR was measured for both cases, i.e., when the antenna was inserted either in
the multilayer phantom or in the ex vivo porcine tissue at different insertion depths.

To carry out the SWR measurements, the Agilent Technologies E5071B network ana-
lyzer was used at the work frequency of the antennas (2.45 GHz). Figure 2a depicts the
experimental setup. Some previous studies showed that the insertion depth of the antennas
plays an important role in the SWR values [18]. Therefore, the antennas performance when
they were inserted at different depths in the multilayer phantom, as well as in the ex vivo
tissue, was evaluated.

2.5.2. Radiation System Used in the Experimentation

The radiation system consists of an SSPA Aethercomm power amplifier and a Rohde &
Schwarz SML03 microwave generator to which the antenna was connected; the microwave
generator works at a frequency of 2.45 GHz. Figure 2b shows the radiation system used to
implement all the experiments.

2.5.3. Thermometry System Used in the Experimentation

The thermometry system was based on optical fibers Luxtron MAR05 STB that allows
to measure the temperature during the experimentation. Optic fiber thermal probes do not
interfere with microwave radiation [49]. Therefore, the thermometry system was integrated
by non-interfering fiber optic thermal probes to measure temperature at real time during
the MW experiments. Figure 2b shows the configuration of the thermometry system for
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the experimental tests. Four sensors were located on the antenna body and inside of the
tested material (either a multilayer phantom or ex vivo tissue). The sensors were located at
the antenna tip (S2), where the temperature was higher, 1.5 cm up (S1) and down (S3) to the
antenna tip, and 1.5 cm (S4) next to the sensor S2 as can be observed in Figure 2c. The sensor
location was determined by preliminary experiments where thermal distributions of the
antennas were obtained. Sensors were located at places where the recorded temperatures
were above 60 ◦C. In order to compare the antennas performance, the sensors were located
at the same places.
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2.5.4. Experimentation in Multilayer Phantom

To evaluate the efficiency of the four antennas, different experimental tests were
implemented in multilayer phantoms. The experiments were done by applying an input
power of 5 W and 10 W per 5 min. In order to emulate the physiological temperature, the
multilayer phantoms were heated up to 37 ◦C by using a thermal bath. Once the 37 ◦C were
reached in the phantoms, the antenna and the sensors were placed inside it. The antennas
were covered with a Teflon™ layer; this layer allows the tissue or phantom, which are in
direct contact with the antenna, not to be adhered to the antenna body. Figure 3a,b show
the experimental test with a phantom inside the thermal bath as well as the antenna, with
the Teflon™ layer, connected to the radiation system.

2.5.5. Experimentation in Ex Vivo Porcine Tissue

The experimentation in ex vivo porcine tissue (porcine femur bone) was done with the
antennas that showed the best performance during the multilayer phantom experimenta-
tion. The radiation and the thermometry system were the same, as well as the temperature
sensors location. In order to insert the antenna and the temperature sensors, the bone
was cut in a half, once both were inserted, the bone was rejoined, as can be observed
in Figure 3c.

The bone was heated up to 37C in a thermal bath. Just a small section of the bone
was submerged in the thermal bath, in order to prevent the antenna from getting wet. The
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thermal bath temperature was set at 55 ◦C and the bone was heated for 15 min to reach
37 ◦C. Once the bone reached the target temperature, the radiation tests were performed.
Figure 3c shows the performance of the experimental tests in ex vivo tissue.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 25 
 

 

which are in direct contact with the antenna, not to be adhered to the antenna body. Figure 
3a,b show the experimental test with a phantom inside the thermal bath as well as the 
antenna, with the Teflon™ layer, connected to the radiation system. 

 
Figure 3. Experimental set-up used to record the temperature increase in the multilayer phantoms and the ex vivo porcine 
tissue. (a) Experimental set-up used to take the thermal distributions by the thermal camera, (b) Experimental set-up to 
perform the experimentation in a multilayer tissue phantom, (c) Experimental Set-up to perform the experimentation in 
ex vivo tissue. 

2.5.5. Experimentation in Ex Vivo Porcine Tissue 
The experimentation in ex vivo porcine tissue (porcine femur bone) was done with 

the antennas that showed the best performance during the multilayer phantom experi-
mentation. The radiation and the thermometry system were the same, as well as the tem-
perature sensors location. In order to insert the antenna and the temperature sensors, the 
bone was cut in a half, once both were inserted, the bone was rejoined, as can be observed 
in Figure 3c. 

The bone was heated up to 37C in a thermal bath. Just a small section of the bone was 
submerged in the thermal bath, in order to prevent the antenna from getting wet. The 
thermal bath temperature was set at 55 °C and the bone was heated for 15 min to reach 37 
°C. Once the bone reached the target temperature, the radiation tests were performed. 
Figure 3c shows the performance of the experimental tests in ex vivo tissue. 

2.5.6. Thermal Distributions 
The thermal distributions generated by the antenna were obtained with a Fluke Ti32 

thermal camera. Due to the thermal camera being able to take only superficial thermal 
images, the thermal distributions were taken through the surface of the acrylic containers 
of each phantom, as can be observed in Figure 3a. Due to the presence of the acrylic, the 
temperatures do not correspond to the ones reached in the phantoms; therefore, these 
photographs were taken just in order to know the thermal distribution shape generated 
by each antenna. In order to evaluate the evolution of the thermal distribution, five pho-
tographs were taken to observe the damage in the multilayer phantoms every minute. The 
first one was obtained after one minute of radiation, and every minute a new one was 
taken. For the ex vivo porcine bone, at the end of the experiment, the bone was separated, 
and a photograph of the bone surface (the one that was in contact with the antenna) was 
taken. 

  

Figure 3. Experimental set-up used to record the temperature increase in the multilayer phantoms and the ex vivo porcine
tissue. (a) Experimental set-up used to take the thermal distributions by the thermal camera, (b) Experimental set-up to
perform the experimentation in a multilayer tissue phantom, (c) Experimental Set-up to perform the experimentation in ex
vivo tissue.

2.5.6. Thermal Distributions

The thermal distributions generated by the antenna were obtained with a Fluke Ti32
thermal camera. Due to the thermal camera being able to take only superficial thermal
images, the thermal distributions were taken through the surface of the acrylic containers
of each phantom, as can be observed in Figure 3a. Due to the presence of the acrylic, the
temperatures do not correspond to the ones reached in the phantoms; therefore, these
photographs were taken just in order to know the thermal distribution shape generated
by each antenna. In order to evaluate the evolution of the thermal distribution, five
photographs were taken to observe the damage in the multilayer phantoms every minute.
The first one was obtained after one minute of radiation, and every minute a new one was
taken. For the ex vivo porcine bone, at the end of the experiment, the bone was separated,
and a photograph of the bone surface (the one that was in contact with the antenna)
was taken.

2.5.7. Comparison between Antennas

The standing wave ratio (SWR), maximum temperatures, power loss, thermal distri-
bution and insertion depth are the most important parameters to predict the efficiency
of microwave antennas designed to treat tumors by thermal ablation. These parameters
were evaluated and compared in order to analyze the performance of each one of the
proposed antennas.

3. Results
3.1. Convergence Analysis

The convergence analysis was done in order to choose the mesh size that allows to
obtain a precise solution in a reasonable computational time.

In the convergence analysis, the relation between SWR and simulation time versus
number of mesh elements was obtained. It was observed that the lowest number of mesh
elements (2000–4000) (faster simulations), underestimates the results. However, for a mesh
with around 4000–6000 elements, the SWR was around 1.5 and the simulation time was
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stable in approximately 15–18 s. Choosing the appropriate mesh size for the simulations
will help to obtain a closer estimation of the antenna performance in real life. In this case,
the best mesh was the one defined by λeff/10, where the SWR was around 1.5 and the
simulation time was 16 s. As a result, all the implemented simulations were carried out
with a mesh size defined by λeff/10.

3.2. Antenna Design

The parametric study was carried out in order to obtain the optimal antenna design,
i.e., the antenna dimensions that allows the maximum power transmission. The SWR was
obtained in order to choose the best-case scenarios. As it is well-known, an SWR equal to
1 represents a total power transmission, while a higher value represents power losses and a
mismatch between the MW system and the antenna. Table 4 shows the dimensions of each
optimized antenna as well as their SWR values. Moreover, the Choked Double Slot (CDS)
antenna had the lowest SWR (1.13), while the Metal-Tip Monopole (MTM) antenna had the
highest one (1.55). However, the SWR for the four antennas was around 1.13—1.55 which
means a good energy transmission. The optimization process showed that the worst-case
scenarios reached SWR values around 2.40–6.35.

Table 4. Geometry dimension for each optimized antenna.

Parameter MTM CMTM DS CDS

Antenna length (mm) 120 120 120 120
Inner conductor (mm) 14.2 14.2 — —

Choke length (mm) — 7.1 — 14.2
Choke thickness (mm) — 1.5 — 1.5

Slot length (mm) — — 1.7 1.7
Slot location (mm) — — 3.55 3.55

Distance between slots (mm) — — 0.95 0.95
SWR best case-scenarios 1.55 1.37 1.26 1.13

Insertion depth (mm) 12 8 16 20

The directivity plots (E-plane) obtained from COMSOL-Multiphysics are shown in
Figure 4, for the four designed antennas. Each of these plots allows us to evaluate the
characteristics of the radiation pattern of each of the antennas and thus to know the tissue
damage during treatment. All the antennas present two main lobes and two secondary
lobes in the directivity pattern. Figure 4a shows the directivity of the Double Slot (DS)
antenna, it has a beamwidth of the main lobes of more than 90◦ with a gain of about 10 dB.
Figure 4b shows the directivity of the Choked Double Slot (CDS) Antenna, its antenna
has a main lobe beamwidth of 15◦ with a gain of about 15 dB. Figure 4c shows Metal-tip
Monopole (MTM) Antenna directivity, this antenna has a beamwidth of 45◦ and a gain of
21 dB, and finally, Figure 4d, the Choked Metal-tip Monopole (CMTM) Antenna, which
has a beamwidth of 15◦ and a gain of 15 dB.

3.3. Antenna Construction

Due to the fact that the radiation pattern of the antennas changes according to the
environment in which it is immersed, e.g., phantom or ex vivo tissue, the antenna was
designed, by modeling, to irradiate bone, muscle, and skin tissue. On the other hand, the
experimentation was carried out in different stages to evaluate the effect of the antennas
to irradiate different media (phantoms and ex vivo bone tissue). Figure 5 shows the four
antennas that were constructed by following the results shown in Table 4, as well as the
antennas tested in porcine ex vivo tissue. The antennas were covered with TeflonTM for the
experiments on phantoms as well as on ex vivo tissue as shown in Figure 5e,f.
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3.4. Phantoms Characterization

Table 5 shows the materials as well as the concentrations used to emulate relative
permittivity (εr) and electrical conductivity (σ) of cortical and cancellous bone, muscle, and
fat tissues. By using the materials and concentrations reported in the Table 5, the tissue
phantoms were prepared. In order to characterize each phantom, the relative permittivity
was measured in a direct way; while the electrical conductivity was calculated by using
the dielectric loss factor. It is important to address that neither in the simulations nor in
the experiments thermal dependence of tissue properties were considered and just the
constant values reported in literature were emulated. Table 6 shows the mean value and
standard deviation obtained from the measures of each tissue property.
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Table 5. Materials and concentrations used to develop the multi-layer phantom tissue.

Material Cortical Bone Cancellous Bone Muscle Fat

Corn oil 30 mL 30 mL — 30 mL
Distilled water 25 mL 40 mL 50 mL 10 mL

Wheat flour 60 g 60 g — —
Dextrose 7.2 g 14.4 g — —
Ethanol — — 42 mL —

NaCl — — 0.505 g —
Agarose — — 0.97 g 0.9 g

Neutral soap — — — 6 mL

Table 6. Dielectric properties measured in the characterization of the tissue phantoms.

Property Cortical Bone Spongy Bone Muscle Fat

Relative permittivity (—) 11.89 ± 1.13 16.1 ± 2.2 51.2 ± 3.7 9.2 ± 1.7
Electrical conductivity (S/m) 0.67 ± 0.18 0.976 ± 0.2 2.8 ± 0.6 0.11

3.5. Antenna Comparison: Experimentation in Multilayer Phantom
3.5.1. Standing Wave Ratio (SWR) and Insertion Depth in Multilayer Phantoms

The antennas performance was evaluated when they were inserted at different depths
in the multilayer phantom. The analyzed depths were 0 mm of insertion, which means
that the antenna was only in contact with the surface of the cortical bone phantom layer,
4 mm, 8 mm, 12 mm, 16 mm, and 20 mm within the layer of bone phantom, as in the
computational models. The antenna that shows better SWR values and therefore better
power delivery was the DS antenna. The CMTM antenna had SWR values greater than 2 at
most of the insertion depths, so this antenna will tend to generate larger power loss and
less energy delivery. The DS antennas showed better performance at a deeper insertion
distance, so this antenna design holds promise for treating bone tumors located deeper in
bone tissue. The MTM antenna showed a better SWR (1.7) at an insertion depth of 12 mm;
the CMTM antenna at 8 mm (SWR = 2.5), the DS antenna at 16 mm (SWR = 1.3), and the
antenna CDS at 20 mm (SWR = 1.6). At these insertion depths, the lowest SWR value was
obtained for each antenna, which indicates that a better coupling with the tissue will be
obtained. Therefore, all the next antenna evaluations were tested at these insertion depths.

3.5.2. Power Loss

The reflected power allows to know the percentage of power that is being returned to
the radiation system. A high percentage of reflected power not only implies a greater loss
of energy, but also indicates the inefficiency of the antennas to transmit the energy to the
tissue to be treated; moreover, a higher reflected power can damage the radiation system.
The power amplifier used in the experiments can record the input power as well as the
reflected one; in this way, the amount of power loss was obtained. For the tests carried out
with 5 W, the power loss was not greater than 1 W for any antenna; while in experiments
with 10 W, the maximum power loss was 1.2 W. This indicates that the antennas delivered
more than 85% of the power to the multilayer phantom. The antenna with the lowest
power loss was the CDS with 6.4% of reflected power (input power= 5 W) and the MTM
with 7.4% of reflected power (input power = 10 W). The MTM and CDS antennas showed
the best performance.

3.5.3. Temperature Profiles

Figure 6 shows the temperature profiles obtained by the four temperature sensors
when the antennas were fed with 5 W and 10 W. The highest temperatures were obtained
at S2, these temperatures were higher than 65 ◦C when using 5 W and higher than 80 ◦C
when using 10 W; therefore, the highest energy deposition was at the tip of the antennas.
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The second highest reached temperatures, between 60–65 ◦C when using 5 W and between
77–82 ◦C when using 10 W, were recorded at S1, which was located at 1.5 cm above the
antenna tip. The MTM antenna exceeds 70 ◦C, 20 s and 5 s earlier than the CMTM by
using 10 W and 5 W, respectively. This implies that the use of the choke on the CMTM
antenna not only focuses the energy below the choke, but also causes the temperature
rise to be more linear and controlled compared to the MTM antenna. However, for the
DS antenna, the temperature rise tends to be like the CDS antenna, which means that the
choke only has this effect over the temperature profiles generated by the MTM antenna.
Figure 6a shows that the MTM antennas reached ablation temperatures before 100 s of
radiation, while the DS antennas (Figure 6c) reached ablation temperatures after 100 s
(input power = 5 W). However, S3 and S4 did not reach temperatures above 60 ◦C, which
indicates that at 1.5 cm below and next to the antenna tip, the ablation temperatures were
not achieved. The maximum temperature was achieved by the MTM antenna with 83 ◦C,
while the CDS antenna reached a maximum temperature of 68 ◦C in the experiments with
5 W. There was a ∆T= 15 ◦C between the antenna with the highest temperature (MTM) and
the one with the lowest temperature (CDS).

For experiments with 10 W of input power, MTM antennas (Figure 6b) show a higher
temperature increase compared to DS antennas as shown in Figure 5d. In this case, tem-
peratures above 60 ◦C in S2 were reached almost twice faster than in the cases with 5 W.
The MTM antennas reached ablation temperatures before 50 s, while DS antennas reached
ablation temperatures before 100 s. This proves that the use of higher power implies the
generation of high temperatures in a shorter time. By using 10 W, only the S4 in the four
antennas does not reach ablation temperatures. Moreover, in all cases, it was possible to
observe the effect of the choke over the heat regulation in the tissue.

3.5.4. Experimental Thermal Distributions

Figure 7 shows the experimental thermal distributions generated by each antenna with
an input power of 5 W applied per 5 min. The thermal distributions show the areas of the
phantom where the heat was focused. In this case, the use of 5 W or 10 W of input power
just modifies the size of the thermal distribution, but the shape was the same. Therefore,
only the experimental thermal distributions generated by using 5 W are presented. Even
though the increase in temperature was generated quickly at the tip of the antennas when
the experiment was started, the thermal distribution begins to be visible after 2 min of
MW exposure. These thermal distributions depend on the radiation time; the longer the
radiation time, the larger the thermal distribution.

The thermal distributions generated by the MTM antennas were focused on the
antenna tip (Figure 7a,b); while the thermal distributions generated by the DS antennas
start to be spread around the slots (Figure 7c,d), which causes a thermal distribution longer
than the one generated by the MTM antennas. The energy focusing on the antenna tip was
due to the greatest microwave propagation occurring at the antenna body where the outer
conductor was removed to create the monopole and the antenna slots. For the DS antennas,
the outer conductor of the antenna was removed to create the slots, whereas in the MTM
antennas, the outer conductor was removed to create the monopole.

As can be observed in Figure 7d, the CDS antenna generates an energy focus under
the choke, this causes a thermal distribution shape like a drop of water; while with the DS
antenna (Figure 7c), the thermal distribution shape was spherical. This indicates that the
choke in the CDS antenna reduces the backward heating along the shaft during the ablation
procedures. The choke in the CMTM antenna had less impact on the thermal distribution
because its position was not so close to the antenna tip as in the CDS antenna. Therefore,
the distance between the antenna tip and the choke can modify the thermal distribution,
i.e., the closer the choke to the antenna tip, the greater the focus of energy at the antenna
tip. On the other hand, the farther the choke is from the tip of the antenna, the focusing
will be reduced.



Electronics 2021, 10, 2289 17 of 24Electronics 2021, 10, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 6. Temperature profiles reached by each antenna during the experiments. (a) Comparison between the MTM and 
the CMTM antennas fed with 5 W, (b) Comparison between the MTM and the CMTM antennas fed with 10 W, (c) Com-
parison between the DS and the CDS antennas fed with 5 W, (d) Comparison between the DS and the CDS antennas fed 
with 10 W. 

3.5.4. Experimental Thermal Distributions 
Figure 7 shows the experimental thermal distributions generated by each antenna 

with an input power of 5 W applied per 5 min. The thermal distributions show the areas 
of the phantom where the heat was focused. In this case, the use of 5 W or 10 W of input 
power just modifies the size of the thermal distribution, but the shape was the same. 
Therefore, only the experimental thermal distributions generated by using 5 W are pre-
sented. Even though the increase in temperature was generated quickly at the tip of the 
antennas when the experiment was started, the thermal distribution begins to be visible 
after 2 min of MW exposure. These thermal distributions depend on the radiation time; 
the longer the radiation time, the larger the thermal distribution. 

The thermal distributions generated by the MTM antennas were focused on the an-
tenna tip (Figure 7a,b); while the thermal distributions generated by the DS antennas start 
to be spread around the slots (Figure 7c,d), which causes a thermal distribution longer 
than the one generated by the MTM antennas. The energy focusing on the antenna tip was 
due to the greatest microwave propagation occurring at the antenna body where the outer 
conductor was removed to create the monopole and the antenna slots. For the DS anten-
nas, the outer conductor of the antenna was removed to create the slots, whereas in the 
MTM antennas, the outer conductor was removed to create the monopole. 

Figure 6. Temperature profiles reached by each antenna during the experiments. (a) Comparison between the MTM and the
CMTM antennas fed with 5 W, (b) Comparison between the MTM and the CMTM antennas fed with 10 W, (c) Comparison
between the DS and the CDS antennas fed with 5 W, (d) Comparison between the DS and the CDS antennas fed with 10 W.

3.6. Experimentation in Ex Vivo Bone Tissue

Experimental results in the multilayer phantoms showed that the MTM and the CDS
antennas had a better performance than the CMTM and DS antennas. For that reason, the
MTM and the CDS antennas were chosen as candidates to perform the experimental tests
in ex vivo tissue. Because this evaluation was carried out in ex vivo tissue, new insertion
depths in function of the bone size were analyzed.

3.6.1. Standing Wave Ratio (SWR) and Insertion Depth

The insertion depths of the antennas were 8 mm, 12 mm, 16 mm, and 20 mm for the
MTM antenna and 5 mm, 15 mm, 25 mm, and 35 mm for the CDS antenna. In order to
evaluate if the whole insertion of the choke in the bone influences the SWR, the evaluated
depths for the CDS antenna were greater than the ones used for the MTM antenna. Table 7
shows the SWR measured for each antenna. The antennas were optimized to work in a
multilayer tissue. However, in this case, they were evaluated in bone tissue; therefore, the
SWR tended to be higher. For cases in which the inner conductor of the MTM antenna was
inserted at depths either equal or lower than 12 mm, the SWR was greater than 2. However,
when the inner conductor was inserted at depths between 16 mm and 20 mm, the SWR
was lower than 1.5. This means that if the entire length of the inner conductor of the MTM
antenna is inserted to the bone tissue, the energy transmission is better. On the other hand,
the cases where the CDS antenna was inserted at depths either equal or lower than 15 mm,
the SWR was greater than 2. At these depths, the choke was not entirely within the bone.
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For insertion depths of 25 mm and 35 mm (with the complete choke inside the bone) the
SWR was lower than 1.5. The best-case scenario for the MTM antenna was at 16 mm of
insertion depth, while the best one for the CDS antenna was at 35 mm. These insertion
depths were selected to perform the experiments to get temperature profiles, power losses,
and thermal distributions.
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Table 7. Measured SWR values for different insertion depth in porcine ex vivo tissue.

MTM Antenna CDS Antenna

Depth
(mm)

SWR
(—)

Depth SWR

(mm) (—)

8 3.1 5 2.1
12 2.6 15 2.38
16 1.24 25 1.41
20 1.34 35 1.12

3.6.2. Power Loss

The maximum percentage of reflected power presented by the MTM antenna, with an
input power of 5 W and 10 W, were 16% and 12.5%, respectively; while the CDS antenna
showed a maximum percentage of reflected power of 6.4% and 5.2%, for an input power of
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5 W and 10 W, respectively. The CDS antenna had the lowest SWR, and the lowest power
loss as shown in Table 8. The reflected power for the MTM antenna was two times higher
than the one for the CDS antenna. However, in all the cases the delivered power to the
bone was greater than 80%.

Table 8. Comparison between computational models, multilayer phantom and ex vivo experiments for MTM and CDS
antennas using 5 W per 5 min.

MTM Antenna CDS Antenna

Parameter FEM Model Phantom Ex Vivo FEM Model Phantom Ex Vivo

SWR 1.55 1.7 1.24 1.13 1.6 1.12
Insertion depth (mm) 12 12 16 16 16 35

Power loss (%) 19 10 16 16 6.4 6.4

Table 8 shows the comparison between the results of both antennas in the FEM model
and experimentation in phantoms and ex vivo tissue. The SWR values were different in each
experiment, for example, both antennas show a lower SWR value in ex vivo experiments;
while in the experiments in multilayer phantoms, it is observed that the SWR values were
greater even than those obtained in the FEM models. These differences may be because
in both (computational models and phantom experiments), the thermal dependence of
the dielectric tissue properties was not considered. Moreover, the antenna insertion was
different for the experimentation in ex vivo tissue. However, in all the cases, the SWR
values were lower than 1.8 and the power loss values lower than 17% in the experiments in
phantoms and ex vivo tissue, showing a good performance for both antennas.

3.6.3. Ex Vivo Bone Thermal Distributions

Figure 8 shows the thermal distributions generated by the antennas with an input
power of 5 W and 10 W after 5 min of radiation. The thermal distribution generated by the
MTM antenna had the same spherical shape in both cases (5 W and 10 W); therefore, the
difference was observed in the reached temperatures. The CDS antenna had an elongated
thermal distribution. In the thermal distribution generated by the CDS antenna with 5 W,
it was observed that the thermal distribution is more concentrated just next to the start of
the choke, resulting in less damage to healthy tissue. The thermal distribution generated
by the MTM antenna was similar to a semicircle; in this case, it was not like a complete
circle as the one obtained in phantom experimentation (See Figure 7a). This was because
in the phantom experiments the monopole was entirely inside the tissue; while, in the
ex vivo tissue experiments, the monopole was not totally inside the bone, so the thermal
distribution was affected by the insertion depth of the antenna. On the other hand, in the
CDS antenna, a complete thermal distribution is observed because both the choke and the
slots were inside the bone tissue.

3.6.4. Ex Vivo Bone Temperature Profiles

Figure 9 shows the temperature profiles measured in the porcine ex vivo experimen-
tation. The MTM antenna (Figure 9a) shows a temperature increase in less time; for an
input power of 5 W, it exceeds 60 ◦C before 100 s of radiation, while the CDS antenna
exceeds that temperature after 200 s of radiation. For both antennas, only the S2 sensor at
the antenna tip exceeds 60 ◦C when 5 W were used.

The temperature profiles generated by the MTM antenna after 100 s of radiation
showed a constant temperature increase; while the ones generated by the CDS antenna
increase during all the experiments. The experiments with 10 W (Figure 9b) showed that
both antennas exceed 80 ◦C in sensor S2. For the CDS antenna, in sensors S1, S2, and S3,
temperatures above 60 ◦C were reached after 200 s of radiation. The CDS antenna generates
the highest temperature (87 ◦C) of both antennas. The temperature difference between the
MTM and CDS antenna at the antenna tip was 6 ◦C. In addition, the sensor S3, which was
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located under the antenna tip, reached a higher temperature for the CDS antenna than
for the MTM antenna. The temperature difference at sensor S3 was approximately 10 ◦C
and 18 ◦C for 5 W and 10 W of input power, respectively. In this case, the choke in the
CDS antenna generates a greater energy deposition under the choke, thereby generating a
greater increase in temperature.
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4. Discussion and Conclusions

This paper shows the design of four types of new micro-coaxial antennas specifically
designed for thermal ablation in bone tissue in order to treat bone tumors. The proposed
antennas were a metal-tip monopole (MTM), a choked metal-tip monopole (CMTM), a
double slot (DS), and a choked double slot (CDS).

• The antennas were modeled (optimized) and experimentally evaluated by using
multilayer phantoms and ex vivo porcine bone, i.e., the best modeled antennas were
manufactured and tested. The computational models, despite finding differences with
the experimental results, can be considered a good representation of the proposed
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antennas, i.e., for the MTM antenna, the SWR values were 1.55 and 1.24, while for
the CDS antenna the SWR values were 1.13 and 1.12 for FEM model and ex vivo
experimentation, respectively. Although in these cases (FEM model and ex vivo
experimentation) the penetration depth of the antenna was not the same, due to
the characteristics of the porcine bone, the SWR was not drastically modified. This
performance could be an indicator of the effectiveness of the antenna optimization of
the antennas. However, it is necessary to implement modifications in the FEM models
such as the thermal dependence of dielectric and thermal properties of the tissues as
well as the thermal dependence of perfusion, in order to obtain a better correlation
between the models and the experiments.

• The study of the insertion depth in the antennas shows that the SWR value changes
at different depths, for example, the DS and CDS antennas show a lower SWR value
at higher insertion depths; while the MTM and CMTM antennas have a lower SWR
value if the insertion depth is lower than 16 mm. In the experimentation when using
multilayer phantoms, it was observed that if the slots, the monopole, and the choke of
the antennas are completely inside the bone layer, the SWR values tend to be lower
compared to the values obtained when they are not completely inside the bone tissue.
Moreover, the choke modifies the thermal distribution, the CMTM and CDS antennas
show a major energy focalization below the choke. Temperatures higher than 60 ◦C
were reached in the multilayer phantom experiments with the four proposed antennas
using 5 W as input power per 5 min. The best cases were obtained with the MTM
and CDS antennas. The SWR values for both antennas were lower than 1.5; while the
power loss was lower than 8%. The maximum temperatures, with 5 W as input power,
obtained in the multilayer phantom experiments, were 83 ◦C for the MTM antenna
and 68 ◦C for the CDS antenna; while in the ex vivo experiments, the maximum
temperature was 62 ◦C for MTM antenna and 64 ◦C for CDS antenna. However,
the lesion size in the biological tissue can be controlled by the input power and the
treatment time, i.e., by increasing these parameters, the four designed antennas can
increase the tissue damage size.

• In the experimentation in multilayer tissue phantoms, one of the most important points
to be addressed is the development of the phantoms to emulate the tissue properties. It
is important to emulate carefully the tissue properties because the dielectric properties
of the tissues are highly dispersive and change according to the kind of tissue [50],
water content [51], and temperature [52]. In this case, due to the difficult to emulate
thermal properties, just dielectric properties were emulated; however, more research
about how to correctly emulate thermal properties must be done.

• In the experiments in ex vivo tissue, temperatures higher than 60 ◦C were reached by
using 10 W of input power per 5 min with both antennas. It was observed that with
these optimized antennas a reduction in the input powers as well as in the treatment
times was achieved. The literature reports input powers around 60 W for treatment
times between 20–30 min [15,16]. In the ex vivo experiments, the CDS antenna had the
best case with a SWR of 1.12 and a power loss of 6.8%; also, the temperatures measured
by the S3 sensor, placed at 1.5 cm next to the antenna tip, reached temperatures higher
than 60 ◦C ensuring that the damage caused to the tissue extends 3 cm in diameter.

• The difference of temperature between multilayer phantoms and ex vivo experiments
were 21 ◦C for the MTM antenna and 4 ◦C for the CDS antenna. These differences
between multilayer phantoms and ex vivo experiments may be because, in the ex vivo
experiments, the tissue that was in contact with the antenna body goes from being
healthy tissue to necrotic tissue in a short period of time (lower than 100 s of radiation).
This can modify the dielectric properties of the tissue and consequently the SWR of the
antennas change and a better coupling between the biological tissue and the antenna
is obtained. Moreover, due to agarose being one of the multilayer tissue phantom
components, it is also expected that the phantom starts its degradation when high
temperatures are reached. This can also modify the coupling of the entire system.
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• Finally, we can conclude that the proposed antennas for the treatment of bone tumors
reached ablation temperatures as expected (>60 ◦C) by using 5 W and 10 W as input
power per 5 min. These treatment times and input powers are lower than those
reported in the literature [53].

• One of the main advantages of having four different antennas is that each one can
be better adapted to the depth and shape of the tumor, for example, the DS antennas
are candidates to treat deep tumors because they have a better coupling at greater
insertion depths; while the MTM antennas have a better coupling (SWR = 1.24) with
superficial tumors. On the other hand, the use of the MTM antenna in bone tissue
presents better coupling compared to its use in soft tissue reported in the literature [19].
Moreover, it is important to address that this evaluation was done by considering
just healthy bone tissue, because of the lack, in the literature, of the dielectric tissue
properties for bone tumors.

• The future work includes the analysis of using antenna arrays to cover a larger area of
bone tissue as well as in vivo experiments. Moreover, the most important challenge is
to obtain the dielectric and thermal tumor properties to use them in future modelling
studies to predict the real effect over different kinds of bone tumors.

• The directivity plots and antennas side lobes are related to the electric field distribution
in the tissue to be treated, which, in turn, are related to the temperature distribution.
The purpose of the minimally invasive treatment presented in this work is to generate
temperatures above 60 ◦C to destroy the tumor tissue, without damaging healthy
tissue; so in order to ensure the safety of the patients under treatment, as future
work, these side lobes will be considered in the treatment planning, by using imaging
methods (ultrasound or tomography), to know the volume of the tumor to be heated
and to design the most appropriate treatment, considering the type and position
(angle) of the antenna to be used to ensure localized damage in the tumor tissue,
without damaging healthy tissue.

• Another important challenge is to generate thermal therapy in tumor tissue, to adjust
the coupling of the antenna to the tissue, techniques such as modification of the
antenna dimensions as well as capacitance changes can be used as a solution for
accomplishing antennas alterations, as described in [54,55] respectively.
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