An Adaptive Hierarchical Sliding Mode Controller for Autonomous Underwater Vehicles
Abstract
:1. Introduction
2. Autonomous Underwater Vehicle Model
2.1. Motion Modelling
- is the orthogonal matrix as
2.2. Dynamics of Under-Actuated AUV Systems
3. Adaptive Hierarchical Sliding Mode Control Law
3.1. Control Scheme
3.2. Adaptive Learning
3.3. Stability Analysis
4. Simulation Results and Discussions
- In the first scenario, the desired references were set to constants and the system was noiseless.
- In the second scenario, the desired references were still set to constants but the system operated under an external disturbance.
- In the last scenario, the desired references along x and y axes were set to the predefined sinusoidal signals while the desired references along and about z axis were set to constants. In this experiment, the system was also assumed to operate under an external disturbance.
4.1. First Scenario
4.2. Second Scenario
4.3. Third Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tran, N.H.; Huynh, T.D.; Ton, T.P.; Huynh, T.H. Design of Depth Control for Hybrid AUV. In AETA 2019—Recent Advances in Electrical Engineering and Related Sciences: Theory and Application; Cortes Tobar, D.F., Hoang Duy, V., Trong Dao, T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 521–531. [Google Scholar]
- Tran, H.N.; Nhut Pham, T.N.; Choi, S.H. Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty. Ocean Eng. 2021, 220, 108257. [Google Scholar] [CrossRef]
- Fang, K.; Fang, H.; Zhang, J.; Yao, J.; Li, J. Neural adaptive output feedback tracking control of underactuated AUVs. Ocean Eng. 2021, 234, 109211. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, X.; Zhang, Q.; Li, W. Neural network-based adaptive trajectory tracking control of underactuated AUVs with unknown asymmetrical actuator saturation and unknown dynamics. Ocean Eng. 2020, 218, 108193. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, C.; Fang, H.; Li, H. Advanced Control in Marine Mechatronic Systems: A Survey. IEEE/ASME Trans. Mechatronics 2017, 22, 1121–1131. [Google Scholar] [CrossRef]
- Mondal, K.; Banerjee, T.; Panja, A. Autonomous underwater vehicles: Recent developments and future prospects. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 215–222. [Google Scholar] [CrossRef]
- Fiorelli, E.; Leonard, N.E.; Bhatta, P.; Paley, D.A.; Bachmayer, R.; Fratantoni, D.M. Multi-AUV Control and Adaptive Sampling in Monterey Bay. IEEE J. Ocean Eng. 2006, 31, 935–948. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, M.; Ament, C.; Jacobi, M.; Pfuetzenreuter, T.; Karimanzira, D.; Bley, K.; Boer, M.; Wehde, H. Modular AUV System with Integrated Real-Time Water Quality Analysis. Sensors 2018, 18, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.; Eustice, R.M. Toward AUV survey design for optimal coverage and localization using the Cramer Rao Lower Bound. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–7. [Google Scholar] [CrossRef]
- Niu, H.; Adams, S.; Lee, K.; Husain, T.; Bose, N. Applications of Autonomous Underwater Vehicles in Offshore Petroleum Industry Environmental Effects Monitoring. J. Can. Pet. Technol. 2009, 48, 12–16. [Google Scholar] [CrossRef]
- Hagen, P.; Storkersen, N.; Vestgard, K.; Kartvedt, P. The HUGIN 1000 autonomous underwater vehicle for military applications. In Proceedings of the Oceans 2003, Celebrating the Past… Teaming toward the Future (IEEE Cat. No.03CH37492), San Diego, CA, USA, 22–26 September 2003 ; Volume 2, pp. 1141–1145. [Google Scholar] [CrossRef]
- Zhang, F.; Marani, G.; Smith, R.N.; Choi, H.T. Future Trends in Marine Robotics [TC Spotlight]. IEEE Robot. Autom. Mag. 2015, 22, 14–122. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Peng, Z. State recovery and disturbance estimation of unmanned surface vehicles based on nonlinear extended state observers. Ocean Eng. 2019, 171, 625–632. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Le, H.X.; Tran, H.V.; Nguyen, D.A.; Nguyen, M.N.; Nguyen, L. An Efficient Approach for SIMO Systems using Adaptive Fuzzy Hierarchical Sliding Mode Control. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 85–90. [Google Scholar] [CrossRef]
- Le, H.X.; Nguyen, L.; Thiyagarajan, K. A Dynamic Surface Controller based on Adaptive Neural Network for Dual Arm Robots. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 1–4 August 2020; pp. 555–560. [Google Scholar]
- Le, V.A.; Le, H.X.; Nguyen, L.; Phan, M.X. An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes. Int. J. Autom. Comput. 2019, 16, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Le, H.X.; Le, A.V.; Nguyen, L. Adaptive fuzzy observer based hierarchical sliding mode control for uncertain 2D overhead cranes. Cyber-Phys. Syst. 2019, 5, 191–208. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Le, H.X.; Tran, H.V.; Nguyen, D.A.; Nguyen, M.N.; Nguyen, L. Adaptive Dynamic Programming based Control Scheme for Uncertain Two-Wheel Robots. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 111–116. [Google Scholar] [CrossRef]
- Tanakitkorn, K.; Wilson, P.A.; Turnock, S.R.; Phillips, A.B. Depth control for an over-actuated, hover-capable autonomous underwater vehicle with experimental verification. Mechatronics 2017, 41, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Yanhui, W.; Jianhui, Z. Back-stepping control of underactuated AUV’s depth based on nonlinear disturbance observer. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 6061–6065. [Google Scholar] [CrossRef]
- Mahapatra, S.; Subudhi, B. Design and experimental realization of a backstepping nonlinear H∞ control for an autonomous underwater vehicle using a nonlinear matrix inequality approach. Trans. Inst. Meas. Control 2018, 40, 3390–3403. [Google Scholar] [CrossRef]
- Hong, E.Y.; Soon, H.G.; Chitre, M. Depth control of an autonomous underwater vehicle, STARFISH. In Proceedings of the OCEANS’10 IEEE SYDNEY, Sydney, Australia, 24–27 May 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Joe, H.; Kim, M.; Yu, S. Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 2014, 78, 183–196. [Google Scholar] [CrossRef]
- Yan, Z.; Yu, H.; Hou, S. Diving control of underactuated unmanned undersea vehicle using integral-fast terminal sliding mode control. J. Cent. South Univ. 2016, 23, 1085–1094. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, D.; Shi, Y.; Wang, H.; Wang, W. Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders. Inf. Sci. 2015, 316, 163–179, Nature-Inspired Algorithms for Large Scale Global Optimization. [Google Scholar] [CrossRef]
- Hoang, U.T.T.; Le, H.X.; Thai, N.H.; Pham, H.V.; Nguyen, L. Consistency of Control Performance in 3D Overhead Cranes under Payload Mass Uncertainty. Electronics 2020, 9, 657. [Google Scholar] [CrossRef] [Green Version]
- Pham, D.T.; Nguyen, T.V.; Le, H.X.; Nguyen, L.; Thai, N.H.; Phan, T.A.; Pham, H.T.; Duong, A.H.; Bui, L.T. Adaptive neural network based dynamic surface control for uncertain dual arm robots. Int. J. Dyn. Control 2020, 8, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Tao, G.; Jiang, B. Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems with Input Saturation. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2086–2097. [Google Scholar] [CrossRef]
- Cui, R.; Ren, B.; Ge, S.S. Synchronised tracking control of multi-agent system with high-order dynamics. IET Control Theory Appl. 2012, 6, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.Q.; Lewis, F. Neural-network predictive control for nonlinear dynamic systems with time-delay. IEEE Trans. Neural Netw. 2003, 14, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Van, T.N.; Van, P.D.; Chi, H.N.; Viet, H.T. Research, Design and Development a Model Solar Autonomous Underwater Vehicles. Int. J. Emerg. Trends Eng. Res. 2021, 9, 1217–1223. [Google Scholar]
- Qian, D.; Yi, J.; Zhao, D. Control of Overhead Crane Systems by Combining Sliding Mode with Fuzzy Regulator. IFAC Proc. Vol. 2011, 44, 9320–9325. [Google Scholar] [CrossRef] [Green Version]
Parameters | Force and Moments | Velocities | Positions and Angles |
---|---|---|---|
Motion in x direction (surge) | X | u | x |
Motion in y direction (sway) | Y | s | y |
Motion in z direction (heave) | Z | w | z |
Rotation about x axis (roll) | - | p | - |
Rotation about y axis (pitch) | - | q | - |
Rotation about z axis (yaw) | N | r |
Parameters | Values |
---|---|
m | (kg) |
k | 100 |
5 | |
5 | |
500 | |
−0.58 | |
−0.62 | |
0 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, Q.V.; Dinh, T.A.; Nguyen, T.V.; Tran, H.V.; Le, H.X.; Pham, H.V.; Kim, T.D.; Nguyen, L. An Adaptive Hierarchical Sliding Mode Controller for Autonomous Underwater Vehicles. Electronics 2021, 10, 2316. https://doi.org/10.3390/electronics10182316
Vu QV, Dinh TA, Nguyen TV, Tran HV, Le HX, Pham HV, Kim TD, Nguyen L. An Adaptive Hierarchical Sliding Mode Controller for Autonomous Underwater Vehicles. Electronics. 2021; 10(18):2316. https://doi.org/10.3390/electronics10182316
Chicago/Turabian StyleVu, Quang Van, Tuan Anh Dinh, Thien Van Nguyen, Hoang Viet Tran, Hai Xuan Le, Hung Van Pham, Thai Dinh Kim, and Linh Nguyen. 2021. "An Adaptive Hierarchical Sliding Mode Controller for Autonomous Underwater Vehicles" Electronics 10, no. 18: 2316. https://doi.org/10.3390/electronics10182316
APA StyleVu, Q. V., Dinh, T. A., Nguyen, T. V., Tran, H. V., Le, H. X., Pham, H. V., Kim, T. D., & Nguyen, L. (2021). An Adaptive Hierarchical Sliding Mode Controller for Autonomous Underwater Vehicles. Electronics, 10(18), 2316. https://doi.org/10.3390/electronics10182316