Lane Image Detection Based on Convolution Neural Network Multi-Task Learning
Abstract
:1. Introduction
2. Method
2.1. Image Preprocessing
2.1.1. Image Grayscale
2.1.2. Target Area Extraction
2.1.3. Picture Zooming
2.1.4. Inverse Perspective Transformation
2.1.5. Picture Flip
2.2. Basic Network Selection
ZFNet Network
3. Network Model Construction
3.1. Multi Task Structure
- Multi-Label classification task module
- Object Mask task module
- Grid box regression task module
3.2. Data Layer
3.3. Network Model Compression
3.4. Multi-Task Loss Function
4. Experiments
4.1. Data Composition
4.2. Evaluation
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.; Wang, W.; Wang, K.; Li, Z.; Li, H.; Liu, S. Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review. J. Traffic Transp. Eng. 2020, 7, 748–774. [Google Scholar] [CrossRef]
- Tang, J.; Li, S.; Liu, P. A review of lane detection methods based on deep learning. Pattern Recognit. 2020, 111, 107623. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Yoon, J.S.; Shin, S.; Bailo, O.; Kim, N.; Lee, T.-H.; Hong, H.S.; Han, S.-H.; Kweon, S. VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Gao, D.; Zhang, X. Saliency Detection Based on Spatial Convolutional Neural Network Model. Comput. Eng. 2018, 44, 240–245. [Google Scholar]
- Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial As Deep: Spatial CNN for Traffic Scene Understanding. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Van Gansbeke, W.; de Brabandere, B.; Neven, D.; Proesmans, M.; van Gool, L. End-to-end Lane Detection through Differentiable Least-Squares Fitting. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) IEEE, Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Oh, M.; Cha, B.; Bae, I.; Choi, G.; Lim, G.C.A.Y. An Urban Autodriving Algorithm Based on a Sensor-Weighted Integration Field with Deep Learning. Electronics 2020, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Yang, X.; Li, J.; Islam, M. Attention deep neural network for lane marking detection. Knowl.-Based Syst. 2020, 194, 105584. [Google Scholar] [CrossRef]
- Li, W.; Qu, F.; Liu, J.; Sun, F.; Wang, Y. A lane detection network based on IBN and attention. Multimed. Tools Appl. 2019, 79, 16473–16486. [Google Scholar] [CrossRef]
- Linjordet, T.; Balog, K. Impact of Training Dataset Size on Neural Answer Selection Models; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Chakkaravarthy, A.P.; Chandrasekar, A. An Automatic Threshold Segmentation and Mining Optimum Credential Features by Using HSV Model. 3D Res. 2019, 10, 1–17. [Google Scholar] [CrossRef]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep Learning vs. Traditional Computer Vision. In Advances in Computer Vision; Springer: Cham, Switzerland, 2019; pp. 128–144. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Chen, Y.; Chen, Y.; Zhu, J.; Ali, D.; Cao, W. A Survey on Theories and Applications for Self-Driving Cars Based on Deep Learning Methods. Appl. Sci. 2020, 10, 2749. [Google Scholar] [CrossRef]
- Ghani, H.A.; Besar, R.; Sani, Z.M.; Kamaruddin, M.N.; Syahali, S.; Daud, A.M.; Martin, A. Advances in lane marking detection algorithms for all-weather conditions. Int. J. Electr. Comput. Eng. 2021, 11, 2088–8708. [Google Scholar]
- Muril, M.J.; Aziz, N.H.A.; Ghani, H.A. A Review on Deep Learning and Nondeep Learning Approach for Lane Detection System. In Proceedings of the IEEE 8th Conference on Systems, Process and Control (ICSPC), Melaka, Malaysia, 11–12 December 2020; pp. 162–166. [Google Scholar]
- Ghanem, S.; Kanungo, P.; Panda, G.; Parwekar, P. An improved and low-complexity neural network model for curved lane detection of autonomous driving system. Soft. Comput. 2021, 1–12. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Torres, J.; Bai, G.; Wang, J.; Zhao, L.; Vaca, C.; Abad, C. Sign-regularized Multi-task Learning. arXiv 2021, arXiv:2102.11191. [Google Scholar]
- Han, J.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A Robust Infrared Small Target Detection Algorithm Based on Human Visual System. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar] [CrossRef]
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 1–48. [Google Scholar] [CrossRef]
- Aly, M. Real time detection of lane markers in urban streets. In Proceedings of the IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 7–12. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Kim, Y.; Yoon, H.; Choi, D. Random Untargeted Adversarial Example on Deep Neural Network. Symmetry 2018, 10, 738. [Google Scholar] [CrossRef] [Green Version]
Layer | Convolution Kernel | Pooling Layer | Additional Operation | Receptive Field |
---|---|---|---|---|
Conv1 | 11, 4, 0 | 3, 2 | LRN | 11 |
Conv2 | 5, 1, 2 | 3, 2 | LRN | 51 |
Conv3 | 3, 1, 1 | - | - | 99 |
Conv4 | 3, 1, 1 | - | - | 131 |
Conv5 | 3, 1, 1 | 3, 2 | - | 163 |
Conv6 | 6, 1, 3 | - | Dropout | 355 |
Conv7 | 1, 1, 0 | - | Dropout, Branched | 355 |
Conv8 | 1, 1, 0 | - | Branched | 355 |
Name | Cordoval | Washington | ||
---|---|---|---|---|
Number | 250 | 406 | 336 | 232 |
Traffic | Interference signs, urban roads | Intense light | Shadow, large number of vehicles | Road markings |
Network | Cordoval1 | Washington1 |
---|---|---|
VPGNet | 0.884 | 0.869 |
three-VPGNet | 0.835 | 0.849 |
Compressed-Net | 0.874 | 0.843 |
Caltech | 0.723 | 0.759 |
DriveNet | 0.866 | 0.848 |
ZF-VPGNet | 0.922 | 0.876 |
CZF-VPGNet | 0.874 | 0.843 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, D.; Ma, Y.; Liu, Q. Lane Image Detection Based on Convolution Neural Network Multi-Task Learning. Electronics 2021, 10, 2356. https://doi.org/10.3390/electronics10192356
Li J, Zhang D, Ma Y, Liu Q. Lane Image Detection Based on Convolution Neural Network Multi-Task Learning. Electronics. 2021; 10(19):2356. https://doi.org/10.3390/electronics10192356
Chicago/Turabian StyleLi, Junfeng, Dehai Zhang, Yu Ma, and Qing Liu. 2021. "Lane Image Detection Based on Convolution Neural Network Multi-Task Learning" Electronics 10, no. 19: 2356. https://doi.org/10.3390/electronics10192356
APA StyleLi, J., Zhang, D., Ma, Y., & Liu, Q. (2021). Lane Image Detection Based on Convolution Neural Network Multi-Task Learning. Electronics, 10(19), 2356. https://doi.org/10.3390/electronics10192356