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Abstract

:

Total variation often yields staircase artifacts in the smooth region of the image reconstruction. This paper proposes a hybrid high-order and fractional-order total variation with nonlocal regularization algorithm. The nonlocal means regularization is introduced to describe image structural prior information. By selecting appropriate weights in the fractional-order and high-order total variation coefficients, the proposed algorithm makes the fractional-order and the high-order total variation complement each other on image reconstruction. It can solve the problem of non-smooth in smooth areas when fractional-order total variation can enhance image edges and textures. In addition, it also addresses high-order total variation alleviates the staircase artifact produced by traditional total variation, still smooth the details of the image and the effect is not ideal. Meanwhile, the proposed algorithm suppresses painting-like effects caused by nonlocal means regularization. The Lagrange multiplier method and the alternating direction multipliers method are used to solve the regularization problem. By comparing with several state-of-the-art reconstruction algorithms, the proposed algorithm is more efficient. It does not only yield higher peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) but also retain abundant details and textures efficiently. When the measurement rate is 0.1, the gains of PSNR and SSIM are up to 1.896 dB and 0.048 dB respectively compared with total variation with nonlocal regularization (TV-NLR).
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1. Introduction


Compressive sensing (CS) [1,2] has been successfully applied in signal acquiring, processing, and compression. By exploiting the redundancy that existed in a signal, CS conducts sampling, and compression at the same time. CS theory demonstrates that a signal can be reconstructed with high probability when it exhibits sparse representation in some transformation domain, which has been widely used in many fields, such as single-pixel imaging [3], remote sensing imaging [4], and medical imaging [5].



Based on the CS theory, if an original signal   x ∈  R N    is sparse or after sparse transformation  Ψ . The measured value   y = Φ x , y ∈  R M  ( M ≪ N )   can be obtained through the measurement matrix  Φ . CS theory shows that when the sparse transformation matrix  Ψ  and the measurement matrix  Φ  satisfy the restricted isometry property (RIP) [6], the original signal x can be reconstructed by solving the following optimization problem


    min  x       ‖   Ψ T  x  ‖   0        s . t .       y = Φ x ,  



(1)




where signal   α =  Ψ T  x  ,  α  is the sparse coefficient after sparse transformation.      ‖ ⋅ ‖   0    represents the l0 norm. Since the solution of Equation (1) is an NP-hard problem, it can be solved by the approximate form l1 norm


    min  x       ‖   Ψ T  x  ‖   1        s . t .       y = Φ x .  



(2)







The above-constrained problem can be constructed by the Lagrangian multiplier method to an unconstrained problem


   x ˜  = arg    min x  {    ‖  y − Φ x  ‖   2 2        + λ    ‖   Ψ T  x  ‖   1  } ,  



(3)




where      ‖  y − Φ x  ‖   2 2    is a cost function,  λ  is the Lagrangian parameter. Since prior characteristics exist in natural images generated by natural light imaging, the optimization problem of image compression sensing can be expressed as


   u ˜  = arg     min  u  {      ‖  y − Φ u  ‖   2 2        + λ R ( u ) } ,  



(4)




where  u  is a 2D image.   R ( u )   represents a regularization term representing prior information of an image.



The current CS recovery algorithms explore the prior knowledge that a natural image is sparse in some domains, such as discrete cosine transform (DCT) [7], wavelets [8], and gradient-domain utilized by total variation (TV) model [9,10]. Image sparse representation is a key factor to affect image reconstruction quality. Despite high effectiveness in image CS recovery, the TV-based [11] algorithms cannot recover the fine details and textures, reconstructed images suffer from undesirable staircase artifact. This problem has sparked numerous studies in designing regularizers that could efficiently suppress the staircase artifacts while retaining sharp edges. To overcome this drawback, a weighted total variation [12] is proposed to improve the sparsity of the TV norm. Furthermore, an improved total variation by intraprediction is proposed [13]. Besides, total generalized variation (TGV) [14,15] is widely discussed, which is more precise in describing pixels variations in smooth regions, and thus reduces oil painting artifacts while still being able to preserve sharp edges. Except for these TV and its variants, there also exists some combination of TV (or TGV) and different waves, such as TV + wavelet [16] and TGV + shearlet [17]. However, the methods described above are improved on TV, there is still a staircase artifact effect in the results. Further, nonlocal means (NLM) [18] uses the similarity between the surrounding pixels of the image to perform weighted filtering, which effectively utilizes the non-local self-similarity. NLM is successfully applied in the CS image reconstruction, but it often results in the painting-like effect.



Recently, a class of fractional-order TV regularization models has received considerable interest and it is widely used in image denoising [19,20]. Adaptive weighted high-frequency iterative fractional-order TV is proposed, the high frequency gradient of an image is reweighted in iterations adaptively when using fractional-order TV [21]. Another conventional way to suppress the staircase artifact is to use a high-order TV regularization [22,23], there exists a high-order total variation minimization model that removes undesired artifacts for restoring blurry and noisy images [24]. High-order TV regularization can reconstruct piecewise linear regions, but high-order TV may also smooth out the image details, and it may reduce the ability of edges-preserving [23]. In order to make full use of image prior information as much as possible to construct a regularized model. A generalized hybrid non-convex variational regularization model [25] and unidirectional hybrid total variation with nonconvex low-rank regularization [26] have been proposed.



Motivated by the aforementioned studies, both the fractional-order TV and high-order TV can solve the problem of staircase artifacts, but fractional-order TV will cause non-smooth effects just like noise in smooth areas of the image. The ability of high-order TV to reduce the staircase effect is not very ideal since it may smooth the image details. In this paper, a two-dimensional compressive sensing image reconstruction model based on hybrid high-order and fractional-order TV (HoFrTV) with nonlocal regularization is proposed. The proposed algorithm makes the fractional-order and the high-order TV complement each other on image reconstruction, which can effectively solve the problems caused by high-order and fractional-order TV. The proposed algorithm effectively reduces the problem of staircase artifacts while preserving the edges, and suppresses painting-like effects produced by nonlocal means regularization.



To effectively solve the proposed algorithm model, we introduce auxiliary variables to a construct constrained optimization problem in Section 2.2. We divide the proposed model into four subproblems to solve. These subproblems are fractional-order TV model, high-order TV model, nonlocal means regularization model, and the reconstructed image by iterative update respectively. The augmented Lagrangian method (ALM) and the alternating direction method of multipliers (ADMM) are incorporated to solve these problems. Each parameter of the Lagrangian function is optimized for the experiment results empirically. The experimental results show that the proposed algorithm outperforms the current state-of-the-art algorithms, the edges and details of the reconstructed image are more abundant, and the visual effect of the reconstructed image is better.



The remainder of this paper is organized as follows. Section 2 introduces the related regularization model and the proposed HoFrTV model. In Section 3, parameter selection and experimental results are presented. In Section 4, the conclusions are drawn.




2. The Proposed Algorithm Model


2.1. Regularization Model


2.1.1. Fractional-Order Total Variation Model


Fractional total variation can be regarded as the generalization of total variation composed of fractional orders. There are three widely used definitions of the model, including Riemann-Liouville (R-L), Grünwald-Letnikov (G-L), and Caputo model [27]. Here, we choose the G-L model because it is easier to implement for image reconstruction. The G-L model can be defined as


   D t α  a   f ( t ) =   lim   h → 0    1   h α      ∑  k = 0    [    t − a  h   ]     ( − 1    ) k   (     α     k     )  f ( t − k h ) ,  



(5)




where α fractional order, t and a are the upper and lower boundaries of the independent variable respectively, and h is the differential step-size,    (     α     k     )    is the binomial coefficient and defined as    (     α     k     )  =   Γ ( α + 1 )   Γ ( k + 1 ) Γ ( α − k + 1 )    , where   Γ ( ⋅ )   is the Gamma function. Without loss of generality, let  u  denote the image. The fractional-order total variation in the horizontal and vertical directions can be expressed as


   [   D α  u  ]  = ( (  D h α  u ) , (  D v α  u ) ) ,  



(6)




and


   {    (  D h α  u ) =   ∑  k = 0   K − 1      ( − 1 )  k   (     α     k     )    u ( i − k , j )     (  D v α  u ) =   ∑  k = 0   K − 1      ( − 1 )  k   (     α     k     )    u ( i , j − k )     ,  



(7)




where i and j denote the pixel in the i-th row and the j-th column of an N × N size image. K ≥ 3 is the number of items involved in the computation of the fractional-order derivative, which is usually set as K = N. Based on this definition, the fractional-order semi-norm is defined as


     ‖   D α  u  ‖    F r T V   =   ∑  i = 1  N     ∑  j = 1  N        [  (  D h α  u )  ]   2  +    [  (  D v α  u )  ]   2        .  



(8)








2.1.2. High-Order Total Variation Model


On the basis of the first-order total variation operators of the image, we can obtain the high-order total variation, defined as


      D 2  u = (  D  v v   u ,  D  v h   u ,  D  h v   u ,  D  h h   u )      ‖   D 2  u  ‖  =      |   D  v v   u  |   2  +    |   D  v h   u  |   2  +    |   D  h v   u  |   2  +    |   D  h h   u  |   2       ,  



(9)




where   (  D  v v   u )  ,   (  D  v h   u )  ,   (  D  h v   u )  , and   (  D  h h   u )   are high-order total variation operators in the horizontal and vertical directions, respectively. The high-order total variation can be seemed as performing the differential operation again on the first-order total variation.




2.1.3. Nonlocal Mean Regularization Model


The pixels in the image can be estimated by the weighted average of the surrounding pixels of similar neighborhoods in the similar neighborhood of the search window, which can be expressed as follows


    u ^  i  =   ∑  j ∈ Ω     w  i , j    u j    ,  



(10)




where  Ω  is a search window area Ds × Ds. let    u i    and    u j    denote the central pixel of similar neighborhood window ds × ds respectively. The weight of    u j    to    u i   , denoted by    w  i , j    , which is determined by the similarity of the pixels in a similar neighborhood window. It can be calculated by the Gaussian l2 distance between pixels in the neighborhood window. It can be written in the following form


   w  i , j   =  1 c  exp ( −      ‖   u j  −  u i   ‖   2 2     h 2    ) .  



(11)







Specifically, assume that    u j    lies in the search window of    u i   . The neighborhood window centered on the central pixel    u j    can slide in the search window to calculate the similarity between two neighboring windows.  h  is the factor controlling the Gaussian kernel and  c  is the normalization constant. Applying nonlocal regularization in the CS reconstruction process, furthermore, it can be rewritten in a matrix form as


  R ( u ) =    ‖  u − W u  ‖   2 2  ,  



(12)




here,  W  represents a matrix composed of    w  i , j     in Equation (10), let   R ( u )   denote nonlocal regularization term. When calculating the second norm, vectorizing the elements in the norm is employed and then the second norm of the vectorized matrix is calculated.





2.2. The Proposed Algorithm Model


Incorporating Equations (8), (9), and (12) into the CS optimization problem jointly, the proposed hybrid high-order and fractional-order total variation with nonlocal regularization model image CS recovery algorithm are formulated as


  arg     min  u    τ    ‖   D α  u  ‖   1  + ε    ‖   D 2  u  ‖   1  + β    ‖  u − W u  ‖   2 2        s . t .       y = Φ u .  



(13)







Using variable splitting, we introduce auxiliary variables and change Equation (13) to a constrained optimization problem


    arg     min  u    τ   ‖ w ‖  1  + ε   ‖ v ‖  1  + β   ‖  z − W z  ‖  2 2            s . t .      D α  u = w ,  D 2  u = v , u = z , y = Φ u    



(14)




where  τ  and  ε  control the weights of fractional-order and high-order total variation. Note that the problem of Equation (14) is quite difficult to solve directly due to the non-differentiability and non-linearity of the combined regularization terms. An augmented Lagrangian based approach is developed to solve the problem


     L A  ( w , v , z , u ) = τ (   ‖ w ‖  1  −  γ 1 T  (  D α  u − w ) +    μ 1   2    ‖   D α  u − w  ‖  2 2  )                                                           + ε (   ‖ v ‖  1  −  γ 2 T  (  D 2  u − v ) +    μ 2   2    ‖   D 2  u − v  ‖  2 2  )                                                         +    μ 3   2    ‖  Φ u − y  ‖  2 2    −  γ 3 T  ( Φ u − y ) + β   ‖  z − W z  ‖  2 2                                                          −  γ 4 T  ( u − z ) +    μ 4   2    ‖  u − z  ‖  2 2     



(15)




where    μ 1  ,  μ 2  ,  μ 3  ,  μ 4   , and  β  are regularization parameters associated with the quadratic penalty terms.    γ 1  ,  γ 2  ,  γ 3   , and    γ 4    are the Lagrange multipliers associated with the constraints of Equation (15). The idea of using ADMM is to find a saddle point of    L A  ( w , v , z , u )   which is the solution to the original problem in Equation (13). It can minimize the augmented Lagrangian function    L A  ( w , v , z , u )   alternately, the problem in Equation (15) is decomposed into the four subproblems. We investigated the subproblems one by one.



2.2.1. w and v Subproblems


Given v, z, and u, the optimization problem associated with w can be expressed as


   w ˜  = arg   min  w  τ (    ‖ w ‖   1  −  γ 1 T  (  D α  u − w ) +    μ 1   2     ‖   D α  u − w  ‖   2 2  ) .  



(16)







According to Lemma 2 [28], the closed solution form of Equation (16) is


   w ˜  = max τ  {   |   D α  u −    γ 1     μ 1     |  −  1   μ 1    , 0  }  · sgn (  D α  u −    γ 1     μ 1    ) .  



(17)







When solving v subproblem, given w, v and z, similarly, the v subproblem becomes


   v ˜  = arg   min  v  ε (    ‖ v ‖   1  −  γ 2 T  (  D 2  u − v ) +    μ 2   2     ‖   D 2  u − v  ‖   2 2  ) .  



(18)







Same as w subproblems, the closed solution form of (18) can write as


   v ˜  = max ε  {   |   D 2  u −    γ 2     μ 2     |  −  1   μ 2    , 0  }  · sgn (  D 2  u −    γ 2     μ 2    ) .  



(19)








2.2.2. u Subproblems


Fixed w, v, and z, u subproblems is equivalently expressed as


      u ˜  = arg     min  z    τ ( −  γ 1 T  (  D α  u −  w ˜  ) +    μ 1   2    ‖   D α  u −  w ˜   ‖  2 2  ) + ε ( −  γ 2 T  (  D 2  u −  v ˜  ) +    μ 2   2    ‖   D 2  u −  v ˜   ‖  2 2  )                                                   +    μ 3   2    ‖  Φ u − y  ‖  2 2    −  γ 3 T  ( Φ u − y ) −  γ 4 T  ( u − z ) +    μ 4   2    ‖  u − z  ‖  2 2     .  



(20)







We can see that the problem in Equation (20) is a quadratic function optimization problem. To reduce the calculation, the gradient descent method was used


   u ˜  = u − η ⋅ d ,  



(21)




 η  is the step size.  u  can be reconstructed by every iterative update,  d  indicates its gradient,


     d = τ   (  D α  )  T  (  μ 1   D α  −  γ 1  −  μ 1   w ˜  ) + ε   (  D 2  )  T  (  μ 2   D 2  −  γ 2  −  μ 2   v ˜  )                 −  γ 4  +  μ 4  ( u − z ) +  Φ T  (  μ 3  ( Φ u − y ) −  γ 3  )    ,  



(22)




where   η = a b s (  d T  d /  d T  G d )   is the optimal step and   G =  μ 1    (  D α  )  T   D α  +  μ 4  I +  μ 3   Φ T  Φ  .




2.2.3. z Subproblems


Similar to other subproblems, z subproblems becomes


   z ˜  = arg     min  z  β    ‖  z − W z  ‖   2 2    −  γ 4 T  (  u ˜  − z ) +    μ 4   2     ‖   u ˜  − z  ‖   2 2  .  



(23)







According to [18], the Equation (23) can be further transformed into


    min  z     1 2     ‖  z − r  ‖   2 2  +  β   μ 4       ‖  z − W z  ‖   2 2  ,  



(24)




where   r = (  u ˜  −    γ 4     μ 4    )  ,  r  can be regarded as an approximation of z. Since the weight matrix  W  represents the nonlocal means operator, the Equation (24) can be rewritten as


    min  z     1 2     ‖  z − r  ‖   2 2  +  β   μ 4       ‖  z − W r  ‖   2 2  .  



(25)







Setting the gradient of the Equation (25) to zero, we acquire the closed-form solution as follows


   z ˜  =    μ 4  r + 2 β W r    μ 4    .  



(26)







Finally, the Lagrange multipliers are updated by the following


   {     γ 1  k + 1   =  γ 1 k  −  μ 1  (  D α   u  k + 1   −  w  k + 1   )      γ 2  k + 1   =  γ 2 k  −  μ 2  (  D 2   u  k + 1   −  w  k + 1   )      γ 3  k + 1   =  γ 3 k  −  μ 3  ( Φ  u  k + 1   − y )      γ 4  k + 1   =  γ 4 k  −  μ 4  (  u  k + 1   −  z  k + 1   )     .  



(27)







Once we obtained an efficient solution for each separated subproblem, the overall algorithm will be more efficient to get better reconstruction. Given all the derivations above, the specific implementation process of the proposed algorithm is described in Algorithm 1.



	Algorithm 1 HoFrTv algorithm.



	Input: The observed measurement  y , the measurement matrix Φ and    μ 1  ,  μ 2  ,  μ 3  ,  μ 4  , β  

Initialization:    u 0  =  Φ T  y  ,    γ 1  =  γ 2  =  γ 3  =  γ 4  = 0  ,    w 0  =  v 0  =  z 0  = 0  

 While Outer iteration unsatisfied do

  While Inner iteration unsatisfied do

   Solve w subproblem via Equation (17)

   Solve v subproblem via Equation (19)

   Solve u subproblem via Equation (21)

   Compute the weight wij via Equation (11)



	   Solve z subproblem via Equation (26)



	  end while



	 Update multipliers via Equation (27)



	 end while



	Output: the reconstructed image











3. Experimental Results and Discussion


In this section, the experimental results are presented to demonstrate the performance of the proposed algorithm HoFrTv model. In our implementation, we chose the USC-SIPI image database, which is a collection of digitized images. The database was maintained primarily to support research in image processing, image analysis, and machine vision. Ten images were selected for verification, the original images are shown in Figure 1.



Reconstructed image quality was measured using the peak signal-to-noise ratio (PSNR) and the structure similarity (SSIM) [29]. The calculation expression is as follows


      PSNR =  20  log  10    R  RMSE       RMSE =    1  M N     ∑  i = 1  M     ∑  j = 1  N     (  u  i j   −   u ˜   i j   )  2           .  



(28)







The root mean square error is the arithmetic square root of the mean square error, it can measure the deviation between the reconstructed image and the original image. Where     u ˜   i j     and    u  i j     denote the pixel values of the reconstructed image and the original image,  R  is the maximum value of the image gray level range. SSIM is defined as


   SSIM =    ( 2  μ x   μ y  +  C 1  ) ( 2  σ  x y   +  C 2  )   (  μ x 2  +  μ y 2  +  C 1  ) (  σ x 2  +  σ y 2  +  C 2  )   ,  



(29)




where    μ x    and    μ y    are the mean value of the reconstructed image and the original image.    σ x    and    σ y    are the standard deviations of the reconstructed image and the original image.    C 1    and    C 2    are small positive numbers to avoid    μ x 2  +  μ y 2    and    σ x 2  +  σ y 2    being zero, and


   σ  x y   =   (  1  N − 1   )  2    ∑  i = 1  N     ∑ j N   (  u  i j   −  μ x  )     (   u ˜   i j   −  μ y  ) .  



(30)







The stopping criterion for all of the algorithms tested was set to


       ‖    u ˜  t  −   u ˜   t + 1    ‖   2       ‖    u ˜   t + 1    ‖   2    ≤   10   − 3   ,  



(31)




where     u ˜   t + 1     and     u ˜  t    are the restored images at the current iterate and previous iterate respectively.



3.1. Parameter Selection


Since  τ  and  ε  were related to the weights of fractional-order and high-order total variation, the respective ranges of  τ  and  ε  were greater than 0 and less than 1. We constrained the summation of these two weights to be 1 in our proposed algorithm model. In the following content, we analyzed the influence of high-order and fractional-order weights parameters on the reconstructed results.



3.1.1. The Influence of High-Order


This subsection discusses the influence of high-order TV when Equation (14) does not exist in fractional-order, which means that the fractional-order is the traditional total variation. In order to investigate its effect, experiments were implemented with different weight parameters  ε  to high-order TV, the weights parameters value range was greater than 0 and less than 1. We randomly selected Lena image, the results are shown in Table 1.



From Table 1, with the parameter ε increasing, the higher the parameter ε was, the better the result of reconstruction. This is due to high-order TV that can effectively reduce the stair casing artifacts in the reconstructed image. According to the experimental results, when parameter ε was between 0.6 and 0.9, the reconstruction results could achieve stable results. So, the parameter ε value range could be selected from 0.6 to 0.9. According to the experiment in the database, we could make appropriate selection values according to different images. In our experiments, we set ε = 0.7 and τ = 0.3 to balance the results.




3.1.2. The Influence of Fractional-Order


In this experiment, α is the fractional-order. The effect of this parameter on the image reconstruction performance was tested without high-order TV in Equation (14), ranging from 0.5 to 2. Image Lena was tested in the experiment. The results are shown in Table 2.



From Table 2, we could see that when α < 1, the reconstructed results were poor. The reason is fractional-order TV loses more details and textures. When α = 1, fractional-order TV converts to traditional TV. When α > 1, the larger the parameter α is, the better the textures and image details. We can see that the PSNR at α = 1 is lower than the PSNR at α > 1. We can select the fractional-order α between α = 1.3 and α = 2. However, when a value of α is too close to 2, the frequency of textures would be enhanced excessively that becomes a kind of noise. Finally, to achieve a good trade-off, in our experiments, we set α = 1.7 to balance the results.




3.1.3. The Influence of Non-Local Mean Regularization Kernel Window and Search Window


Non-local means regularization indicates the estimated value of the current pixel obtained by the weighted average of the pixels in the image that have a similar neighborhood structure. There is no doubt that the radius of the neighborhood kernel window and the radius of the neighborhood search window were vital to the experiment. If their values are too small, the self-similarity of the image cannot be fully utilized, and the characteristics of the non-local means cannot be used fully. If their values are too large, the image search area will become larger and the time will be longer, which leads to the fact that the algorithm efficiency will be lower. There are different kernel windows to search window ratio (k:s) result values for different measurement rates in Table 3. Figure 2 shows the PSNR and time curves with measurement rates = 0.1 and 0.15 for different k:s. We can see from Table 3 and Figure 2 that the performance was the best when k:s was 3:7 considering from time and PSNR. Therefore, the kernel window and search window were set to be 3 and 7 in the following experiments.





3.2. Parameter Verification


3.2.1. Verify Fractional Order Existence Performance


According to Section 3.1, we set fractional-order α = 1.7 in this experiment, in order to verify the validity of fractional-order existence. On the basis of Section 3.1.1, the fractional-order α = 1.7 was added. The test image selection was the same as the previous tested image Lena. The results are shown in Table 4.



Comparing Table 1 with Table 4, we could see that the image reconstructed results in Table 4 were overall higher. The performance of fractional-order existence was better than that without fractional-order.




3.2.2. Verify High-Order Existence Performance


Similarly, in this experiment. In Section 3.1.2, the weight of high-order TV was 0.7. In order to verify the validity of high-order existence. On the basis of Section 3.1.2, the high-order was added. The test image was Lena. The results are shown in Table 5.



From comparing Table 2 with Table 5, we could see that the performance of high-order existence was better than that without high-order by comparing data one by one.



In order to verify the effect of the proposed algorithm, we gave the visual comparison of different TV modes in algorithms to test images Lena and Peppers. From Figure 3 and Figure 4, traditional TV with nonlocal means regularization in Figure 3a and Figure 4a usually produced undesirable staircase artifact and painting-like effects. Even though fractional-order TV in Figure 3b and Figure 4b could enhance image edges and textures, it could cause non-smooth of smooth areas. Although, the high-order TV in Figure 3c and Figure 4c was capable of alleviating the problem caused by traditional TV, still smoothed out the details of the image, which led to the fact that the effect was not ideal. In Figure 3d and Figure 4d, this was obvious that our proposed algorithm made the fractional-order and the high-order TV complement each other on image reconstruction. From the figures, we could see that our proposed algorithm preserved image edges and textures more effectively, and could alleviate the staircase artifact and painting-like effects produced by nonlocal means regularization.





3.3. Comparison to Other Reconstruction Algorithms


In this experiment, we compared the proposed method with several state-of-the-art algorithms: TVNLR [18], BCS-TV [21], TVAL3 [28], and two non-TV based algorithms: BCS-SPL [30] and MH-BCS [31]. In order to reduce the computational complexity and memory requirements. Images were divided into non-overlapping blocks of size 32 × 32 for all algorithms. Table 6 displays their PSNR and SSIM values with the growth of the measurement rates for each image. We added additional test images and reconstruction results in the Appendix A. Figure 5 and Figure 6 display PSNR and SSIM values respectively with the growth of the measurement rates for two images. From Table 6 and Figure 5 and Figure 6, it can be seen that the HoFrTV algorithm performed best for the images at different measurement rates. The visual quality of the reconstructed images was used to further verify the effectiveness of the proposed algorithm. To compare the results visually, Figure 7 and Figure 8 optionally display some reconstructed images and local enlargements obtained using the different algorithms with a 0.2 measurement rate. We can clearly see that the visual quality of the images recovered by HoFrTV was better than that of others. HoFrTV could efficiently reconstruct fine details and textures while preserving sharp edges and avoid producing painting-like effects.




3.4. Computational Complexity


The experiments were performed under the MATLABR2018a environment with Intel Corei5-4200 CPU of 3.4 GHz and 4.0 GB RAM. Table 7 and Figure 9 give the time of reconstructing image at different measurement rates. From this result, we could see that BCS-SPL, TVAL3, and MH-BCS were faster than the others. Comparing with TVNLR, HoFrTV, and BCS-TV, HoFrTV was faster than BCS-TV and slower than the TVNLR algorithm. It is because at each iteration needs to calculate the high-order and fractional-order total variation in the reconstruction process. However, the HoFrTV algorithm had higher reconstruction quality.





4. Conclusions


In this paper, a hybrid high-order and fractional-order total variation with nonlocal means regularization model was proposed for compressive sensing image reconstruction. ALM and ADMM methods were used to solve this model. Our proposed algorithm makes the fractional-order and the high-order total variation complement each other on image reconstruction. It can solve the problem of non-smooth in smooth areas when fractional-order total variation can enhance image edges and textures. In addition, it also addresses high-order total variation alleviates the staircase artifact produced by traditional total variation, still smoothes the details of the image and the effect is not ideal. Meanwhile, the proposed algorithm suppresses painting-like effects produced by nonlocal means regularization. Experimental results show that, comparing with several state-of-the-art algorithms, the reconstructed images obtained by the proposed approach not only outperformed many existing methods in terms of PSNR and SSIM but also had better visual quality.
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Figure A1. Five additional test images. 






Figure A1. Five additional test images.



[image: Electronics 10 00150 g0a1]







[image: Table] 





Table A1. The table of experimental results the PSNR (dB)/SSIM of five additional test images.
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Image

	
Algorithms

	
Measurement Rates




	
0.1

	
0.15

	
0.2

	
0.25

	
0.3






	
Woman

	
TV-NLR

	
28.406/0.804

	
29.886/0.847

	
31.261/0.877

	
32.540/0.901

	
33.325/0.917




	
MH-BCS

	
28.610/0.825

	
30.779/0.813

	
31.624/0.890

	
33.175/0.911

	
34.141/0.921




	
BCS-TV

	
27.982/0.781

	
29.581/0.829

	
30.766/0.858

	
31.914/0.882

	
32.74/0.901




	
BCS-SPL

	
27.560/0.774

	
28.869/0.814

	
30.117/0.843

	
31.202/0.864

	
32.201/0.880




	
TVAL3

	
27.259/0.781

	
29.539/0.835

	
30.786/0.863

	
31.880/0.887

	
32.941/0.904




	
HoFrTV

	
29.099/0.832

	
31.130/0.878

	
32.241/0.901

	
33.342/0.916

	
34.555/0.931




	
Candy

	
TV-NLR

	
28.645/0.905

	
30.659/0.933

	
32.859/0.954

	
34.560/0.966

	
36.488/0.976




	
MH-BCS

	
28.656/0.891

	
31.161/0.925

	
32.643/0.940

	
34.158/0.954

	
35.229/0.962




	
BCS-TV

	
27.458/0.881

	
29.729/0.919

	
31.659/0.943

	
33.465/0.959

	
35.209/0.969




	
BCS-SPL

	
26.467/0.842

	
28.283/0.877

	
30.261/0.901

	
31.242/0.919

	
32.352/0.932




	
TVAL3

	
26.238/0.854

	
29.598/0.917

	
31.184/0.938

	
32.907/0.955

	
34.333/0.966




	
HoFrTV

	
30.266/0.929

	
32.671/0.953

	
34.671/0.968

	
36.288/0.975

	
37.970/0.982




	
Bell

	
TV-NLR

	
25.070/0.846

	
26.858/0.883

	
28.615/0.912

	
29.682/0.927

	
31.401/0.943




	
MH-BCS

	
25.262/0.826

	
26.275/0.864

	
28.666/0.898

	
29.861/0.916

	
30.838/0.928




	
BCS-TV

	
23.937/0.795

	
25.619/0.847

	
27.044/0.883

	
28.276/0.905

	
29.621/0.923




	
BCS-SPL

	
23.755/0.774

	
24.928/0.805

	
26.493/0.841

	
27.402/0.851

	
27.750/0.879




	
TVAL3

	
23.469/0.775

	
25.899/0.861

	
27.538/0.895

	
28.915/0.914

	
30.194/0.929




	
HoFrTV

	
25.758/0.860

	
27.827/0.897

	
29.381/0.920

	
30.862/0.935

	
32.229/0.948




	
Couple

	
TV-NLR

	
25.424/0.676

	
27.417/0.759

	
28.298/0.798

	
28.994/0.827

	
30.216/0.861




	
MH-BCS

	
24.961/0.667

	
26.805/0.749

	
28.089/0.795

	
28.890/0.823

	
30.146/0.855




	
BCS-TV

	
24.376/0.625

	
26.153/0.702

	
27.394/0.756

	
28.537/0.798

	
29.592/0.834




	
BCS-SPL

	
23.773/0.580

	
24.933/0.632

	
25.827/0.673

	
26.57/0.7063

	
27.286/0.736




	
TVAL3

	
23.426/0.615

	
26.081/0.719

	
27.745/0.774

	
28.911/0.816

	
30.117/0.848




	
HoFrTV

	
25.765/0.695

	
27.589/0.774

	
29.323/0.828

	
30.553/0.864

	
31.728/0.891




	
Man

	
TV-NLR

	
23.469/0.632

	
24.775/0.707

	
25.972/0.754

	
26.810/0.790

	
27.875/0.828




	
MH-BCS

	
23.328/0.624

	
24.856/0.701

	
25.920/0.748

	
26.860/0.784

	
27.564/0.808




	
BCS-TV

	
22.902/0.596

	
24.483/0.681

	
25.593/0.737

	
26.628/0.779

	
27.543/0.816




	
BCS-SPL

	
21.889/0.505

	
22.955/0.562

	
23.815/0.611

	
24.587/0.651

	
25.260/0.687




	
TVAL3

	
22.327/0.567

	
23.211/0.619

	
24.35/0.678

	
25.206/0.720

	
27.504/0.811




	
HoFrTV

	
23.754/0.660

	
25.4822/0.741

	
26.719/0.793

	
27.761/0.826

	
28.748/0.855
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Figure 1. Test images. 






Figure 1. Test images.
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Figure 2. The PSNR and time curves for different k:s ratios: (a) measurement rates = 0.1 and (b) measurement rates = 0.15. 
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Figure 3. Lena image measurement rate = 0.1. (a) Reconstructed image by traditional TV, PSNR =26.272 dB, and SSIM = 0.789; (b) Reconstructed image by only fractional-order (order = 1.7) TV, PSNR = 26.956 dB, and SSIM = 0.809. (c) Reconstructed image by only higher-order (weight = 0.7) TV, PSNR = 26.670 dB, and SSIM = 0.803. (d) Reconstructed image by high-order (weight = 0.7) and fractional-order (order = 1.7) TV, PSNR = 27.493 dB, and SSIM = 0.829. 
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Figure 4. Peppers image measurement rate = 0.1. (a) Reconstructed image by traditional TV, PSNR = 26.601 dB, and SSIM = 0.829; (b) reconstructed image by only fractional-order (order = 1.7) TV, PSNR = 27.748 dB, and SSIM = 0.847; (c) reconstructed image by only higher-order (weight = 0.7) TV, PSNR = 26.787 dB, and SSIM = 0.828; (d) reconstructed image by high-order (weight = 0.7) and fractional-order (order = 1.7) TV, PSNR = 28.497 dB, and SSIM = 0.868. 
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Figure 5. The PSNR curves of two images: (a) Barbara and (b) Boats. 
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Figure 6. The SSIM curves of two images: (a) Barbara and (b) Boats. 
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Figure 7. Reconstructed images (barbara) for measurement rate = 0.2 (a) PSNR = 28.103 dB and SSIM = 0.815; (b) PSNR = 27.748 dB and SSIM = 0.847; (c) PSNR = 26.585 dB and SSIM = 0.778; (d) PSNR = 26.812 dB and SSIM = 0.788; (e) PSNR = 27.237 dB and SSIM = 0.808; and (f) PSNR = 28.304 dB and SSIM = 0.834. 
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Figure 8. Reconstructed images (boat) for measurement rate = 0.2 (a) PSNR = 27.170 dB and SSIM = 0.796; (b) PSNR = 25.266 dB and SSIM = 0.697; (c) PSNR = 26.013 dB and SSIM = 0.758; (d) PSNR = 26.421 dB and SSIM = 0.774; (e) PSNR = 26.476 dB and SSIM = 0.783; and (f) PSNR = 27.523 dB, and SSIM = 0.816. 
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Figure 9. Average reconstruction time (s). 
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Table 1. Peak signal-to-noise ratio (PSNR) (dB)/structural similarity (SSIM) results for the different  ε  for Lena image.
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  ε  

	
Measurement Rates




	
0.1

	
0.15

	
0.2

	
0.25

	
0.3






	
0.1

	
26.539/0.801

	
28.398/0.845

	
29.526/0.875

	
30.699/0.895

	
31.733/0.916




	
0.2

	
26.721/0.807

	
28.411/0.846

	
29.545/0.877

	
30.799/0.897

	
31.797/0.916




	
0.3

	
26.790/0.809

	
28.485/0.853

	
29.696/0.879

	
30.905/0.900

	
31.896/0.918




	
0.4

	
26.949/0.814

	
28.537/0.853

	
29.706/0.880

	
30.957/0.903

	
32.023/0.920




	
0.5

	
26.984/0.815

	
28.681/0.854

	
29.805/0.882

	
31.059/0.905

	
32.140/0.922




	
0.6

	
27.320/0.824

	
28.763/0.860

	
29.947/0.886

	
31.158/0.907

	
32.235/0.924




	
0.7

	
27.235/0.823

	
28.891/0.856

	
30.030/0.888

	
31.277/0.910

	
32.401/0.927




	
0.8

	
26.670/0.803

	
28.911/0.861

	
30.130/0.895

	
31.312/0.912

	
32.503/0.929




	
0.9

	
26.671/0.813

	
28.677/0.860

	
30.059/0.893

	
30.953/0.901

	
32.583/0.930
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Table 2. PSNR (dB)/SSIM results for the different fractional-order for Lena image.
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α

	
Measurement Rates




	
0.1

	
0.15

	
0.2

	
0.25

	
0.3






	
0.5

	
20.427/0.580

	
22.578/0.651

	
26.361/0.718

	
25.553/0.758

	
26.919/0.801




	
0.7

	
24.061/0.720

	
25.876/0.773

	
27.534/0.822

	
28.800/0.854

	
29.841/0.879




	
0.9

	
26.065/0.782

	
27.729/0.828

	
28.988/0.860

	
30.252/0.888

	
31.362/0.908




	
1

	
26.483/0.794

	
28.187/0.839

	
29.379/0.869

	
30.567/0.894

	
31.595/0.912




	
1.1

	
26.823/0.803

	
28.305/0.842

	
29.631/0.874

	
30.727/0.897

	
31.775/0.914




	
1.3

	
27.021/0.810

	
28.506/0.847

	
29.833/0.879

	
30.848/0.900

	
31.865/0.917




	
1.5

	
26.996/0.810

	
28.604/0.852

	
30.092/0.887

	
31.024/0.903

	
32.071/0.922




	
1.7

	
26.956/0.809

	
28.591/0.853

	
30.125/0.889

	
31.093/0.906

	
32.074/0.924




	
1.9

	
26.858/0.806

	
28.561/0.854

	
30.119/0.889

	
31.191/0.908

	
32.252/0.925




	
2.0

	
26.700/0.801

	
28.526/0.852

	
30.108/0.889

	
31.250/0.908

	
32.282/0.926
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Table 3. PSNR (dB)/SSIM and time (s) results for the different k:s ratios.
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Rates

	
PSNR (dB)/SSIM and Time (s)




	
k:s = 1:3

	
k:s = 3:7

	
k:s = 5:11

	
k:s = 7:15






	
0.1

	
26.448/0.793

	
198

	
27.460/0.828

	
289

	
27.463/0.828

	
901

	
27.510/0.832

	
3715




	
0.15

	
28.553/0.854

	
116

	
29.108/0.870

	
440

	
29.214/0.870

	
831

	
29.161/0.872

	
3996




	
0.2

	
30.097/0.888

	
93

	
30.379/0.896

	
366

	
30.525/0.896

	
1327

	
30.837/0.902

	
2439




	
0.25

	
31.183/0.908

	
120

	
31.612/0.916

	
311

	
32.158/0.916

	
1039

	
32.034/0.921

	
3639




	
0.3

	
32.208/0.925

	
99

	
32.821/0.933

	
208

	
32.958/0.933

	
1181

	
32.869/0.933

	
3610











[image: Table] 





Table 4. PSNR (dB)/SSIM results for the different  ε  for the Lena image.
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ε

	
Measurement Rates




	
0.1

	
0.15

	
0.2

	
0.25

	
0.3






	
0.1

	
27.016/0.811

	
28.731/0.856

	
30.155/0.890

	
31.209/0.910

	
32.204/0.925




	
0.2

	
27.097/0.814

	
28.795/0.858

	
30.190/0.891

	
31.286/0.911

	
32.241/0.925




	
0.3

	
27.186/0.817

	
28.852/0.859

	
30.238/0.892

	
31.348/0.912

	
32.292/0.926




	
0.4

	
27.283/0.820

	
28.939/0.862

	
30.291/0.893

	
31.422/0.913

	
32.365/0.927




	
0.5

	
27.407/0.824

	
29.056/0.864

	
30.358/0.895

	
31.469/0.914

	
32.450/0.928




	
0.6

	
27.497/0.827

	
29.159/0.867

	
30.396/0.896

	
31.581/0.916

	
32.525/0.929




	
0.7

	
27.600/0.831

	
29.222/0.869

	
30.400/0.897

	
31.610/0.917

	
32.636/0.931




	
0.8

	
27.405/0.828

	
29.139/0.867

	
30.347/0.894

	
31.731/0.919

	
32.714/0.932




	
0.9

	
26.883/0.810

	
28.967/0.864

	
30.156/0.892

	
31.499/0.913

	
32.713/0.932
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Table 5. PSNR (dB)/SSIM results for the different fractional-order for the Lena image.
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α

	
Measurement Rates




	
0.1

	
0.15

	
0.2

	
0.25

	
0.3






	
0.5

	
21.541/0.626

	
26.831/0.810

	
28.642/0.856

	
29.952/0.885

	
31.306/0.909




	
0.7

	
25.537/0.762

	
28.106/0.841

	
29.492/0.872

	
30.613/0.895

	
31.920/0.917




	
0.9

	
26.482/0.791

	
28.523/0.854

	
30.015/0.885

	
31.189/0.908

	
32.437/0.926




	
1

	
26.745/0.800

	
28.611/0.853

	
30.113/0.886

	
31.337/0.909

	
32.524/0.927




	
1.1

	
27.086/0.814

	
28.725/0.857

	
30.195/0.887

	
31.367/0.91

	
32.553/0.928




	
1.3

	
27.495/0.826

	
28.996/0.866

	
30.328/0.892

	
31.450/0.912

	
32.556/0.928




	
1.5

	
27.552/0.829

	
28.946/0.865

	
30.319/0.894

	
31.445/0.912

	
32.611/0.929




	
1.7

	
27.493/0.829

	
28.977/0.866

	
30.347/0.894

	
31.489/0.916

	
32.714/0.932




	
1.9

	
27.190/0.822

	
29.053/0.868

	
30.357/0.895

	
31.617/0.918

	
32.769/0.932




	
2.0

	
26.975/0.820

	
28.947/0.867

	
30.500/0.899

	
31.787/0.920

	
32.852/0.933
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Table 6. The PSNR (dB)/SSIM results of various algorithms with different measurement rates.






Table 6. The PSNR (dB)/SSIM results of various algorithms with different measurement rates.





	
Image

	
Algorithms

	
Measurement Rates




	
0.1

	
0.15

	
0.2

	
0.25

	
0.3






	
barbara

	
TV-NLR

	
24.926/0.723

	
26.458/0.781

	
27.236/0.807

	
27.970/0.832

	
29.113/0.859




	
MH-BCS

	
25.605/0.740

	
27.162/0.798

	
28.103/0.815

	
29.126/0.853

	
30.015/0.853




	
BCS-TV

	
24.215/0.681

	
25.560/0.738

	
26.585/0.778

	
27.421/0.807

	
28.167/0.830




	
BCS-SPL

	
23.619/0.640

	
25.067/0.697

	
26.209/0.739

	
27.105/0.770

	
27.807/0.793




	
TVAL3

	
23.563/0.664

	
25.814/0.751

	
26.812/0.788

	
27.480/0.810

	
28.335/0.834




	
HoFrTV

	
25.706/0.758

	
27.253/0.807

	
28.304/0.834

	
29.317/0.861

	
30.211/0.879




	
boat

	
TV-NLR

	
24.136/0.674

	
25.553/0.746

	
26.475/0.782

	
27.509/0.819

	
28.350/0.847




	
MH-BCS

	
24.322/0.682

	
25.879/0.745

	
27.170/0.796

	
28.198/0.831

	
29.011/0.851




	
BCS-TV

	
23.190/0.623

	
24.691/0.702

	
26.013/0.758

	
27.156/0.800

	
28.152/0.834




	
BCS-SPL

	
22.974/0.596

	
24.079/0.647

	
25.090/0.69

	
26.088/0.733

	
26.929/0.766




	
TVAL3

	
23.393/0.631

	
25.035/0.716

	
26.421/0.773

	
27.403/0.810

	
28.445/0.84




	
HoFrTV

	
24.465/0.699

	
26.258/0.774

	
27.523/0.816

	
28.615/0.851

	
29.953/0.881




	
cameraman

	
TV-NLR

	
24.561/0.794

	
26.245/0.838

	
27.356/0.864

	
28.904/0.890

	
29.968/0.909




	
MH-BCS

	
24.366/0.751

	
26.672/0.813

	
27.939/0.853

	
29.229/0.875

	
30.892/0.912




	
BCS-TV

	
23.613/0.761

	
25.196/0.807

	
26.652/0.844

	
27.864/0.871

	
28.910/0.892




	
BCS-SPL

	
22.785/0.691

	
24.284/0.740

	
25.626/0.783

	
26.686/0.813

	
27.744/0.838




	
TVAL3

	
23.169/0.727

	
25.442/0.817

	
26.741/0.850

	
28.018/0.877

	
29.284/0.900




	
HoFrTV

	
25.102/0.813

	
26.992/0.858

	
28.791/0.887

	
30.244/0.907

	
31.600/0.926




	
house

	
TV-NLR

	
29.519/0.830

	
31.809/0.862

	
33.018/0.879

	
34.153/0.894

	
35.306/0.909




	
MH-BCS

	
30.006/0.828

	
32.348/0.866

	
33.235/0.878

	
34.825/0.899

	
35.609/0.911




	
BCS-TV

	
27.763/0.79

	
29.784/0.829

	
31.111/0.852

	
32.282/0.870

	
33.413/0.888




	
BCS-SPL

	
26.627/0.742

	
28.104/0.770

	
29.815/0.814

	
31.059/0.838

	
31.464/0.840




	
TVAL3

	
26.047/0.750

	
29.885/0.837

	
31.385/0.860

	
32.653/0.878

	
33.584/0.892




	
HoFrTV

	
30.122/0.838

	
32.446/0.870

	
33.881/0.887

	
35.143/0.903

	
35.953/0.915




	
lena

	
TV-NLR

	
26.272/0.789

	
28.030/0.840

	
29.334/0.869

	
30.373/0.893

	
31.249/0.909




	
MH-BCS

	
26.773/0.797

	
28.520/0.853

	
29.757/0.872

	
30.815/0.897

	
31.840/0.918




	
BCS-TV

	
25.486/0.752

	
27.043/0.805

	
28.478/0.846

	
29.569/0.872

	
30.623/0.894




	
BCS-SPL

	
24.56/0.689

	
26.142/0.742

	
27.423/0.784

	
28.473/0.816

	
29.443/0.841




	
TVAL3

	
24.510/0.724

	
27.469/0.818

	
28.633/0.850

	
29.644/0.876

	
30.570/0.895




	
HoFrTV

	
27.493/0.829

	
29.071/0.869

	
30.403/0.896

	
31.745/0.916

	
32.655/0.931




	
mandrill

	
TV-NLR

	
22.014/0.469

	
22.483/0.527

	
23.495/0.602

	
24.018/0.656

	
23.835/0.671




	
MH-BCS

	
22.003/0.439

	
23.087/0.545

	
24.036/0.602

	
24.472/0.677

	
25.172/0.713




	
BCS-TV

	
21.895/0.453

	
22.695/0.525

	
23.380/0.587

	
23.956/0.638

	
24.499/0.682




	
BCS-SPL

	
22.069/0.449

	
22.701/0.504

	
23.264/0.559

	
23.695/0.599

	
24.186/0.639




	
TVAL3

	
22.351/0.471

	
22.875/0.537

	
23.437/0.592

	
23.954/0.643

	
24.590/0.686




	
HoFrTV

	
22.202/0.486

	
23.189/0.560

	
23.942/0.621

	
24.613/0.680

	
25.231/0.720




	
peppers

	
TV-NLR

	
26.601/0.829

	
29.119/0.879

	
30.762/0.906

	
32.295/0.925

	
33.845/0.940




	
MH-BCS

	
26.929/0.805

	
29.035/0.854

	
30.614/0.884

	
31.739/0.902

	
32.938/0.918




	
BCS-TV

	
25.802/0.790

	
28.270/0.850

	
30.001/0.882

	
31.432/0.905

	
32.799/0.924




	
BCS-SPL

	
24.241/0.695

	
25.974/0.747

	
27.280/0.783

	
28.544/0.812

	
29.604/0.836




	
TVAL3

	
24.515/0.767

	
27.949/0.853

	
29.709/0.885

	
31.198/0.908

	
32.467/0.924




	
HoFrTV

	
28.497/0.868

	
30.991/0.906

	
32.755/0.929

	
34.309/0.944

	
35.732/0.954




	
ruler

	
TV-NLR

	
14.799/0.298

	
15.496/0.441

	
16.445/0.546

	
16.827/0.591

	
19.348/0.783




	
MH-BCS

	
14.895/0.238

	
19.312/0.638

	
20.312/0.638

	
21.965/0.792

	
22.895/0.856




	
BCS-TV

	
15.172/0.309

	
15.811/0.451

	
16.707/0.539

	
17.457/0.605

	
18.059/0.656




	
BCS-SPL

	
15.870/0.401

	
16.550/0.497

	
17.493/0.595

	
18.365/0.661

	
19.141/0.712




	
TVAL3

	
15.300/0.274

	
15.392/0.363

	
16.269/0.483

	
17.158/0.585

	
18.019/0.661




	
HoFrTV

	
15.117/0.346

	
16.188/0.512

	
17.589/0.618

	
18.783/0.710

	
20.373/0.814




	
testpat

	
TV-NLR

	
16.397/0.723

	
19.372/0.831

	
19.440/0.792

	
24.283/0.929

	
26.333/0.959




	
MH-BCS

	
16. 819/0.779

	
19.135/0.828

	
20.142/0.856

	
22.379/0.879

	
24.798/0.956




	
BCS-TV

	
15.981/0.709

	
18.798/0.820

	
21.241/0.888

	
23.224/0.932

	
24.934/0.960




	
BCS-SPL

	
14.734/0.497

	
16.637/0.571

	
18.178/0.626

	
19.342/0.666

	
20.452/0.696




	
TVAL3

	
14.834/0.613

	
17.719/0.752

	
19.338/0.799

	
22.402/0.900

	
24.212/0.936




	
HoFrTV

	
17.799/0.803

	
22.762/0.910

	
26.047/0.944

	
28.512/0.965

	
30.191/0.970




	
Resolutionchart

	
TV-NLR

	
20.726/0.880

	
25.863/0.950

	
27.620/0.966

	
32.921/0.982

	
35.516/0.988




	
MH-BCS

	
18.511/0.707

	
20.473/0.783

	
22.234/0.819

	
24.008/0.862

	
25.640/0.886




	
BCS-TV

	
9.173/0.578

	
9.649/0.6718

	
10.276/0.721

	
9.714/0.741

	
10.012/0.76




	
BCS-SPL

	
16.213/0.550

	
18.068/0.607

	
19.215/0.627

	
20.384/0.654

	
21.410/0.676




	
TVAL3

	
16.411/0.675

	
21.741/0.888

	
24.951/0.942

	
27.899/0.966

	
30.475/0.980




	
HoFrTV

	
20.311/0.861

	
24.204/0.923

	
26.925/0.956

	
30.100/0.971

	
33.498/0.983
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Table 7. Average reconstruction time(s).
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Algorithms

	
BCS-SPL

	
TVAL3

	
MH-BCS

	
TV-NLR

	
HoFrTV

	
BCS-TV






	
Time (s)

	
Rate = 0.1

	
4.8

	
3.5

	
15.6

	
150.6

	
322.3

	
392.3




	
Rate = 0.15

	
3.1

	
3.1

	
18.3

	
150.2

	
327.5

	
465.4




	
Rate = 0.2

	
2.5

	
2.4

	
16.6

	
148.9

	
316.4

	
530.3




	
Rate = 0.25

	
2.4

	
2.2

	
18.4

	
149.4

	
326.5

	
627.4




	
Rate = 0.3

	
2.5

	
2.0

	
14.2

	
151.3

	
324.4

	
775.6
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