Device and Circuit Exploration of Multi-Nanosheet Transistor for Sub-3 nm Technology Node
Abstract
:1. Introduction
2. Analysis of Characteristics According to the Presence or Absence of Bottom Oxide
2.1. Device Characteristic Analysis
2.2. Circuit Characteristic Analysis
3. Analysis of Characteristics According to the Position of Bottom Oxide
3.1. Device Characteristic Analysis
3.2. Circuit Characteristic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, K.K. Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 1989, 36, 399–402. [Google Scholar] [CrossRef]
- Lu, Z.; Fossum, J.G. Short-channel effects in independent-gate FinFETs. IEEE Electron Device Lett. 2007, 28, 145–147. [Google Scholar] [CrossRef]
- Chiarella, T.; Witters, L.; Mercha, A.; Kerner, C.; Rakowski, M.; Ortolland, C.; Ragnarsson, L.-Å.; Parvais, B.; De Keersgieter, A.; Kubicek, S.; et al. Benchmarking SOI and bulk FinFET alternatives for PLANAR CMOS scaling succession. Solid-State Electron. 2010, 54, 855–860. [Google Scholar] [CrossRef]
- Loubet, N.; Hook, T.; Montanini, P.; Yeung, C.-W.; Kanakasabapathy, S.; Guillom, M.; Yamashita, T.; Zhang, J.; Miao, X.; Wang, J.; et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In Proceedings of the 2017 IEEE Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017. [Google Scholar]
- Nagy, D.; Indalecio, G.; García-Loureiro, A.; Elmessary, M.A.; Kalna, K.; Seoane, N. FinFET Versus Gate-All-Around Nanowire FET: Performance, Scaling, and Variability. IEEE J. Electron Devices Soc. 2018, 6, 332–340. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Jeong, J.; Lee, S.; Baek, R.-H. Bottom Oxide Bulk FinFETs without Punch-Through-Stopper for Extending toward 5-nm Node. IEEE Access 2019, 7, 75762–75767. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Jeong, J.; Lee, S.; Baek, R.-H. Punch-Through-Stopper Free Nanosheet FETs with Crescent Inner-Spacer and Isolated Source/Drain. IEEE Access 2019, 7, 38593–385968. [Google Scholar] [CrossRef]
- Pal, A.; Natarajan, S.; Ayyagari, B.; Mittal, S.; Bazizi, E.M.; Sachid, A.; Saremi, M.; Colombeau, B.; Thareja, G.; Lin, S.; et al. Impact of MOL/BEOL Air-Spacer on Parasitic Capacitance and Circuit Performance at 3 nm Node. In Proceedings of the 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Udine, Italy, 4–6 September 2019. [Google Scholar]
- Koike, J.; Hosseini, M.; Hai, H.T.; Ando, D.; Sutou, Y. Material innovation for MOL, BEOL, and 3D integration. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 32.3.1–32.3.4. [Google Scholar]
- Asenov, A.; Cheng, B.; Wang, X.; Brown, A.R.; Millar, C.; Alexander, C.; Amoroso, S.M.; Kuang, J.B.; Nassif, S.R. Variability Aware Simulation Based Design- Technology Cooptimization (DTCO) Flow in 14 nm FinFET/SRAM Cooptimization. IEEE Trans. Electron Devices 2014, 62, 1682–1690. [Google Scholar] [CrossRef]
- Ryckaert, J.; Raghavan, P.; Schuddinck, P.; Trong, H.B.; Mallik, A.; Sakhare, S.S.; Chava, B.; Sherazi, Y.; Leray, P.; Mercha, A.; et al. DTCO at N7 and beyond: Patterning and electrical compromises and opportunities. In Design-Process-Technology Co-Optimization for Manufacturability IX; International Society for Optics and Photonics: Bellingham, DC, USA, 2015; Volume 9427. [Google Scholar]
- Liebmann, L.; Chu, A.; Gutwin, P. The daunting complexity of scaling to 7 nm without EUV: Pushing DTCO to the extreme. In Design-Process-Technology Co-Optimization for Manufacturability IX; International Society for Optics and Photonics: Bellingham, DC, USA, 2015; Volume 9427. [Google Scholar]
- Kim, H.; Son, D.; Myeong, I.; Ryu, D.; Park, J.; Kang, M.; Jeon, J.; Shin, H. Strain engineering for 3.5-nm node in stacked-nanoplate FET. IEEE Trans. Electron Devices 2019, 66, 2898–2903. [Google Scholar] [CrossRef]
- Morris, K. No More Nanometers It’s Time for New Node Naming. Electron. Eng. J. 2020. Available online: https://www.eejournal.com/article/no-more-nanometers/ (accessed on 23 July 2020).
- Moore, M. International Roadmap for Devices and Systems (IRDS™) Edition. IEEE 2020. Available online: https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf (accessed on 23 July 2020).
- Zilli, M.; Esseni, D.; Palestri, P.; Selmi, L. On the Apparent Mobility in Nanometric n-MOSFETs. IEEE Electron Device Lett. 2007, 28, 1036–1039. [Google Scholar] [CrossRef]
- Bufler, F.M.; Smith, L. 3D Monte Carlo simulation of FinFET and FDSOI devices with accurate quantum correction. J. Comput. Electron. 2013, 12, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-G.; Oh, S.-Y.; Fuller, G. A simple and accurate method to measure the threshold voltage of an enhancement-mode MOSFET. IEEE Trans. Electron Devices 1982, 29, 346–348. [Google Scholar]
- Deen, M.J.; Yan, Z.X. A new method for measuring the threshold voltage of small-geometry MOSFETs from subthreshold conduction. Solid-State Electron. 1990, 33, 503–511. [Google Scholar] [CrossRef]
- Ortiz-Conde, A.; García-Sánchez, F.J.; Muci, J.; Barrios, A.T.; Liou, J.J.; Ho, C.-S. Revisiting MOSFET threshold voltage extraction methods. Microelectron. Reliab. 2013, 53, 90–104. [Google Scholar] [CrossRef]
- Jang, D.; Yakimets, D.; Eneman, G.; Schuddinck, P.; Bardon, M.G.; Raghavan, P.; Spessot, A.; Verkest, D.; Mocuta, A. Device Exploration of NanoSheet Transistors for Sub-7-nm Technology Node. IEEE Trans. Electron Devices 2017, 64, 2707–2713. [Google Scholar] [CrossRef]
Technology Node | 3 nm | 2.1 nm | 1.5 nm |
---|---|---|---|
Symbol (Units) | Value | ||
6 | 5 | 4 | |
8.5 | 9 | 10 | |
16 | 14 | 12 | |
8 | 7 | 6 | |
10 | 10 | 10 | |
0.3 | 0.27 | 0.27 | |
1.1 | 1.1 | 1.1 | |
20 | 20 | 20 | |
30 | 30 | 30 |
Type | Structure | ||
---|---|---|---|
NMOS | With BO | 66.259 | 43.077 |
Without BO | 80.442 | 107.692 | |
PMOS | With BO | 67.516 | 33.846 |
Without BO | 72.028 | 49.231 |
Technology Node (nm) | |||
---|---|---|---|
3 | 257 | 497 | 314 |
Capacitance Component | Without BO | With BO | Variation Ratio [%] |
---|---|---|---|
1.82 | 1.24 | −31.868 | |
0.57 | 0.577 | +1.22 | |
0.855 | 0.46 | −46.199 | |
0.385 | 0.19 | −50.649 |
Resistance Component | Without BO | With BO | Variation Ratio [%] |
---|---|---|---|
6.923 | 6.402 | −7.514 | |
1.69 | 1.89 | +11.834 | |
0.373 | 0.422 | +13.137 | |
4.86 | 4.09 | −15.844 |
Type | Structure | ||
---|---|---|---|
NMOS | Top | 66.254 | 43.077 |
Center | 66.259 | 43.077 | |
Bottom | 75.065 | 45.021 | |
PMOS | Top | 67.512 | 33.846 |
Center | 67.516 | 33.846 | |
Bottom | 67.635 | 36.127 |
Capacitance Component | Top | Center | Bottom |
---|---|---|---|
1.73 | 1.74 | 1.84 | |
0.57 | 0.572 | 0.597 | |
0.599 | 0.647 | 0.737 | |
0.541 | 0.503 | 0.473 |
Resistance Component | Top | Center | Bottom |
---|---|---|---|
4.42 | 4.85 | 4.99 | |
1.36 | 1.38 | 1.43 | |
0.313 | 0.317 | 0.325 | |
2.75 | 3.15 | 3.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seon, Y.; Chang, J.; Yoo, C.; Jeon, J. Device and Circuit Exploration of Multi-Nanosheet Transistor for Sub-3 nm Technology Node. Electronics 2021, 10, 180. https://doi.org/10.3390/electronics10020180
Seon Y, Chang J, Yoo C, Jeon J. Device and Circuit Exploration of Multi-Nanosheet Transistor for Sub-3 nm Technology Node. Electronics. 2021; 10(2):180. https://doi.org/10.3390/electronics10020180
Chicago/Turabian StyleSeon, Yoongeun, Jeesoo Chang, Changhyun Yoo, and Jongwook Jeon. 2021. "Device and Circuit Exploration of Multi-Nanosheet Transistor for Sub-3 nm Technology Node" Electronics 10, no. 2: 180. https://doi.org/10.3390/electronics10020180
APA StyleSeon, Y., Chang, J., Yoo, C., & Jeon, J. (2021). Device and Circuit Exploration of Multi-Nanosheet Transistor for Sub-3 nm Technology Node. Electronics, 10(2), 180. https://doi.org/10.3390/electronics10020180