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Abstract: A multi-nanosheet field-effect transistor (mNS-FET) device was developed to maximize
gate controllability while making the channel in the form of a sheet. The mNS-FET has superior
gate controllability for the stacked channels; consequently, it can significantly reduce the short-
channel effect (SCE); however, punch-through inevitably occurs in the bottom channel portion
that is not surrounded by gates, resulting in a large leakage current. Moreover, as the size of the
semiconductor device decreases to several nanometers, the influence of the parasitic resistance and
parasitic capacitance increases. Therefore, it is essential to apply design–technology co-optimization,
which analyzes not only the characteristics from the perspective of the device but also the performance
from the circuit perspective. In this study, we used Technology Computer Aided Design (TCAD)
simulation to analyze the characteristics of the device and directly fabricated a model that describes
the current–voltage and gate capacitance characteristics of the device by using Berkeley short-channel
insulated-gate field-effect transistor–common multi-gate (BSIM–CMG) parameters. Through this
model, we completed the Simulation Program with Integrated Circuit Emphasis (SPICE) simulation
for circuit analysis and analyzed it from the viewpoint of devices and circuits. When comparing
the characteristics according to the presence or absence of bottom oxide by conducting the above
research method, it was confirmed that subthreshold slope (SS) and drain-induced barrier lowering
(DIBL) are improved, and power and performance in circuit characteristics are increased.

Keywords: multi-nanosheet FETs; bottom oxide; DTCO; TCAD/SPICE simulation

1. Introduction

Semiconductor device technology has continued to develop rapidly in line with the
rapidly developing information industry. According to Moore’s law proposed in 1965,
the performance of semiconductor-integrated circuits doubles every 24 months; thus, the
development of semiconductor devices has increased at an exponential rate over time.
To increase the performance of semiconductors, reduction in the device size and high
integration have been achieved in the form of a scale-down in the structure of the metal–
oxide-semiconductor field-effect transistors (MOSFETs); however, the development of this
type of device has reached its limit. For the MOSFETs to operate correctly, the role of the
gate is significantly important; however, as the channel length is shortened, the source and
drain become close and the gate cannot perform its role owing to the short-channel effect
(SCE) [1,2]. Accordingly, the structure of the device has been developed by increasing the
number of junction surfaces between the channel and the gate. The structure has evolved
from planar MOSFETs with one channel–gate junction surface to fin-shaped field-effect
transistors (FinFETs) [3] with three channel–gate junction surfaces, thereby increasing the
control by gates and enabling technology nodes to develop up to several nanometers.
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However, the structure of FinFETs has also reached its limit as the size of technology nodes
has been reduced to less than 3 nm; consequently, it has become essential to develop a
device having a gate-all-around (GAA) structure, which wraps all parts of the channel
with a gate [4,5]. Such a structure maximizes the channel control capability of the gate.
Owing to this structure, the SCE is significantly improved, and the operating voltage can
be reduced. A typical GAA-structured transistor is in the form of a nanowire in which the
channel region has a cylindrical and elongated shape. However, the channel width is not
sufficiently wide to allow the flow of a large amount of current; therefore, it is difficult to
obtain sufficient current in the nanowire structure. To compensate for this, a nanosheet
transistor structure was developed. In this structure, the area where the channel touches
the gate is maximized by modifying the wire-shaped channel structure into a nanosheet.
However, there is a disadvantage as a large leakage current component is generated owing
to punch-through due to the SCE in the lower channel portion that is not surrounded by the
gate. To prevent this leakage current, a punch-through stopper (PTS) doping was added
to the existing multi-nanosheet transistor to minimize the occurrence of leakage current;
however, the increase in process cost owing to PTS doping appears to be a significant
disadvantage [6,7]. Therefore, by using a structure in which an insulator is added to the
lower part of the source and drain regions, instead of PTS doping, to prevent leakage
current components, it is possible not only to reduce the process cost but also to simplify
the process.

A technology node represents a specific semiconductor manufacturing technology
and design rule. In general, as the size of the technology node decreases, the transistor
size decreases, resulting in faster and more power-efficient features [8,9]. The name of
the technology node was originally based on half the length of the gate or half the pitch
between the lowermost interconnections; however, currently, owing to the limitations of
Moore’s law, this naming is not well maintained. Thus, as the technology node becomes
increasingly smaller, micro-processing becomes technically difficult and the design cost of
the chip also increases exponentially. Therefore, it is significantly important to develop and
design semiconductor devices through simulation before actual fabrication. As technology
nodes become smaller, in the order of several nanometers, the simulation method requires
design–technology co-optimization (DTCO) that not only refines but also optimizes the
design process. The use of DTCO technology has the advantage of shortening the time to
commercialization as well as achieving cost reduction in the advanced process development
of semiconductor devices. In addition, DTCO technology can be used to reduce the cell
area in situations where it is difficult to obey Moore’s law because of the limitation of
miniaturization. By reducing the cell area, it is possible to increase the degree of integration,
which can supplement the limitations of Moore’s law to a certain extent; consequently, it is
necessary to utilize DTCO technology [10–12].

Therefore, in this study, calibration was performed to extract parameter values to
be used for accurate analysis of the channel portion and drift–diffusion simulation for
multi-nanosheet field-effect transistor (mNS-FET) devices. In simulation-based studies
of such nanoscale devices, a calibration process is essential to increase accuracy. The
TCAD calibration process can be carried out in two main directions as follows. (1) The
value calculated at the lower level of material properties and carrier transport is used as a
calibration target, and (2) the measured value of the made device is used as a calibration
target. In this study, we take the process of calibrating a drift–diffusion-based carrier
transport model for computational efficiency after obtaining accurate, raw data by solving
a Monte Carlo (MC)-based Boltzmann transport equation operation. This is detailed in
the paper [13] previously published by our research group. In addition, the physical
dimensions (e.g., Contacted poly pitch, Gate length, Source/Drain length) in the recent
nanoscale technology node have very different characteristics for each foundry company
that develops semiconductor process technology, even in the same technology node [14].
Since the specific physical dimensions have not yet been known for the 3 nm technology
node, the most recently announced content is utilized in this paper, considered from the
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International Roadmap for Devices and Systems (IRDS) for the 7 nm technology node [15].
Second, the extracted parameters were applied to the entire device structure to perform
a drift–diffusion simulation. Third, the characteristic graph of the device, which is a
simulation result, was extracted. Fourth, we directly manufactured a model that describes
the extracted device characteristic graph. Then, the Berkeley short-channel insulated-
gate field-effect transistor–common multi-gate (BSIM–CMG) parameter was used. Finally,
SPICE simulation for circuit analysis was conducted, based on a manually created model,
and the circuit characteristics were analyzed.

2. Analysis of Characteristics According to the Presence or Absence of Bottom Oxide
2.1. Device Characteristic Analysis

To proceed with the technology–computer-aided design simulation to perform the
analysis at the device level for the mNS-FET device, refer to the prediction roadmap for
the 3/2.1/1.5 nm technology nodes of the International Roadmap for Devices and Systems
(IRDS) institute, as listed in Table 1. As shown in Figure 1, an mNS-FET structure has
nitride in the spacer area, and the channel is surrounded by SiO2 and HfO2. Figure 1a
shows a structure where an insulator is added to prevent the leakage current component
of the lower channel, and in Figure 1b, the existing mNS-FET structure is illustrated. In
Table 1, the structural information of all mNS-FET devices is specifically listed.

Table 1. Detailed structural information of the multi-nanosheet field-effect transistor device of a 3 nm
technology node.

Technology Node 3 nm 2.1 nm 1.5 nm

Symbol (Units) Value

Lsp (nm) 6 5 4
Lsd (nm) 8.5 9 10
Lg (nm) 16 14 12
Tch (nm) 8 7 6
Tsp(nm) 10 10 10
Tox (nm) 0.3 0.27 0.27
Thk (nm) 1.1 1.1 1.1
TBO (nm) 20 20 20
W (nm) 30 30 30
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Before proceeding with the simulation of the entire structure, for an accurate analysis
of the channel part, as shown in Figure 2, a structure considering one part of the channel of
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the mNS-FET was created separately, and a Monte Carlo simulation [16,17] was performed
to calibrate the drift–diffusion simulation. Then, the values of the trajectory transport
coefficient and velocity saturation parameter were extracted. The reason for using this
simulation is that complementary metal–oxide-semiconductor technology has evolved to a
technology node of 10 nm or less, ballistic transport alone cannot quantitatively explain
the loss of mobility in a small channel length, and the Boltzmann transport equation must
be solved. Figure 3 shows the Monte Carlo simulation results and the calibration results of
the drift–diffusion simulation through the above process. Figure 3a shows the results for
the N-type structure and Figure 3b shows the results for the P-type structure.
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Figure 3. Calibration result between Monte Carlo simulation and drift–diffusion simulation: (a) N-type and (b) P-type.

Figure 4 shows the current–voltage characteristic graph according to the presence or
absence of bottom oxide in the entire structure by applying the parameters extracted as
the calibration result. At this time, targeting was performed so that the off-current value
could be 0.1 nA when the supply voltage was 0.7 V, by adjusting the work function. As a
result of targeting and comparing the graphs, it was confirmed that the on–off ratio was
larger in the structure with bottom oxide in both N- and P-types. Through the graph, the
characteristics of the device, that is, subthreshold slope (SS) and drain-induced barrier
lowering (DIBL), were obtained, which are listed as specific values in Table 2. In particular,
the following formula was used to calculate the DIBL value.

DIBL[mV/V] =
|Vtlin −Vtsat |
|VDD − 0.05| × 1000 (1)
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Table 2. Specific values of subthreshold slope (SS) and drain-induced barrier lowering (DIBL).

Type Structure SS(mV/dec) DIBL(mV/V)

NMOS
With BO 66.259 43.077

Without BO 80.442 107.692

PMOS
With BO 67.516 33.846

Without BO 72.028 49.231

To determine the threshold in the linear region, a specific current value was set in the
current–voltage graph when the drain voltage was low; moreover, the gate voltage was
determined when the specific current value was set to the threshold in the linear region.
The gate voltage in the saturation region was also determined as the gate voltage when it
had a specific current value. At this time, the specific current value was determined using
the following equation:

Ids[A] = 100× W
L
× 10−9 (2)

As shown in Equation (2), the method of extracting the threshold voltage using a
constant current is very simple and convenient compared to the classical method [18–20].

From Table 2, it can be confirmed that the SS and DIBL characteristics were im-
proved, regardless of the N- or P-type in the structure, with the bottom oxide structure.
Figure 5 shows the comparison of the measured current–voltage characteristics of the
multi-nanosheet FET, fabricated in the previous paper [4], to the TCAD simulation used
in this paper. Although it is difficult to make a perfect comparison because all device
dimension values are not clearly presented in [4], it is confirmed that there is no significant
difference from our TCAD simulation results. Note that the comparison was made only
for N-Metal Oxide Semiconductor (NMOS). This is because N/P-Metal Oxide Semicon-
ductor (N/PMOS) is expected to have symmetric current–voltage characteristics because
off-current target and on-current balancing are performed with the same N/PMOS current
characteristics. Therefore, in the current–voltage characteristic graph, it can be observed
that when the bottom oxide is present, the leakage current component of the lower channel
is controlled, and performance is improved correspondingly. Gate capacitors can be largely
divided into parasitic capacitor components and intrinsic capacitor components. As tech-
nology nodes become smaller, the influence of parasitic capacitor components increases
and is a major cause of deterioration in performance owing to the increase in the delay time
in devices and circuits. As shown in Figure 6, it can be observed that the structure with
bottom oxide has a smaller gate capacitor value. Unlike the existing structure, it can be
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observed that the bottom oxide occupies the source/drain portion, and thus, the parasitic
capacitors in the gate-source and gate-drain portions are reduced.
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As shown in Figure 6, since the capacitance value is very small in the nanoscale
technology node, it is difficult to accurately measure due to the resolution limit of the
measurement equipment, so the TCAD simulation characteristics can be utilized very
usefully.

2.2. Circuit Characteristic Analysis

Before proceeding with the analysis at the circuit level, Figure 7 shows that the off-
current for each N- and P-type was set as 0.1 nA, according to the presence or absence of
bottom oxide.
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Figure 8. Benchmark circuit with five-stage ring oscillator, a fan-out of three, and backend-of-line
(BEOL) load.

Then, the contact resistance, resistance of the backend-of-line (BEOL) load, and BEOL
capacitance were set, as listed in Table 3.

Table 3. Values of contact resistance, backend-of-line (BEOL) resistance, and BEOL capacitance.

Technology Node
(nm) Rcont[Ω/um] RBEOL[Ω/um] CBEOL[aF/um]

3 257 497 314

Based on the circuit diagram in Figure 8, we confirmed the performance improvement
in terms of power consumption and speed of the circuit. Figure 9 shows the performance
graph according to the presence or absence of the BEOL load. Figure 9a shows the perfor-
mance graph when there is no BEOL load according to the supply charge, and Figure 9b
illustrates the performance graph when there is a BEOL load. From the graph, it can be
observed that the graph is located on the right at all supply voltages when the result of the
structure with bottom oxide is compared with the result of the structure without bottom
oxide, regardless of the presence of the BEOL load. This result indicates that when bottom
oxide is present, the speed is improved for the same power consumption and the power
consumption is reduced at the same speed.
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In the structure with bottom oxide, it was confirmed that both device and circuit
characteristics were improved. To verify the improvement of the characteristics in more
detail, the change in components according to the presence or absence of bottom oxide
was investigated through segmentation of the resistance and capacitor components. In
Figure 10a,b, the capacitor components are segmented according to the presence or absence
of bottom oxide, respectively. To compare the components of the capacitor, the capacitor
components of the BEOL load, parasitic capacitor components, and intrinsic capacitor
components were divided. In Figure 10a, it can be observed that the parasitic resistance
component occupies approximately half of the total capacitance component and is reduced
by more than 10% in Figure 10b when bottom oxide is present. In Table 4, the total
capacitor value and the capacitance component, which change depending on the presence
or absence of bottom oxide, are listed as specific values. As can be observed from the
table, the presence of bottom oxide reduces the total capacitor value by approximately
32%. In addition, it was confirmed that the reduction in parasitic and intrinsic capacitor
components decreased at most by approximately 50%.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 10. Components of capacitance according to the presence or absence of bottom oxide (%): 
(a) without bottom oxide; (b) with bottom oxide. 

Table 4. Capacitance value and rate of change according to the presence or absence of bottom ox-
ide. 

Capacitance Compo-
nent 

Without BO With BO Variation Ratio [%] 𝐶_௧௧ [𝑓𝐹] 1.82 1.24 −31.868 𝐶ௗ [𝑓𝐹] 0.57 0.577 +1.22 𝐶 [𝑓𝐹] 0.855 0.46 −46.199 𝐶௧ [𝑓𝐹] 0.385 0.19 −50.649 

Figure 11a,b shows the resistance components according to the presence or absence 
of bottom oxide, respectively. The resistance components constituting all components 
were divided into BEOL load resistance, contact resistance, and intrinsic resistance com-
ponents, and compared. From the graph, it can be observed that among the three compo-
nents, in the structure with bottom oxide, the intrinsic resistance component decreases at 
the largest rate. For a more accurate comparison, the rate of change was measured by 
comparing the resistance values of each component according to the presence or absence 
of bottom oxide, which is listed in Table 5. Owing to the presence of bottom oxide, the 
total resistance component decreased by approximately 7.5%; moreover, it can be ob-
served that the intrinsic resistance component is the component that causes the total re-
sistance component to decrease. 

 
Figure 11. Components of resistance according to the presence or absence of bottom oxide (%): (a) 
without bottom oxide; (b) with bottom oxide. 

  

Figure 10. Components of capacitance according to the presence or absence of bottom oxide (%): (a) without bottom oxide;
(b) with bottom oxide.



Electronics 2021, 10, 180 9 of 14

Table 4. Capacitance value and rate of change according to the presence or absence of bottom oxide.

Capacitance
Component Without BO With BO Variation Ratio [%]

Ce f f _total [fF] 1.82 1.24 −31.868
Cload [fF] 0.57 0.577 +1.22
Cpara [fF] 0.855 0.46 −46.199
Cint [fF] 0.385 0.19 −50.649

Figure 11a,b shows the resistance components according to the presence or absence of
bottom oxide, respectively. The resistance components constituting all components were
divided into BEOL load resistance, contact resistance, and intrinsic resistance components,
and compared. From the graph, it can be observed that among the three components, in
the structure with bottom oxide, the intrinsic resistance component decreases at the largest
rate. For a more accurate comparison, the rate of change was measured by comparing
the resistance values of each component according to the presence or absence of bottom
oxide, which is listed in Table 5. Owing to the presence of bottom oxide, the total resis-
tance component decreased by approximately 7.5%; moreover, it can be observed that the
intrinsic resistance component is the component that causes the total resistance component
to decrease.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 10. Components of capacitance according to the presence or absence of bottom oxide (%): 
(a) without bottom oxide; (b) with bottom oxide. 

Table 4. Capacitance value and rate of change according to the presence or absence of bottom ox-
ide. 

Capacitance Compo-
nent 

Without BO With BO Variation Ratio [%] 𝐶_௧௧ [𝑓𝐹] 1.82 1.24 −31.868 𝐶ௗ [𝑓𝐹] 0.57 0.577 +1.22 𝐶 [𝑓𝐹] 0.855 0.46 −46.199 𝐶௧ [𝑓𝐹] 0.385 0.19 −50.649 

Figure 11a,b shows the resistance components according to the presence or absence 
of bottom oxide, respectively. The resistance components constituting all components 
were divided into BEOL load resistance, contact resistance, and intrinsic resistance com-
ponents, and compared. From the graph, it can be observed that among the three compo-
nents, in the structure with bottom oxide, the intrinsic resistance component decreases at 
the largest rate. For a more accurate comparison, the rate of change was measured by 
comparing the resistance values of each component according to the presence or absence 
of bottom oxide, which is listed in Table 5. Owing to the presence of bottom oxide, the 
total resistance component decreased by approximately 7.5%; moreover, it can be ob-
served that the intrinsic resistance component is the component that causes the total re-
sistance component to decrease. 

 
Figure 11. Components of resistance according to the presence or absence of bottom oxide (%): (a) 
without bottom oxide; (b) with bottom oxide. 

  

Figure 11. Components of resistance according to the presence or absence of bottom oxide (%): (a) without bottom oxide;
(b) with bottom oxide.

Table 5. Resistance value and rate of change according to the presence or absence of bottom oxide.

Resistance
Component Without BO With BO Variation Ratio [%]

Re f f _total [kΩ] 6.923 6.402 −7.514
Rload [kΩ] 1.69 1.89 +11.834
Rcont [kΩ] 0.373 0.422 +13.137
Rint [kΩ] 4.86 4.09 −15.844

3. Analysis of Characteristics According to the Position of Bottom Oxide

Analyses at the device and circuit levels according to the presence or absence of bottom
oxide were conducted in a previous study. Based on the previous study, it was confirmed
that both the device and circuit characteristics were improved in the structure of the device
with bottom oxide. Therefore, in this study, the same research was conducted on structures
with different locations of the bottom oxide. As shown in Figure 12, three structures were
fabricated according to the location of the bottom oxide. Figure 12a illustrates the “Top”
structure, where the location of the bottom oxide predominantly occupies the source/drain;
Figure 12b illustrates the “Center” structure, where the bottom oxide occupies a small
portion of the source/drain; Figure 12c illustrates the “Bottom” structure, where the bottom
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oxide does not occupy portions of the source/drain.
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3.1. Device Characteristic Analysis

Figure 13 shows the graphs of the current–voltage characteristics according to the
location of the bottom oxide in the N- and P-type devices. Similarly, targeting was per-
formed by adjusting the work function. In the N- and P-type device, when the absolute
drain voltage is 0.7 V, the off-current value is 0.1 nA, as shown in Figure 13b,d. As a result
of targeting and comparing the current–voltage graphs, it was confirmed that the on–off
ratio was further improved in the structure with bottom oxide in both N- and P-types.
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In Table 6, specific values for the device characteristics (SS and DIBL) according to the
location of the bottom oxide are listed. Then, the method used in the previous study was
used, without any modifications, to obtain the device characteristics.
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Table 6. Specific values of SS and DIBL.

Type Structure SS(mV/dec) DIBL(mV/V)

NMOS
Top 66.254 43.077

Center 66.259 43.077

Bottom 75.065 45.021

PMOS
Top 67.512 33.846

Center 67.516 33.846

Bottom 67.635 36.127

From Figure 13 and Table 6, it can be noted that the “Top” and “Center” structures
show superior results in SS and DIBL characteristics; in contrast, the “Bottom” structure
demonstrates comparatively inferior characteristics. It can be observed that the leakage
current component is not well controlled in the “Bottom” structure. Figure 14 shows
a characteristic graph for the gate capacitance according to the bottom oxide position.
From the results of Figure 6, it was confirmed that the gate capacitance decreases as the
proportion of the region where the bottom oxide occupies the source and the drain increases.
Similarly, from Figure 14, it can be confirmed that the bottom oxide has the largest gate
capacitor value in the “Bottom” structure, which occupies less source and drain.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 15 
 

 

  

Figure 14. Gate capacitance characteristic graph according to the presence or absence of bottom oxide: (a) |Vୈୈ| = 0 V; (b) |Vୈୈ| = 0.7 V. 
3.2. Circuit Characteristic Analysis 

As shown in Figure 8, circuit characteristics are analyzed using the same circuit dia-
gram that added the five-stage ring oscillator, fan-out of three, and BEOL loads, which are 
benchmark circuits. In Figure 15a, the power–frequency graph is drawn when there is no 
BEOL load, and Figure 15b shows the graph with a BEOL load. When compared to the 
“Top” and “Center” structures, it can be observed that the characteristics are the worst for 
a “Bottom” structure. It can be predicted that this is because it has the largest gate capac-
itance characteristic in terms of device characteristics; consequently, the delay time is long 
and the resistance component is large; therefore, the power consumption is large. 

  

Figure 15. Power–frequency graph according to BEOL load: (a) without BEOL load and (b) with BEOL load. 

In Table 7, the components of the total capacitance are listed according to the location 
of the bottom oxide. As listed in the table, when the location of the bottom oxide corre-
sponds to the “Bottom” structure, it has the largest total capacitance, which is due to the 
parasitic capacitor component. 

  

Figure 14. Gate capacitance characteristic graph according to the presence or absence of bottom oxide: (a) |VDD| = 0 V;
(b) |VDD| = 0.7 V.

3.2. Circuit Characteristic Analysis

As shown in Figure 8, circuit characteristics are analyzed using the same circuit
diagram that added the five-stage ring oscillator, fan-out of three, and BEOL loads, which
are benchmark circuits. In Figure 15a, the power–frequency graph is drawn when there
is no BEOL load, and Figure 15b shows the graph with a BEOL load. When compared to
the “Top” and “Center” structures, it can be observed that the characteristics are the worst
for a “Bottom” structure. It can be predicted that this is because it has the largest gate
capacitance characteristic in terms of device characteristics; consequently, the delay time is
long and the resistance component is large; therefore, the power consumption is large.
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In Table 7, the components of the total capacitance are listed according to the location of
the bottom oxide. As listed in the table, when the location of the bottom oxide corresponds
to the “Bottom” structure, it has the largest total capacitance, which is due to the parasitic
capacitor component.

Table 7. Capacitance value according to the position of bottom oxide.

Capacitance
Component Top Center Bottom

Ce f f _total [fF] 1.73 1.74 1.84
Cload [fF] 0.57 0.572 0.597
Cpara [fF] 0.599 0.647 0.737
Cint [fF] 0.541 0.503 0.473

In Table 8, the components of the total resistance are listed according to the location of
the bottom oxide. It can be observed that the intrinsic resistance component is a factor that
determines the value of the total resistance. In this case, it was confirmed that the intrinsic
resistance component in the “Bottom” structure has a larger value than the remaining
structures. As such, it was possible to prove that the “Bottom” structure shows the worst
performance in the power–frequency graph through segmentation of the capacitor and
resistance components.

Table 8. Resistance value according to the position of bottom oxide.

Resistance
Component Top Center Bottom

Re f f _total [kΩ] 4.42 4.85 4.99
Rload [kΩ] 1.36 1.38 1.43
Rcont [kΩ] 0.313 0.317 0.325
Rint [kΩ] 2.75 3.15 3.24

4. Conclusions

In this paper, we analyzed the change in characteristics caused by adding bottom
oxide to the mNS-FET device from the perspectives of the device and circuit. Furthermore,
the analysis was conducted from these perspectives according to the location of the bottom
oxide. First, it is possible to reduce the process cost by using bottom oxide instead of PTS
doping. Second, in the comparison according to the presence or absence of bottom oxide,
it was confirmed that the SS, DIBL, and gate capacitance characteristics were improved
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for the device to which bottom oxide was added, and the leakage current and capacitor
components were significantly improved when compared to the conventional device
without bottom oxide. Specifically, in the presence of bottom oxide, each 17.6% to 6.3%
of the N/PMOS was improved in the SS, and 59.9% to 31.3% was improved in the DIBL
characteristics. In addition, circuit characteristics were analyzed by benchmarking circuits
with the five-stage ring oscillator, fan-out of three, and BEOL loads for analysis from the
perspectives of both the device and the circuit. When compared to the device without
bottom oxide, it was confirmed that the device with the same power rate was improved and
the power consumption was reduced when the same speed was considered. In addition,
through the segmentation of the entire capacitor and resistance components from the
perspective of the circuit, it was confirmed that the component was improved owing
to the bottom oxide. In the case of capacitor components, by adding bottom oxide, the
intrinsic capacitance and parasitic capacitance were significantly decreased by 50.65%
and 46.12%, respectively. Correspondingly, the overall capacitor value decreased. In
the case of the resistance component, the overall reduction of the resistance component
decreased the intrinsic resistance component. Specifically, the intrinsic resistance was
decreased by 15%. Third, it was confirmed that the presence of bottom oxide confirmed
the improvement in performance from the perspective of the device and circuit, and on
comparing the performance according to the location, the worst case of the device and
circuit characteristics was observed for the “Bottom” structure when compared to the “Top”
and “Center” structures.
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